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高速指数時間アルゴリズム



2/39スケジュール (前半)

1. 高速指数時間アルゴリズムの考え方
∗ 休み (体育祭)
2. 分枝アルゴリズム：基礎
3. 分枝アルゴリズム：高速化
4. 分枝アルゴリズム：測度統治法
5. 動的計画法：基礎
6. 動的計画法：例

(10/7)
(10/14)
(10/21)
(10/28)
(11/4)
(11/11)
(11/18)



3/39スケジュール (後半)

7. 包除原理：原理
∗ 休み (秋ターム試験)
8. 包除原理：例
9. 部分集合たたみ込み：原理
∗ 休み (出張)
∗ 休み (冬季休業)

10. 部分集合たたみ込み：例
11. 指数時間仮説：原理
12. 指数時間仮説：証明
13. 最近の話題
∗ 休み (修士論文発表会)

(11/25)
(12/2)
(12/9)
(12/16)
(12/23)
(12/30)
(1/6)
(1/13)
(1/20)
(1/27)
(2/3)



4/39本日の内容

今回と次回

部分集合たたみ込み (subset convolution)による
アルゴリズムの設計と解析

今回

• 部分集合たたみ込みの説明
– 最小シュタイナー木問題 (O∗(2|K|)時間)

次回

• 部分集合たたみ込みのアルゴリズム
– k彩色の数え上げ (O∗(2n)時間)



5/39本日の内容

1. 定義：部分集合たたみ込み

2. 利用法：最小シュタイナー木問題

3. アルゴリズム：部分集合たたみ込み —準備

• A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets
Möbius: fast subset convolution. Proceedings of STOC 2007
(2007) pp. 67–74.



6/39集合関数

定義：集合関数 (set function)

有限集合 U の上の集合関数とは，次のこと

f : 2U → R

ここで，2U は U の冪集合 (べき集合，power set)

例：U = {a, b, c}

用語：U は f の台集合 (ground set)
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7/39立方体，超立方体
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7/39立方体，超立方体
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8/39超立方体 (続)



8/39超立方体 (続)

∅

U



8/39超立方体 (続)

∅

U
U − {x}

{x}



9/39部分集合たたみ込み：定義

有限集合 U，集合関数 f, g : 2U → R

定義：部分集合たたみ込み (subset convolution)

f, gの部分集合たたみ込みとは，次の関数 f ∗g : 2U → R

(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T ) ∀ S ⊆ U

S f(S)
∅

{a}

{b}
{a, b}

0
−1
4
2

g(S)
2
3
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5

例：U = {a, b}

(f ∗ g)({a})
= f(∅)g({a}) + f({a})g(∅)
= 0 · 3 + (−1) · 2 = −2



9/39部分集合たたみ込み：定義

有限集合 U，集合関数 f, g : 2U → R

定義：部分集合たたみ込み (subset convolution)

f, gの部分集合たたみ込みとは，次の関数 f ∗g : 2U → R

(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T ) ∀ S ⊆ U

S f(S)
∅

{a}

{b}
{a, b}

0
−1
4
2

g(S)
2
3

−3
5

例：U = {a, b}

(f ∗ g)({a})
= f(∅)g({a}) + f({a})g(∅)
= 0 · 3 + (−1) · 2 = −2

注：以後，単にたたみ込みとも言う



10/39部分集合たたみ込み：例

S f(S)
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(f ∗ g)(S)

−2

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )



10/39部分集合たたみ込み：例

S f(S)
∅
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{a, b}
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3

−3
5

(f ∗ g)(S)

−2

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

(f ∗ g)(∅) = f(∅)g(∅)
= 0 · 2 = 0

0



10/39部分集合たたみ込み：例

S f(S)
∅

{a}

{b}
{a, b}

0
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g(S)
2
3

−3
5

(f ∗ g)(S)

−2

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

0

(f ∗ g)({b}) = f(∅)g({b}) + f({b})g(∅)
= 0 · (−3) + 4 · 2 = 8

8



10/39部分集合たたみ込み：例

S f(S)
∅

{a}

{b}
{a, b}

0
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g(S)
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3

−3
5

(f ∗ g)(S)

−2

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

0

(f ∗ g)({a, b}) = f(∅)g({a, b}) + f({a})g({b})

8

+ f({b})g({a}) + f({a, b})g(∅)
= 0 · 5 + (−1) · (−3) + 4 · 3 + 2 · 2 = 19

19



11/39部分集合たたみ込み問題

問題：部分集合たたみ込み

入力 ：有限集合 U，集合関数 f, g : 2U → Z
出力 ：部分集合たたみ込み f ∗ g : 2U → Z

S f(S)
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以下，n = |U |とする



12/39素朴なアルゴリズム

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

各 S ⊆ U に対して，(f ∗ g)(S)を定義どおりに計算

• 項の数 = 2|S|

• ∴ (f ∗ g)(S)の計算にかかる演算回数 = O(2|S|)



12/39素朴なアルゴリズム

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

各 S ⊆ U に対して，(f ∗ g)(S)を定義どおりに計算

• 項の数 = 2|S|

• ∴ (f ∗ g)(S)の計算にかかる演算回数 = O(2|S|)

∴すべての S ⊆ U に対して (f ∗ g)(S)を計算するために

かかる演算回数 =
∑
S⊆U

O(2|S|) = O(
n∑

i=0

(
n

i

)
2i) = O(3n)

二項定理：(a+ b)n =
n∑

i=0

(
n

i

)
aibn−i



12/39素朴なアルゴリズム

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

各 S ⊆ U に対して，(f ∗ g)(S)を定義どおりに計算

• 項の数 = 2|S|

• ∴ (f ∗ g)(S)の計算にかかる演算回数 = O(2|S|)

∴すべての S ⊆ U に対して (f ∗ g)(S)を計算するために

かかる演算回数 =
∑
S⊆U

O(2|S|) = O(
n∑

i=0

(
n

i

)
2i) = O(3n)

結論

部分集合たたみ込みは O(3n)回の演算で解ける



13/39今日の目標 (の 1つ)

定理 (Björklund, Husfeldt, Kaski, Koivisto ’07)

部分集合たたみ込みは O∗(2n)回の演算で解ける

(素朴なアルゴリズム：O(3n))
改善



13/39今日の目標 (の 1つ)

定理 (Björklund, Husfeldt, Kaski, Koivisto ’07)

部分集合たたみ込みは O∗(2n)回の演算で解ける

(素朴なアルゴリズム：O(3n))

より細かく (Björklund, Husfeldt, Kaski, Koivisto ’07)

部分集合たたみ込みは次の時間で解ける

O(2nnO(1) logM)

ただし，M = max
S⊆U

max{|f(S)|, |g(S)|}

改善



14/39本日の内容

1. 定義：部分集合たたみ込み

2. 利用法：最小シュタイナー木問題

3. アルゴリズム：部分集合たたみ込み —準備

• A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets
Möbius: fast subset convolution. Proceedings of STOC 2007
(2007) pp. 67–74.



15/39復習：シュタイナー木

無向グラフ G = (V,E)，頂点部分集合K ⊆ V

定義：シュタイナー木 (Steiner tree)

K を端末集合とする Gのシュタイナー木とは，
Gの部分木 T = (VT , ET )で，K ⊆ VT を満たすもの

K

端末集合 = terminal set

T



16/39復習：最小シュタイナー木問題

定義：最小シュタイナー木問題

入力：無向グラフ G = (V,E)，頂点部分集合K ⊆ V
出力： K を端末集合とする Gの最小シュタイナー木

辺の数が最小のもの

補足：グラフの辺に長さが与えられていて，
長さの和が最小のシュタイナー木を求める問題もある



17/39復習：Dreyfus-Wagnerのアルゴリズム

定理 (Dreyfus, Wagner ’72; Levin ’71)

最小シュタイナー木問題は O∗(3|K|)時間で解ける

動的計画法を用いて，次の定理を証明した

よく Dreyfus-Wagnerのアルゴリズムと呼ばれる



18/39部分集合たたみ込みで解く

定理 (Björklund, Husfeldt, Kaski, Koivisto ’07)

最小シュタイナー木問題は O∗(2|K|)時間で解ける

部分集合たたみ込みを用いて，次の定理を証明する

動的計画法：O∗(3|K|)

改善

部分集合たたみ込みでも動的計画法のアイディアを使う



19/39復習：動的計画法

状態の値 ϕ(X, r) = X ∪ {r}を端末集合とするシュタイナー木の最小辺数

ϕ(X, r) = min
{
d(r, r′) + ϕ(Y, r′) + ϕ(X − Y, r′)∣∣∣∣ r′ ∈ V, Y ⊆ X,

Y 6= ∅, X

}
rから r′ への
最短路長

r′

Y X − Y

r

ϕ({x}, r) = d(x, r)
|X| ≥ 2のとき



20/39アルゴリズム (1)：準備

ϕ(X, r) = min
{
d(r, r′) + ϕ(Y, r′) + ϕ(X − Y, r′)∣∣∣∣ r′ ∈ V, Y ⊆ X,

Y 6= ∅, X

}

ϕ(X, r) = min {d(r, r′) + γ(X, r′) | r′ ∈ V }

γ(X, r) = min {ϕ(Y, r) + ϕ(X − Y, r) | Y ⊆ X,Y 6= ∅, X}



20/39アルゴリズム (1)：準備

ϕ(X, r) = min
{
d(r, r′) + ϕ(Y, r′) + ϕ(X − Y, r′)∣∣∣∣ r′ ∈ V, Y ⊆ X,

Y 6= ∅, X

}

ϕ(X, r) = min {d(r, r′) + γ(X, r′) | r′ ∈ V }

γ(X, r) = min {ϕ(Y, r) + ϕ(X − Y, r) | Y ⊆ X,Y 6= ∅, X}

アルゴリズムの考え方

|X|が小さい方から順に
γ(X, r)を部分集合たたみ込みで計算する



21/39アルゴリズム (2)：最小和の計算

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

定義 ：(f ? g)(S) = min
T⊆S

{f(T ) + g(S − T )}



21/39アルゴリズム (2)：最小和の計算

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

定義 ：(f ? g)(S) = min
T⊆S

{f(T ) + g(S − T )}

f̄(S) = Bf(S), ḡ(S) = Bg(S) とする (B は大きな整数)
(f̄ ∗ ḡ)(S) =

∑
T⊆S

f̄(T )ḡ(S − T ) =
∑
T⊆S

Bf(T )Bg(S−T )

=
∑
T⊆S

Bf(T )+g(S−T )



21/39アルゴリズム (2)：最小和の計算

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

定義 ：(f ? g)(S) = min
T⊆S

{f(T ) + g(S − T )}

f̄(S) = Bf(S), ḡ(S) = Bg(S) とする (B は大きな整数)
(f̄ ∗ ḡ)(S) =

∑
T⊆S

f̄(T )ḡ(S − T ) =
∑
T⊆S

Bf(T )Bg(S−T )

=
∑
T⊆S

Bf(T )+g(S−T )

B に関する最小次数の項の指数部 = (f ? g)(S)



22/39アルゴリズム (2)：最小和の計算 (続)

定義 ：(f ∗ g)(S) =
∑
T⊆S

f(T )g(S − T )

定義 ：(f ? g)(S) = min
T⊆S

{f(T ) + g(S − T )}

f̄(S) = Bf(S), ḡ(S) = Bg(S) として (B = 2n + 1)
f̄ ∗ ḡを計算すれば，そこから f ? gが得られる

計算量 = O(2nnO(1) logBM ) = O(2nnO(1)M)



23/39アルゴリズム (3)：関数の定義
ϕ(X, r) = min {d(r, r′) + γ(X, r′) | r′ ∈ V }

γ(X, r) = min {ϕ(Y, r) + ϕ(X − Y, r) | Y ⊆ X,Y 6= ∅, X}

次の関数 ϕ1 : 2K × V → Zを定義

• ϕ1(X, r) =
{
d(x, r) (|X| = 1, X = {x}のとき)
L (その他のとき)

性質：0 < |X| ≤ 1 ⇒ ϕ1(X, r) = ϕ(X, r)

L = |E|+ 1



24/39アルゴリズム (3)：関数の定義 (2)
ϕ(X, r) = min {d(r, r′) + γ(X, r′) | r′ ∈ V }

γ(X, r) = min {ϕ(Y, r) + ϕ(X − Y, r) | Y ⊆ X,Y 6= ∅, X}

次の関数 ϕ2, γ2 : 2K × V → Zを定義

• γ2(·, r) = ϕ1(·, r) ? ϕ1(·, r)

• ϕ2(X, r) = min{d(r, r′) + γ2(X, r′) | r′ ∈ V }

性質：0 < |X| ≤ 2 ⇒ ϕ2(X, r) = ϕ(X, r)

定義 ：(f ? g)(S) = min
T⊆S

{f(T ) + g(S − T )}



25/39アルゴリズム (3)：関数の定義 (3)
ϕ(X, r) = min {d(r, r′) + γ(X, r′) | r′ ∈ V }

γ(X, r) = min {ϕ(Y, r) + ϕ(X − Y, r) | Y ⊆ X,Y 6= ∅, X}

次の関数 ϕi, γi : 2K × V → Zを定義 i ≥ 2

• γi(·, r) = ϕi−1(·, r) ? ϕi−1(·, r)

• ϕi(X, r) = min{d(r, r′) + γi(X, r′) | r′ ∈ V }

性質：0 < |X| ≤ i ⇒ ϕi(X, r) = ϕ(X, r)

定義 ：(f ? g)(S) = min
T⊆S

{f(T ) + g(S − T )}



26/39アルゴリズム：全体像

アルゴリズム：steiner-convolution(G,K)
1. ϕ1 を計算

2. i ∈ {2, . . . , |K|}の小さい順に次を実行

(a) γi(·, r) = ϕi−1(·, r) ? ϕi−1(·, r) (∀ r ∈ V )を計算

(b) ϕi(·, r) (∀ r ∈ V )を計算

3. 任意の r ∈ K に対して，ϕ|K|(K, r)を出力



26/39アルゴリズム：全体像

アルゴリズム：steiner-convolution(G,K)
1. ϕ1 を計算

2. i ∈ {2, . . . , |K|}の小さい順に次を実行

(a) γi(·, r) = ϕi−1(·, r) ? ϕi−1(·, r) (∀ r ∈ V )を計算

(b) ϕi(·, r) (∀ r ∈ V )を計算

3. 任意の r ∈ K に対して，ϕ|K|(K, r)を出力

O(|K|)回の反復

O∗(2|K|L) = O∗(2|K|)

O∗(1)

計算量 = O∗(2|K|) メモリ使用量 = O∗(2|K|)



27/39最小シュタイナー木問題：まとめ

定理 (Björklund, Husfeldt, Kaski, Koivisto ’07)

最小シュタイナー木問題は O∗(2|K|)時間で解ける

部分集合たたみ込みを用いて，次の定理を証明した

動的計画法：O∗(3|K|)

改善

未解決問題

次を満たす定数 c < 2は存在するか？

最小シュタイナー木問題は O∗(c|K|)時間で解ける



28/39本日の内容

1. 定義：部分集合たたみ込み

2. 利用法：最小シュタイナー木問題

3. アルゴリズム：部分集合たたみ込み—準備

• A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets
Möbius: fast subset convolution. Proceedings of STOC 2007
(2007) pp. 67–74.

• P. Kaski, Fast subset convolution. Encyclopedia of Algorithms
(2016) pp. 735–738.



29/39今日の目標 (の 1つ)：再掲

定理 (Björklund, Husfeldt, Kaski, Koivisto ’07)

部分集合たたみ込みは O∗(2n)回の演算で解ける

(素朴なアルゴリズム：O(3n))
改善

ここでの説明は Kaski (’16)を参考にした



30/39ゼータ変換

集合関数 f : 2U → R

定義：ゼータ変換 (zeta transform)

f のゼータ変換は次の集合関数

ζ[f ](S) =
∑
T⊆S

f(T )

S f(S)
∅

{a}

{b}
{a, b}

3
5
4
2

ζ[f ](S)
3
8
7

14

例：U = {a, b}

ζ[f ]({a, b})
= f(∅) + f({a}) + f({b})

+ f({a, b})
= 3 + 5 + 4 + 2 = 14



30/39ゼータ変換

集合関数 f : 2U → R

定義：ゼータ変換 (zeta transform)

f のゼータ変換は次の集合関数

ζ[f ](S) =
∑
T⊆S

f(T )

∅

U

S



31/39メビウス変換

集合関数 f : 2U → R

定義：メビウス変換 (Möbius transform)

f のメビウス変換は次の集合関数

µ[f ](S) =
∑
T⊆S

(−1)|S−T |f(T )

S f(S)
∅

{a}

{b}
{a, b}

3
5
4
2

µ[f ](S)
3
2
1

−4

例：U = {a, b}

µ[f ]({a, b})
= f(∅)− f({a})− f({b})

+ f({a, b})
= 3− 5− 4 + 2 = −4



31/39メビウス変換

集合関数 f : 2U → R

定義：メビウス変換 (Möbius transform)

f のメビウス変換は次の集合関数

µ[f ](S) =
∑
T⊆S

(−1)|S−T |f(T )

∅

U

S −+



32/39ゼータ変換とメビウス変換の性質

性質：ゼータとメビウスは互いに逆変換

任意の集合関数 f : 2U → Rに対して，
• µ[ζ[f ]] = f
• ζ[µ[f ]] = f

証明：付録にて

S f(S)
∅

{a}

{b}
{a, b}

3
5
4
2

ζ[f ](S)
3
8
7

14

µ[ζ[f ]](S)
3
5
4
2

µ[f ](S)
3
2
1

−4

ζ[µ[f ]](S)
3
5
4
2



33/39ゼータ変換の計算

定理：ゼータ変換の計算 (Yates ’37)

集合関数 f : 2U → Zに対して，
ゼータ変換 ζ[f ]は O∗(2n)時間で計算できる

考え方：任意の x ∈ U に対して

つまり，f0 : 2U−{x} → Z, f1 : 2U−{x} → Zを次で定義すると

∅

U

S
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ゼータ変換 ζ[f ]は O∗(2n)時間で計算できる

考え方：任意の x ∈ U に対して

つまり，f0 : 2U−{x} → Z, f1 : 2U−{x} → Zを次で定義すると
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U

S
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33/39ゼータ変換の計算

定理：ゼータ変換の計算 (Yates ’37)

集合関数 f : 2U → Zに対して，
ゼータ変換 ζ[f ]は O∗(2n)時間で計算できる

考え方：任意の x ∈ U に対して

つまり，f0 : 2U−{x} → Z, f1 : 2U−{x} → Zを次で定義すると

∅

U

S
S − {x}

{x}

任意のX ⊆ U − {x}に対して

f0(X) = f(X)
f1(X) = f(X ∪ {x}) とすると

ζ[f ](S) =


ζ[f0](S)
(x 6∈ S のとき)

(ζ[f0] + ζ[f1])(S − {x})
(x ∈ S のとき)

U − {x}



34/39メビウス変換の計算

定理：メビウス変換の計算 (Yates ’37)

集合関数 f : 2U → Zに対して，
メビウス変換 µ[f ]は O∗(2n)時間で計算できる

考え方：任意の x ∈ U に対して

∅

U

S
S − {x}

{x}

任意のX ⊆ U − {x}に対して

f0(X) = f(X)
f1(X) = f(X ∪ {x}) とすると

U − {x}

µ[f ](S) =


µ[f0](S)

(x 6∈ S のとき)
(−µ[f0] + µ[f1])(S − {x})

(x ∈ S のとき)



35/39次回の予告

今回と次回

部分集合たたみ込み (subset convolution)による
アルゴリズムの設計と解析

今回

• 部分集合たたみ込みの説明
– 最小シュタイナー木問題 (O∗(2|K|)時間)

次回

• 部分集合たたみ込みのアルゴリズム
– k彩色の数え上げ (O∗(2n)時間)



36/39本日の内容

1. 定義：部分集合たたみ込み

2. 利用法：最小シュタイナー木問題

3. アルゴリズム：部分集合たたみ込み —準備

4. 付録



37/39ゼータ変換とメビウス変換

性質：ゼータとメビウスは互いに逆変換

任意の集合関数 f : 2U → Rに対して，
• µ[ζ[f ]] = f
• ζ[µ[f ]] = f

集合関数 f : 2U → R

定義：ゼータ変換とメビウス変換 (再掲)

ζ[f ](S) =
∑
T⊆S

f(T )

µ[f ](S) =
∑
T⊆S

(−1)|S−T |f(T )



38/39ζ[µ[f ]] = f：証明

ζ[µ[f ]](S) =
∑
T⊆S

µ[f ](T ) =
∑
T⊆S

∑
W⊆T

(−1)|T−W |f(W )

=
∑
W⊆S

∑
W⊆T⊆S

(−1)|T−W |f(W )

∅

U
S

T

W



38/39ζ[µ[f ]] = f：証明

ζ[µ[f ]](S) =
∑
T⊆S

µ[f ](T ) =
∑
T⊆S

∑
W⊆T

(−1)|T−W |f(W )

=
∑
W⊆S

∑
W⊆T⊆S

(−1)|T−W |f(W )

∅

U
S

T

W



38/39ζ[µ[f ]] = f：証明

ζ[µ[f ]](S) =
∑
T⊆S

µ[f ](T ) =
∑
T⊆S

∑
W⊆T

(−1)|T−W |f(W )

=
∑
W⊆S

∑
W⊆T⊆S

(−1)|T−W |f(W )

∅

U
S

T

W

=
|S−W |∑
i=0

(
|S −W |

i

)
(−1)i

= 0|S−W |

=
{
1 (S = W のとき)
0 (S 6= W のとき)



38/39ζ[µ[f ]] = f：証明

ζ[µ[f ]](S) =
∑
T⊆S

µ[f ](T ) =
∑
T⊆S

∑
W⊆T

(−1)|T−W |f(W )

=
∑
W⊆S

∑
W⊆T⊆S

(−1)|T−W |f(W )

∅

U
S

T

W

= f(S)



39/39µ[ζ[f ]] = f：証明

µ[ζ[f ]](S) =
∑
T⊆S

(−1)|S−T |ζ[f ](T )

=
∑
W⊆S

∑
W⊆T⊆S

(−1)|S−T |f(W )

= f(S)

=
∑
T⊆S

(−1)|S−T |
∑
W⊆T

f(W )

=
|S−W |∑
i=0

(
|S −W |

i

)
(−1)|S−W |−i

= 0|S−W |

=
{
1 (S = W のとき)
0 (S 6= W のとき)
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