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高速指数時間アルゴリズム



2/37スケジュール (前半)

1. 高速指数時間アルゴリズムの考え方
∗ 休み (体育祭)
2. 分枝アルゴリズム：基礎
3. 分枝アルゴリズム：高速化
4. 分枝アルゴリズム：測度統治法
5. 動的計画法：基礎
6. 動的計画法：例

(10/7)
(10/14)
(10/21)
(10/28)
(11/4)
(11/11)
(11/18)



3/37スケジュール (後半)

7. 包除原理：原理
∗ 休み (秋ターム試験)
8. 包除原理：例
9. 部分集合たたみ込み：原理
∗ 休み (出張)
∗ 休み (冬季休業)

10. 部分集合たたみ込み：例
11. 指数時間仮説：原理
12. 指数時間仮説：例
13. 最近の話題
∗ 休み (修士論文発表会)

(11/25)
(12/2)
(12/9)
(12/16)
(12/23)
(12/30)
(1/6)
(1/13)
(1/20)
(1/27)
(2/3)



4/37本日の内容

今回と次回

指数時間よりも小さい計算量を達成できるか？

今回

• 指数時間仮説
• 準指数時間帰着
• 疎化補題

次回

• 準指数時間帰着の例



5/37いままで扱った問題と計算量

最大独立集合問題

3-SAT
巡回セールスマン問題

最小被覆問題

最小シュタイナー木問題

二部完全マッチング数え上げ

彩色問題

k彩色数え上げ

ハミルトン路数え上げ

O∗(1.8393n)
O∗(1.2228n)

O∗(2n)
O∗(2n)
O∗(2n)
O∗(2|K|)
O∗(2n)
O∗(2n)
O∗(2n)

分枝

分枝

動的計画法

動的計画法

包除原理

たたみ込み

包除原理

包除原理

たたみ込み

問題 計算量 アルゴリズム



6/37疑問

疑問 (あるいは，未解決問題)

• 最大独立集合問題を O∗(2
√
n)時間で解けるか？

• 3-SATを O∗(2
√
n)時間で解けるか？

• 彩色問題を O∗(2
√
n)時間で解けるか？

• · · ·



6/37疑問

疑問 (あるいは，未解決問題)

• 最大独立集合問題を O∗(2
√
n)時間で解けるか？

• 3-SATを O∗(2
√
n)時間で解けるか？

• 彩色問題を O∗(2
√
n)時間で解けるか？

• · · ·

疑問 (あるいは，未解決問題)
• 最大独立集合問題を多項式時間で解けるか？
• 3-SATを多項式時間で解けるか？
• 彩色問題を多項式時間で解けるか？
• · · ·

そもそも，次も分かっていない

これらが多項式時間で解ける⇔ P = NP



7/37計算複雑性理論の帰結

事実：次は既知

次に挙げる性質は互いに同値

• 最大独立集合問題が多項式時間で解ける
• 3-SATが多項式時間で解ける
• 彩色問題が多項式時間で解ける
• ある NP完全問題が多項式時間で解ける
• すべての NP完全問題が多項式時間で解ける

この事実に基づいて，次のように言う

すべての NP完全問題は互いに多項式時間等価



8/37いまから議論したいこと

野望：次のようなことが言えないか？

すべての NP完全問題は O∗(2
√
n)時間等価

そもそも，「任意の NP完全問題に対する n」とは何か？

今回と次回の内容

これに近いことを行う

• 対象とする計算量として準指数時間を扱う
• 問題の間の関係を帰着を使って述べる
• 準指数時間に関する等価性を論じるために
指数時間仮説と疎化補題を用いる



9/37本日の内容

• R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly
exponential complexity? Journal of Computer and System
Sciences 63 (2001) pp. 512–530.

• R. E. Stearns, H. B. Hunt III, Power indices and easier hard
problems. Mathematical Systems Theory 23 (1990) pp. 209–225.

1. 準指数時間の計算量

2. 指数時間仮説と疎化補題

3. 疎化補題の利用法



10/37リトル o記法

非減少関数 f, g : Z≥0 → R≥0

定義：リトル o記法

次が成り立つとき，f(n) = o(g(n))と書く

lim
n→∞

f(n)
g(n) = 0

例 1：n = o(n2)である

lim
n→∞

n

n2 = lim
n→∞

1
n
= 0

例 2：1.5n = o(2n)である

lim
n→∞

1.5n

2n = lim
n→∞

(
3
4

)n

= 0

直感：f のオーダーが gのオーダーよりも真に小さい



11/37リトル o記法：補足

いろいろなオーダー記法 (定義は適当な文献を参照のこと)

ただし，f, g : Z≥0 → R≥0 は非減少関数とする

f(n) = o(g(n))

f(n) = O(g(n))

f(n) = Θ(g(n))

f(n) = Ω(g(n))

f(n) = ω(g(n))

記法 直感

f(n)のオーダーは g(n)よりも小さい

f(n)のオーダーは g(n)以下である

f(n)のオーダーは g(n)と等しい

f(n)のオーダーは g(n)以上である

f(n)のオーダーは g(n)よりも大きい



12/37準指数関数

非減少関数 f : Z≥0 → R≥0

定義：準指数関数 (subexponential function)

f が準指数関数であるとは，次を満たすこと

f(n) = 2o(n)

例：

• 4
√
n は準指数関数

• n2 は準指数関数

• nlog2 n は準指数関数

4
√
n = 22

√
n

n2 = 22 log2 n

nlog2 n = 2(log2 n)2

つまり，log2 f(n) = o(n) (⇔ lim
n→∞

log2 f(n)
n

= 0)

注意：「f(n) = o(2n)」ではない



13/37準指数時間計算量

定義：準指数関数時間計算量

サイズ・パラメータ pに関する準指数時間計算量とは
ある非減少準指数関数 f : Z≥0 → R≥0 に対して

O∗(f(p))

と表される計算量のこと

サイズ・パラメータの例

• グラフの頂点数 n，辺数m

• CNF論理式の変数数 n，節数m



14/37準指数時間計算量：例

いまから紹介すること

性質：最大クリーク・アルゴリズム (Stearns, Hunt III ’90)

最大クリーク問題は O∗(2
√
2m)時間で解ける

(mはグラフの辺数)

つまり，最大クリーク問題は

サイズ・パラメータmに関して，準指数時間で解ける



14/37準指数時間計算量：例

いまから紹介すること

性質：最大クリーク・アルゴリズム (Stearns, Hunt III ’90)

最大クリーク問題は O∗(2
√
2m)時間で解ける

(mはグラフの辺数)

つまり，最大クリーク問題は

サイズ・パラメータmに関して，準指数時間で解ける

一方で，次は未解決

未解決問題

最大クリーク問題は頂点数をサイズ・パラメータとして

準指数時間で解けるか？

∴準指数時間で解けることは，サイズ・パラメータに依存



15/37最大クリーク問題

定義：最大クリーク問題

入力：無向グラフ G = (V,E)
出力： Gのクリークで，頂点数最大のもの

Gのクリークとは

互いに隣接する頂点の集合

事実：最大クリーク問題は NP困難



15/37最大クリーク問題

定義：最大クリーク問題

入力：無向グラフ G = (V,E)
出力： Gのクリークで，頂点数最大のもの

Gのクリークとは

互いに隣接する頂点の集合

事実：最大クリーク問題は NP困難



16/37最大クリーク問題：O∗(2
√
2m)時間 (1)

最小次数で場合分け

1)最小次数 ≥
√
2m 2)最小次数 ≤

√
2m



16/37最大クリーク問題：O∗(2
√
2m)時間 (1)

最小次数で場合分け

1)最小次数 ≥
√
2m 2)最小次数 ≤

√
2m

2m =
∑
v∈V

deg(v)



16/37最大クリーク問題：O∗(2
√
2m)時間 (1)

最小次数で場合分け

1)最小次数 ≥
√
2m 2)最小次数 ≤

√
2m

2m =
∑
v∈V

deg(v)

≥ n ·
√
2m

∴ n ≤
√
2m

∴しらみつぶしで

計算量 = O∗(2n)
= O∗(2

√
2m)



16/37最大クリーク問題：O∗(2
√
2m)時間 (1)

最小次数で場合分け

1)最小次数 ≥
√
2m 2)最小次数 ≤

√
2m

2m =
∑
v∈V

deg(v)

≥ n ·
√
2m

∴ n ≤
√
2m

∴しらみつぶしで

計算量 = O∗(2n)
= O∗(2

√
2m)

最小次数の頂点で分枝
v

vを含む vを含まない

頂点数 ≤
√
2m = n− 1



17/37最大クリーク問題：O∗(2
√
2m)時間 (2)

2)最小次数 ≤
√
2m

最小次数の頂点で分枝
v

vを含む vを含まない

頂点数 ≤
√
2m = n− 1

帰納法で，

探索木の葉の数 ≤ n2
√
2m

を示す



17/37最大クリーク問題：O∗(2
√
2m)時間 (2)

2)最小次数 ≤
√
2m

最小次数の頂点で分枝
v

vを含む vを含まない

頂点数 ≤
√
2m = n− 1

帰納法で，

探索木の葉の数 ≤ n2
√
2m

を示す

葉の数 ≤ 2
√
2m +

(n− 1)2
√
2m

≤ n2
√
2m

∴計算量 = O∗(2
√
2m)



18/37準指数時間計算量の非存在を言うには？

未解決問題

最大クリーク問題は頂点数をサイズ・パラメータとして

準指数時間で解けるか？



18/37準指数時間計算量の非存在を言うには？

未解決問題

最大クリーク問題は頂点数をサイズ・パラメータとして

準指数時間で解けるか？

これから行いたいこと

次が「ありえそう」であることを示す

• 最大クリーク問題が 2o(n) 時間で解けない



19/37[復習]多項式時間のときは？

既知：次はありえると思われている

最大クリーク問題は多項式時間で解けない

証明の考え方

• 仮説：3-SATは多項式時間で解けない
• 証明：最大クリーク問題が多項式時間で解ける

⇒ 3-SATが多項式時間で解ける

最大クリーク問題の

多項式時間アルゴリズム



19/37[復習]多項式時間のときは？

既知：次はありえると思われている

最大クリーク問題は多項式時間で解けない

証明の考え方

• 仮説：3-SATは多項式時間で解けない
• 証明：最大クリーク問題が多項式時間で解ける

⇒ 3-SATが多項式時間で解ける

最大クリーク問題の

多項式時間アルゴリズム

入力の

変換器

出力の

変換器

3-SATの多項式時間アルゴリズム



20/37準指数時間アルゴリズムのときは？

証明の考え方

• 仮説：3-SATは 2o(n) 時間で解けない
• 証明：最大クリーク問題が 2o(n) 時間で解ける

⇒ 3-SATが 2o(n) 時間で解ける

最大クリーク問題の

2o(n) 時間アルゴリズム

入力の

変換器

出力の

変換器

3-SATの 2o(n) 時間アルゴリズム

これから行いたいこと

次が「ありえそう」であることを示す

• 最大クリーク問題が 2o(n) 時間で解けない



21/37注意：準指数時間の定義

f(n) = o(n) ⇔ lim
n→∞

f(n)
n

= 0

⇔ ∀ ε > 0 ∃ n0 ∀ n ≥ n0 : f(n) ≤ εn

この講義での仮定：n0 は計算可能



22/37準指数関数の特徴づけ

性質：準指数関数の特徴づけ

非減少関数 f : Z≥0 → R≥0 に対して，次の 2つは同値
1. f(n) = 2o(n)
2. ∃関数 h，∀正実数 ε > 0：f(n) ≤ h(ε) · 2εn

証明 (1⇒ 2)：∀ ε > 0 ∃ n0 ∀ n ≥ n0 : f(n) ≤ 2εn と仮定
• h(ε) = 2εn0 とする

• n ≥ n0 のとき，f(n) ≤ 2εn ≤ 2εn0 · 2εn = h(ε) · 2εn
• n ≤ n0 のとき，f(n) ≤ f(n0) ≤ 2εn0 = h(ε) ≤ h(ε) · 2εn



23/37準指数関数の特徴づけ (続)

性質：準指数関数の特徴づけ

非減少関数 f : Z≥0 → R≥0 に対して，次の 2つは同値
1. f(n) = 2o(n)
2. ∃関数 h，∀正実数 ε > 0：f(n) ≤ h(ε) · 2εn

証明 (2⇒ 1)：∃ h ∀ δ > 0: f(n) ≤ h(δ) · 2δn と仮定
• 任意の ε > 0に対して，n0 = (log2 h(ε/2))/(ε/2)とする
• n ≥ n0 に対して，
f(n) ≤ h(ε/2) · 2εn/2 = 2εn0/2 · 2εn/2 ≤ 2εn/2 · 2εn/2 = 2εn



24/37本日の内容

• R. Impagliazzo, R. Paturi, On the complexity of k-SAT. Journal of
Computer and System Sciences 62 (2001) pp. 367–375.

• R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly
exponential complexity? Journal of Computer and System
Sciences 63 (2001) pp. 512–530.

1. 準指数時間の計算量

2. 指数時間仮説と疎化補題

3. 疎化補題の利用法



25/37[復習]充足可能性問題

問題：充足可能性問題

入力：論理式 ϕ
出力： ϕを 1 (真)とする割当がある⇒ Yes

ϕを 1 (真)とする割当がない⇒ No

充足可能性問題：satisfiability problem (SAT)
サ ッ ト

扱う論理式の種類を制限する場合が多い (後述)



26/37[復習]連言標準形

ϕ = (x1 ∨ x2) ∧ (x1 ∨ x3 ∨ x4)

定義：連言標準形

論理式 ϕが連言標準形で表されているとは，
ϕが「リテラルの ORの AND」で書かれていること

リテラルの OR リテラルの OR

リテラルの ORの AND

連言標準形：conjunctive normal form (CNF)

用語 ：節 (clause) =リテラルの OR
節 C のサイズ = C が含むリテラルの数



27/37[復習] k-SAT

問題：k-SAT
入力：連言標準形で表された論理式 ϕで，

各節のサイズが k以下であるもの
出力： ϕが充足可能である⇒ Yes

ϕが充足可能ではない⇒ No

ϕ = (x1 ∨ x2) ∧ (x1 ∨ x3 ∨ x4)

k ≥ 1は正整数

注：k ≥ 3のとき，k-SATは NP完全 (Karp ’72)



28/37指数時間仮説

定義：指数時間仮説 (exponential-time hypothesis)

指数時間仮説とは次の命題 (真偽は未解決)

3-SATは 2o(n) 時間で解けない

(nは入力論理式の変数の数)

注：3-SATが 2o(n) 時間で解けない (指数時間仮説が正しい)
⇒ 3-SATが多項式時間で解けない (P 6= NP)

計算量
多項式時間

準指数時間



29/37変数数 vs節数
3-SATの入力である論理式 ϕにおいて

ϕの変数数 = n ⇒ ϕの節数 = O(n3)



29/37変数数 vs節数
3-SATの入力である論理式 ϕにおいて

ϕの変数数 = n ⇒ ϕの節数 = O(n3)

性質：3-SATに対する計算量下界

指数時間仮説が正しい⇒ 3-SATは 2o( 3√m)時間で解けない
(mは論理式の節数)

証明：3-SATが 2o( 3√m) 時間で解けると仮定

• m = O(n3)なので，3-SATは 2o(n) 時間で解ける
• ∴指数時間仮説に矛盾

3-SATの

2o( 3√m) 時間アルゴリズム

3-SATの 2o(n) 時間アルゴリズム



30/37節数に関する改善

実は，次が正しい

性質：3-SATに対する計算量下界 (改善)

指数時間仮説が正しい⇒ 3-SATは 2o(m)時間で解けない
(mは論理式の節数)

疎化補題 =これを証明するためのアルゴリズム



31/37疎化補題

定理：疎化補題 (sparsification lemma)

ある関数 gが存在し，次を行うアルゴリズムが存在する
入力： 3-SATの入力 ϕ (変数数 = n)，正整数 `
出力： t個の 3-SAT入力 ϕ1, ϕ2, . . . , ϕt

要請： 1. t ≤ 2n/`
2. ϕが充足可能⇔ある ϕi が充足可能

3. ϕi の節は必ず ϕの節
4. ϕi の中には各変数が g(`)回しか現れない

ここで，アルゴリズムの計算量は O∗(2n/`)である

ϕ =
t∨

i=1
ϕi

節数 m ≤ g(`)n
疎化補題

ϕ

`

ϕ1
ϕ2

ϕt

...



32/37本日の内容

• R. Impagliazzo, R. Paturi, On the complexity of k-SAT. Journal of
Computer and System Sciences 62 (2001) pp. 367–375.

• R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly
exponential complexity? Journal of Computer and System
Sciences 63 (2001) pp. 512–530.

1. 準指数時間の計算量

2. 指数時間仮説と疎化補題

3. 疎化補題の利用法



33/37節数に関する改善 (再掲)
疎化補題を用いて，次の定理を証明する

性質：3-SATに対する計算量下界 (改善)

指数時間仮説が正しい⇒ 3-SATは 2o(m)時間で解けない
(mは論理式の節数)



34/37節数に関する改善：証明 (1)
仮定：3-SATが 2o(m) 時間で解ける

目標：3-SATが 2o(n) 時間で解ける

m =節数

n =変数数

(∃関数 h, ∀ ε > 0：h(ε) · 2εm 時間で解ける)

(∃関数 h′, ∀ ε′ > 0：h′(ε′) · 2ε′n 時間で解ける)



34/37節数に関する改善：証明 (1)
仮定：3-SATが 2o(m) 時間で解ける

目標：3-SATが 2o(n) 時間で解ける

m =節数

n =変数数

• h′(ε′) = h( 2
ε′g( 2

ε′ )
)とする

(gは疎化補題に現れる関数)

(∃関数 h, ∀ ε > 0：h(ε) · 2εm 時間で解ける)

(∃関数 h′, ∀ ε′ > 0：h′(ε′) · 2ε′n 時間で解ける)

定理：疎化補題 (sparsification lemma)

ある関数 gが存在し，次を行うアルゴリズムが存在する
入力： 3-SATの入力 ϕ (変数数 = n)，正整数 `
出力： t個の 3-SAT入力 ϕ1, ϕ2, . . . , ϕt

要請： 1. t ≤ 2n/`
2. ϕが充足可能⇔ある ϕi が充足可能

3. ϕi の節は必ず ϕの節
4. ϕi の中には各変数が g(`)回しか現れない

ここで，アルゴリズムの計算量は O∗(2n/`)である



34/37節数に関する改善：証明 (1)
仮定：3-SATが 2o(m) 時間で解ける

目標：3-SATが 2o(n) 時間で解ける

m =節数

n =変数数

• h′(ε′) = h( 2
ε′g( 2

ε′ )
)とする

(gは疎化補題に現れる関数)

(∃関数 h, ∀ ε > 0：h(ε) · 2εm 時間で解ける)

(∃関数 h′, ∀ ε′ > 0：h′(ε′) · 2ε′n 時間で解ける)

• ` = 2
ε′ として，ϕに疎化補題を適用

ϕ =
t∨

i=1
ϕi

節数 m ≤ g(`)n
疎化補題

ϕ

`

ϕ1
ϕ2

ϕt

...

t ≤ 2n/`
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アルゴリズム：

1. ϕと `に対して，疎化補題を適用
→ ϕ1, . . . , ϕt を得る

2. 各 ϕi を 2o(m) 時間アルゴリズムで解く
3. ある ϕi が充足可能⇒ ϕは充足可能
そうでない⇒ ϕは充足可能でない

正しさは，疎化補題から分かる

疎化補題

ϕ

`

ϕ1
ϕ2

ϕt

...



35/37節数に関する改善：証明 (2)

アルゴリズム：

1. ϕと `に対して，疎化補題を適用
→ ϕ1, . . . , ϕt を得る

2. 各 ϕi を 2o(m) 時間アルゴリズムで解く
3. ある ϕi が充足可能⇒ ϕは充足可能
そうでない⇒ ϕは充足可能でない

正しさは，疎化補題から分かる

計算量 ≤ 2n/`(n+m)c + 2n/` · h(ε)2εg(`)n

疎化補題
の計算量

tの上界 2o(節数) 時間
節数 ≤ g(`)n
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∴ 計算量 = 2o(n) · 2(n+m)c = 2o(n)+log2(2(n+m)c) = 2o(n)

計算量 ≤ 2n/`(n+m)c + 2n/` · h(ε)2εg(`)n

= 2ε′n/2(n+m)c + 2ε′n/2 · h′(ε′)2
ε′

2g( 2
ε′ )

g( 2
ε′ )n

` = 2
ε′ , ε =

ε′

2g( 2
ε′ )

, h′(ε′) = h( ε′

2g( 2
ε′ )

) = h(ε)

= 2ε′n/2(n+m)c + h′(ε′)2ε′n

≤ 2h′(ε′)2ε′n(n+m)c



37/37本日のまとめと次回の予告

今回と次回

指数時間よりも小さい計算量を達成できるか？

今回

• 指数時間仮説
• 準指数時間帰着
• 疎化補題

次回

• 準指数時間帰着の例
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