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離散最適化基礎論 (2025年後学期)

第 10回
部分集合たたみ込み (2)：例

岡本吉央 (電気通信大学)
okamotoy@uec.ac.jp

2026年 1月 6日
最終更新：2026年 1月 6日 13:30

高速指数時間アルゴリズム



2/37スケジュール (前半)

1. 高速指数時間アルゴリズムの考え方
∗ 休み (体育祭)
2. 分枝アルゴリズム：基礎
3. 分枝アルゴリズム：高速化
4. 分枝アルゴリズム：測度統治法
5. 動的計画法：基礎
6. 動的計画法：例

(10/7)
(10/14)
(10/21)
(10/28)
(11/4)
(11/11)
(11/18)



3/37スケジュール (後半)

7. 包除原理：原理
∗ 休み (秋ターム試験)
8. 包除原理：例
9. 部分集合たたみ込み：原理
∗ 休み (出張)
∗ 休み (冬季休業)

10. 部分集合たたみ込み：例
11. 指数時間仮説：原理
12. 指数時間仮説：証明
13. 最近の話題
∗ 休み (修士論文発表会)

(11/25)
(12/2)
(12/9)
(12/16)
(12/23)
(12/30)
(1/6)
(1/13)
(1/20)
(1/27)
(2/3)



4/37本日の内容

前回と今回

部分集合たたみ込み (subset convolution)による
アルゴリズムの設計と解析

前回

• 部分集合たたみ込みの説明
– 最小シュタイナー木問題 (O∗(2|K|)時間)

今回

• 部分集合たたみ込みのアルゴリズム
– k彩色の数え上げ (O∗(2n)時間)



5/37[復習]部分集合たたみ込み：定義
有限集合 U，集合関数 f, g : 2U → R

定義：部分集合たたみ込み (subset convolution)

f, gの部分集合たたみ込みとは，次の関数 f ∗g : 2U → R

(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T ) ∀ S ⊆ U

S f(S)
∅

{a}

{b}
{a, b}

0
−1
4
2

g(S)
2
3

−3
5

例：U = {a, b}

(f ∗ g)({a})
= f(∅)g({a}) + f({a})g(∅)
= 0 · 3 + (−1) · 2 = −2

注：以後，単にたたみ込みとも言う



6/37[復習]部分集合たたみ込み問題

問題：部分集合たたみ込み

入力 ：有限集合 U，集合関数 f, g : 2U → Z
出力 ：部分集合たたみ込み f ∗ g : 2U → Z

S f(S)
∅

{a}

{b}
{a, b}

0
−1
4
2

g(S)
2
3

−3
5

(f ∗ g)(S)

−2
0

8
19

S

∅

{a}

{b}
{a, b}

以下，n = |U |とする



7/37[復習]今日の目標 (の 1つ)

定理 (Björklund, Husfeldt, Kaski, Koivisto ’07)

部分集合たたみ込みは O∗(2n)回の演算で解ける

(素朴なアルゴリズム：O(3n))

より細かく (Björklund, Husfeldt, Kaski, Koivisto ’07)

部分集合たたみ込みは次の時間で解ける

O(2nnO(1) logM)

ただし，M = max
S⊆U

max{|f(S)|, |g(S)|}

改善



8/37[復習]ゼータ変換
集合関数 f : 2U → R

定義：ゼータ変換 (zeta transform)

f のゼータ変換は次の集合関数

ζ[f ](S) =
∑
T⊆S

f(T )

∅

U

S



9/37[復習]メビウス変換
集合関数 f : 2U → R

定義：メビウス変換 (Möbius transform)

f のメビウス変換は次の集合関数

µ[f ](S) =
∑
T⊆S

(−1)|S−T |f(T )

∅

U

S −+



10/37[復習]ゼータ変換とメビウス変換の性質

性質：ゼータとメビウスは互いに逆変換

任意の集合関数 f : 2U → Rに対して，
• µ[ζ[f ]] = f
• ζ[µ[f ]] = f

S f(S)
∅

{a}

{b}
{a, b}

3
5
4
2

ζ[f ](S)
3
8
7

14

µ[ζ[f ]](S)
3
5
4
2

µ[f ](S)
3
2
1

−4

ζ[µ[f ]](S)
3
5
4
2



11/37[復習]ゼータ変換とメビウス変換の計算

定理：ゼータ変換とメビウス変換の計算 (Yates ’37)

集合関数 f : 2U → Zに対して，
• ゼータ変換 ζ[f ]は O∗(2n)時間で計算できる
• メビウス変換 µ[f ]は O∗(2n)時間で計算できる

つまり，f0 : 2U−{x} → Z, f1 : 2U−{x} → Zを次で定義すると



12/37本日の内容

• A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets
Möbius: fast subset convolution. Proceedings of STOC 2007
(2007) pp. 67–74.

• P. Kaski, Fast subset convolution. Encyclopedia of Algorithms
(2016) pp. 735–738.

1. アルゴリズム：部分集合たたみ込み

2. 利用法：染色多項式の計算



13/37たたみ込みの変種

次のようなたたみ込みの変種を考える

関数 f ∪ g, f · g : 2U → Rを次で定義

(f ∪ g)(S) =
∑

X,Y⊆S : X∪Y=S

f(X)g(Y ) ∀ S ⊆ U

(f · g)(S) = f(S)g(S) ∀ S ⊆ U

有限集合 U，集合関数 f, g : 2U → R

S f(S)
∅

{a}

{b}
{a, b}

0
−1
4
2

g(S)
2
3

−3
5

(f ∪ g)(S) (f · g)(S)
0

−3
−12
10

0
−5
−4
44



13/37たたみ込みの変種

次のようなたたみ込みの変種を考える

関数 f ∪ g, f · g : 2U → Rを次で定義

(f ∪ g)(S) =
∑

X,Y⊆S : X∪Y=S

f(X)g(Y ) ∀ S ⊆ U

(f · g)(S) = f(S)g(S) ∀ S ⊆ U

有限集合 U，集合関数 f, g : 2U → R

S f(S)
∅

{a}

{b}
{a, b}

0
−1
4
2

g(S)
2
3

−3
5

(f ∪ g)(S) (f · g)(S)
0

−3
−12
10

0
−5
−4
44

(f ∪ g)({b})
= f(∅)g({b}) + f({b})g(∅)

+ f({b})g({b})
= 0 · (−3) + 4 · 2 + 4 · (−3) = −4



13/37たたみ込みの変種

次のようなたたみ込みの変種を考える

関数 f ∪ g, f · g : 2U → Rを次で定義

(f ∪ g)(S) =
∑

X,Y⊆S : X∪Y=S

f(X)g(Y ) ∀ S ⊆ U

(f · g)(S) = f(S)g(S) ∀ S ⊆ U

有限集合 U，集合関数 f, g : 2U → R

S f(S)
∅

{a}

{b}
{a, b}

0
−1
4
2

g(S)
2
3

−3
5

(f ∪ g)(S) (f · g)(S)
0

−3
−12
10

0
−5
−4
44

O∗(2n)時間で
計算できる



14/37ゼータ・メビウス変換との関係

性質：f ∪ gの計算法

任意の集合関数 f, g : 2U → Rに対して

f ∪ g = µ[ζ[f ] · ζ[g]]

帰結：f ∪ gは O∗(2n)時間で計算できる



14/37ゼータ・メビウス変換との関係

性質：f ∪ gの計算法

任意の集合関数 f, g : 2U → Rに対して

f ∪ g = µ[ζ[f ] · ζ[g]]

帰結：f ∪ gは O∗(2n)時間で計算できる
証明：ζ[f ∪ g] = ζ[f ] · ζ[g]を示せばよい (∵ µは ζ の逆変換)

ζ[f ∪ g](S) =
∑
T⊆S

(f ∪ g)(T ) =
∑
T⊆S

∑
X,Y : X∪Y=T

f(X)g(Y )

=
∑

T,X,Y : T⊆S,X∪Y=T

f(X)g(Y )

=
∑

X,Y⊆S

f(X)g(Y )



15/37ゼータ・メビウス変換との関係 (続)

ζ[f ∪ g](S) =
∑

X,Y⊆S

f(X)g(Y )

=
∑
X⊆S

f(X)
∑
Y⊆S

g(Y )

= ζ[f ](S) · ζ[g](S)



16/37f ∪ gから f ∗ gへ：準備
B =大きな整数 (あるいは記号)とする

記法

集合関数 f, g : 2U → Rに対して，次の fB , gB を定義
fB(S) = f(S)B|S| ∀ S ⊆ U
gB(S) = g(S)B|S| ∀ S ⊆ U

S f(S)
∅

{a}

{b}
{a, b}

0
−1
4
2

g(S)
2
3

−3
5

fB(S) gB(S)
2

3B
−3B
5B2

0
−B

4B
2B2



17/37f ∪ gから f ∗ gへ

このとき

(fB ∪ gB)(S) =
∑

X∪Y=S

fB(X)gB(Y )

=
∑

X∪Y=S

f(X)B|X|g(Y )B|Y |

=
∑

X∪Y=S

f(X)g(Y )B|X|+|Y |

B =大きな整数 (あるいは記号)とする

記法

集合関数 f, g : 2U → Rに対して，次の fB , gB を定義
fB(S) = f(S)B|S| ∀ S ⊆ U
gB(S) = g(S)B|S| ∀ S ⊆ U



18/37f ∪ gから f ∗ gへ (続)
このとき

(fB ∪ gB)(S) =
∑

X∪Y=S

f(X)g(Y )B|X|+|Y |

B|S| の係数∑
X∪Y=S

|X|+|Y |=|S|

f(X)g(Y )

=
∑
T⊆S

f(T )g(S − T ) = (f ∗ g)(S)



18/37f ∪ gから f ∗ gへ (続)
このとき

(fB ∪ gB)(S) =
∑

X∪Y=S

f(X)g(Y )B|X|+|Y |

B|S| の係数∑
X∪Y=S

|X|+|Y |=|S|

f(X)g(Y )

=
∑
T⊆S

f(T )g(S − T ) = (f ∗ g)(S)

つまり，f ∗ gを計算するには

1. fB ∪ gB を計算する (µ[ζ[fB ] · ζ[gB ]]として)
2. 「(f ∗ g)(S) = (f ∪ g)(S)における B|S| の係数」

として f ∗ gを計算する



19/37部分集合たたみ込み計算アルゴリズム

アルゴリズム：subset-convolution(f, g)
1. fB , gB を計算

2. fB ∪ gB を計算

3. 「(f ∗ g)(S) = (fB ∪ gB)(S)における B|S| の係数」として

f ∗ gを計算して，出力



19/37部分集合たたみ込み計算アルゴリズム

アルゴリズム：subset-convolution(f, g)
1. fB , gB を計算

2. fB ∪ gB を計算

3. 「(f ∗ g)(S) = (fB ∪ gB)(S)における B|S| の係数」として

f ∗ gを計算して，出力

O∗(2n)

計算量 = O∗(2n) メモリ使用量 = O∗(2n)

O∗(2n)

O∗(2n)

結論：定理 (Björklund, Husfeldt, Kaski, Koivisto ’07)

部分集合たたみ込みは O∗(2n)回の演算で解ける



20/37本日の内容

• A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Computing the
Tutte polynomial in vertex-exponential time. Proceedings of
FOCS 2008 (2008) pp. 677–686.

1. アルゴリズム：部分集合たたみ込み

2. 利用法：染色多項式の計算



21/37[復習]グラフの k彩色

無向グラフ G = (V,E)

定義：k彩色 (k-coloring)

Gの k彩色とは，
写像 c : V → {1, 2, . . . , k}で次を満たすもののこと

{u, v} ∈ E ⇒ c(u) 6= c(v)

1

1 1

2 2

2

3

3

44

4彩色であるが，
3彩色ではない

直感：k色しか使わない彩色



22/37[復習] k彩色の数え上げ

定義：k彩色の数え上げ問題

入力：無向グラフ G = (V,E)，非負整数 k
出力： Gの k彩色の総数

k = 3 21

2 1 3

1 3

1

2

21

1 2

23

3 3

3

3

31

1 2

2
1

2 1

3 1 2

13

2

1

1

3 21

13 2

21

2

23

3 1

21

2

3

3

2

2 1

3

3

3

31

12

2 3

3

1 23

312

18



23/37k彩色の数え上げアルゴリズム

定理 (Björklund, Husfeldt, Kaski, Koivisto ’08)

k彩色の数え上げ問題は O∗(2n)時間で解ける
(nはグラフの頂点数)

部分集合たたみ込みを使って，次の定理を導出する

補足：第 8回授業で，次の結果を導出した

定理 (Whitneyの公式)

k彩色の数え上げ問題は O∗(2m)時間で解ける
(mはグラフの辺数)

計算量の改善



24/37[復習] Whitneyの公式

定理：Whitneyの公式

無向グラフG = (V,E)の k彩色の総数は次で計算できる∑
F⊆E

(−1)|F |kc(F )

ここで，c(F )は無向グラフ (V, F )の連結成分の総数

4 3 3 2 3 2 2 1

3 2 2 1 2 1 1 1

∴ k彩色の総数 = k4 − 4k3 + 6k2 − 3k



25/37Whitneyの公式：再考

定理：Whitneyの公式

無向グラフG = (V,E)の k彩色の総数は次で計算できる∑
F⊆E

(−1)|F |kc(F )

ここで，c(F )は無向グラフ (V, F )の連結成分の総数

F1, F2 ⊆ E が次を満たすとする

• |F1| = |F2|
• c(F1) = c(F2)

このとき，(−1)|F1|kc(F1) = (−1)|F2|kc(F2)



25/37Whitneyの公式：再考

定理：Whitneyの公式

無向グラフG = (V,E)の k彩色の総数は次で計算できる∑
F⊆E

(−1)|F |kc(F )

ここで，c(F )は無向グラフ (V, F )の連結成分の総数

つまり，

∑
F⊆E

(−1)|F |kc(F ) =
m∑

a=0

n∑
b=1

(−1)akbfa,b(G)

ただし，fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

(n = |V |, m = |E|)



26/37fa,b(G)：例
fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

4 3 3 2 3 2 2 1

3 2 2 1 2 1 1 1

0
1
2
3
4

1 2 3 4a b

0 0 0 1
0 0 4 0
0 6 0 0
4 0 0 0
1 0 0 0



26/37fa,b(G)：例
fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

4 3 3 2 3 2 2 1

3 2 2 1 2 1 1 1

0
1
2
3
4

1 2 3 4a b

0 0 0 1
0 0 4 0
0 6 0 0
4 0 0 0
1 0 0 0

+k4

−4k3

+6k2

−4k
+k

k4 − 4k3 + 6k2 − 3k



27/37k彩色の数え上げ：ここまでのまとめ

ここまでのまとめ

無向グラフG = (V,E)の k彩色の総数は次で計算できる

m∑
a=0

n∑
b=1

(−1)akbfa,b(G)

ここで，fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

つまり，

fa,b(G) (∀ a, b)が O∗(2n)時間で計算できる

⇒ Gの k彩色の数え上げが O∗(2n)時間で計算できる



27/37k彩色の数え上げ：ここまでのまとめ

ここまでのまとめ

無向グラフG = (V,E)の k彩色の総数は次で計算できる

m∑
a=0

n∑
b=1

(−1)akbfa,b(G)

ここで，fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

つまり，

fa,b(G) (∀ a, b)が O∗(2n)時間で計算できる

⇒ Gの k彩色の数え上げが O∗(2n)時間で計算できる

新たな目標



28/37fa,b(G)の計算：考え方
fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

a：辺数

b：連結成分数



28/37fa,b(G)の計算：考え方
fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

a：辺数

b：連結成分数

：辺数

：連結成分数

a− a′

b− 1
a′

1



28/37fa,b(G)の計算：考え方
fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

a：辺数

b：連結成分数

：辺数

：連結成分数

a− a′

b− 1
a′

1

再帰



29/37誘導部分グラフ

無向グラフ G = (V,E)，頂点部分集合X ⊆ V

定義：誘導部分グラフ (induced subgraph)

X が誘導するGの部分グラフとは，次のグラフG[X]
• G[X]の頂点集合 = X
• G[X]の辺集合 = {{u, v} ∈ E | u, v ∈ X}

G

X

G[X]



30/37fa,b(G)の計算：再帰式
fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

再帰式：

fa,b(G[X]) = 1
b

a∑
a′=0

∑
Y :∅(Y(X

fa′,1(G[Y ])fa−a′,b−1(G[X − Y ])

|X| ≥ 2，b ≥ 2のとき



30/37fa,b(G)の計算：再帰式
fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

再帰式：

fa,b(G[X]) = 1
b

a∑
a′=0

∑
Y :∅(Y(X

fa′,1(G[Y ])fa−a′,b−1(G[X − Y ])

|X| ≥ 2，b ≥ 2のとき

fa,1(G[X]) =
(
G[X]の辺数

a

)
−

|X|∑
b=2

fa,b(G[X])

b = 1のとき



30/37fa,b(G)の計算：再帰式
fa,b(G) = |{F ⊆ E | |F | = a, c(F ) = b}|

再帰式：

fa,b(G[X]) = 1
b

a∑
a′=0

∑
Y :∅(Y(X

fa′,1(G[Y ])fa−a′,b−1(G[X − Y ])

|X| ≥ 2，b ≥ 2のとき

fa,1(G[X]) =
(
G[X]の辺数

a

)
−

|X|∑
b=2

fa,b(G[X])

b = 1のとき

f0,1(G[X]) = 1, fa,1(G[X]) = 0 (∀ a ≥ 1)

|X| = 1のとき



31/37fa,b(G)の計算：アルゴリズムの考え方

再帰式：

fa,b(G[X]) = 1
b

a∑
a′=0

∑
Y :∅(Y(X

fa′,1(G[Y ])fa−a′,b−1(G[X − Y ])

|X| ≥ 2，b ≥ 2のとき

fa,1(G[X]) =
(
G[X]の辺数

a

)
−

|X|∑
b=2

fa,b(G[X])

b = 1のとき

f0,1(G[X]) = 1, fa,1(G[X]) = 0 (∀ a ≥ 1)

|X| = 1のとき

|X|が小さい方から順に fa,b(G[X])を計算する

|X|に関する繰り返し (|X| = 1, 2, . . . , nの順に)
aに関する繰り返し (a = 0, 1, . . . , G[X]の辺数の順に)

bに関する繰り返し (b = 2, 3, . . . , |X|, 1の順に)
再帰式に基づいて，fa,b(G[X])を計算



32/37fa,b(G)の計算：たたみ込みの利用

再帰式：

fa,b(G[X]) = 1
b

a∑
a′=0

∑
Y :∅(Y(X

fa′,1(G[Y ])fa−a′,b−1(G[X − Y ])

|X| ≥ 2，b ≥ 2のとき

|X| ≤ `まで計算した後，|X| = `+ 1のときの計算を考える
• 関数 fa′ , ga′ : 2V → Rを次のように定義

– fa′(Z) =
{
fa′,1(G[Z]) (0 < |Z| ≤ `)
0 (|Z| = 0または ` < |Z|)

– ga′(Z) =
{
fa−a′,b−1(G[Z]) (0 < |Z| ≤ `)
0 (|Z| = 0または ` < |Z|)

ポイント：↑ X に依存しない (a, b, |X|には依存する)



32/37fa,b(G)の計算：たたみ込みの利用

再帰式：

fa,b(G[X]) = 1
b

a∑
a′=0

∑
Y :∅(Y(X

fa′,1(G[Y ])fa−a′,b−1(G[X − Y ])

|X| ≥ 2，b ≥ 2のとき

|X| ≤ `まで計算した後，|X| = `+ 1のときの計算を考える
• 関数 fa′ , ga′ : 2V → Rを次のように定義

– fa′(Z) =
{
fa′,1(G[Z]) (0 < |Z| ≤ `)
0 (|Z| = 0または ` < |Z|)

– ga′(Z) =
{
fa−a′,b−1(G[Z]) (0 < |Z| ≤ `)
0 (|Z| = 0または ` < |Z|)

• b ≥ 2のとき，次が成り立つ

– fa,b(G[X]) = 1
b

a∑
a′=0

(fa′ ∗ ga′)(X)



33/37fa,b(G)の計算：アルゴリズム

アルゴリズム：coeff_chrpoly(G = (V,E))
1. |X| = 1の場合に，fa,b(G[X])を計算

2. |X| = 2, 3, . . . , |V |で次を繰り返す

2.1. a = 0, 1, . . . , |E|で次を繰り返す

2.1.1. b = 2, 3, . . . , |X|で次を繰り返す

2.1.1.1. fa′ ∗ ga′ を a′ = 0, 1, . . . , aに対して計算

2.1.1.2. fa,b(G[X]) = 1
b

a∑
a′=0

(fa′ ∗ ga′)(X)を計算

2.1.2. b = 1の場合に，再帰式に従って fa,1(G[X])を計算

3. fa,b(G[V ])をすべての a, bに対して出力



34/37fa,b(G)の計算：計算量

アルゴリズム：coeff_chrpoly(G = (V,E))
1. |X| = 1の場合に，fa,b(G[X])を計算

2. |X| = 2, 3, . . . , |V |で次を繰り返す

2.1. a = 0, 1, . . . , |E|で次を繰り返す

2.1.1. b = 2, 3, . . . , |X|で次を繰り返す

2.1.1.1. fa′ ∗ ga′ を a′ = 0, 1, . . . , aに対して計算

2.1.1.2. fa,b(G[X]) = 1
b

a∑
a′=0

(fa′ ∗ ga′)(X)を計算

2.1.2. b = 1の場合に，再帰式に従って fa,1(G[X])を計算

3. fa,b(G[V ])をすべての a, bに対して出力

O∗(1)

O∗(2n)

O∗(2n)

O∗(1)回

O∗(1)回

O∗(1)回

O∗(2n)
O∗(1)



34/37fa,b(G)の計算：計算量

アルゴリズム：coeff_chrpoly(G = (V,E))
1. |X| = 1の場合に，fa,b(G[X])を計算

2. |X| = 2, 3, . . . , |V |で次を繰り返す

2.1. a = 0, 1, . . . , |E|で次を繰り返す

2.1.1. b = 2, 3, . . . , |X|で次を繰り返す

2.1.1.1. fa′ ∗ ga′ を a′ = 0, 1, . . . , aに対して計算

2.1.1.2. fa,b(G[X]) = 1
b

a∑
a′=0

(fa′ ∗ ga′)(X)を計算

2.1.2. b = 1の場合に，再帰式に従って fa,1(G[X])を計算

3. fa,b(G[V ])をすべての a, bに対して出力

O∗(1)

O∗(2n)

O∗(2n)

O∗(1)回

O∗(1)回

O∗(1)回

O∗(2n)
O∗(1)

計算量 = O∗(2n) メモリ使用量 = O∗(2n)



35/37k彩色の数え上げ：アルゴリズム

アルゴリズム：chrpoly(G = (V,E), k)
1. すべての a, bに対して fa,b(G)を計算

2.
|E|∑
a=0

|V |∑
b=1

(−1)akbfa,b(G)を出力

定理 (Björklund, Husfeldt, Kaski, Koivisto ’08)

k彩色の数え上げ問題は O∗(2n)時間で解ける
(nはグラフの頂点数)

これで，次の定理の証明ができた



36/37本日のまとめ

前回と今回

部分集合たたみ込み (subset convolution)による
アルゴリズムの設計と解析

前回

• 部分集合たたみ込みの説明
– 最小シュタイナー木問題 (O∗(2|K|)時間)

今回

• 部分集合たたみ込みのアルゴリズム
– k彩色の数え上げ (O∗(2n)時間)



37/37次回の予告

次回と次々回

O∗(c
√
n)時間の計算量を達成できるか？

次回

• 指数時間仮説
• 準指数時間帰着
• 疎化補題

次々回

• 準指数時間帰着の例
• 疎化補題の証明のアイディア
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