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離散最適化基礎論 (2025年後学期)

第 8回
包除原理 (2)：例

岡本吉央 (電気通信大学)
okamotoy@uec.ac.jp

2025年 12月 9日
最終更新：2025年 12月 10日 09:01

高速指数時間アルゴリズム



2/38スケジュール (前半)

1. 高速指数時間アルゴリズムの考え方
∗ 休み (体育祭)
2. 分枝アルゴリズム：基礎
3. 分枝アルゴリズム：高速化
4. 分枝アルゴリズム：測度統治法
5. 動的計画法：基礎
6. 動的計画法：例

(10/7)
(10/14)
(10/21)
(10/28)
(11/4)
(11/11)
(11/18)



3/38スケジュール (後半)

7. 包除原理：原理
∗ 休み (秋ターム試験)
8. 包除原理：例
9. 部分集合たたみ込み：原理
∗ 休み (出張)
∗ 休み (冬季休業)

10. 部分集合たたみ込み：例
11. 指数時間仮説：原理
12. 指数時間仮説：証明
13. 最近の話題
∗ 休み (修士論文発表会)

(11/25)
(12/2)
(12/9)
(12/16)
(12/23)
(12/30)
(1/6)
(1/13)
(1/20)
(1/27)
(2/3)



4/38包除原理：一般形

記法

• A1, A2, . . . , An ⊆ U
• [n] = {1, 2, . . . , n}
• 任意の S ⊆ [n]に対して，AS =

⋂
i∈S

Ai

定理：包除原理 (一般の n)∣∣∣∣∣∣
⋃
i∈[n]

Ai

∣∣∣∣∣∣ =
∑
S⊆[n]

(−1)|S||AS |

注意：A∅ = U



5/38本日の内容

1. 復習：彩色問題

2. 包除原理に基づく彩色アルゴリズム

3. 染色多項式



6/38グラフの彩色

無向グラフ G = (V,E)

定義：彩色 (coloring)

Gの彩色 (さいしょく)とは，
写像 c : V → {1, 2, . . .}で次を満たすもののこと

{u, v} ∈ E ⇒ c(u) 6= c(v)

1

1 1

2 2

2

3

3

44

1

3 1

4 2

2

4

3

42

彩色である 彩色ではない



7/38彩色問題

定義：彩色問題

入力：無向グラフ G = (V,E)
出力： Gの彩色 cで，max{c(v) | v ∈ V }が最小のもの

1

1 2

2 2

1

3

3

31

事実：彩色問題は NP困難 (Karp ’72)

「最小彩色問題」「グラフ彩色問題」とも言う



8/38彩色と独立集合

1

1 1

2 2

2

3

3

44

無向グラフ G = (V,E)，彩色 c : V → {1, 2, . . . }

観察

彩色 cによって同じ色で塗られた頂点の集合は
Gの独立集合

復習：Gの独立集合とは

Gで隣接しない頂点の集合

同じ色で塗られた頂点の集合

= c−1({i}) (i ∈ {1, 2, . . .})



9/38彩色は独立集合による被覆



9/38彩色は独立集合による被覆

1

2

3

4



9/38彩色は独立集合による被覆

1

2

3

4

1

1 1

2

2

2 3

3

4 4



10/38被覆

設定

• 有限集合 V
• 集合族 S ⊆ 2V

定義：被覆 (cover)
V の被覆とは，次を満たす S ′ = {X1, X2, . . . , Xk} ⊆ S
• X1 ∪X2 ∪ · · · ∪Xk = V

S ′ は V を被覆するともいう

(覆う)



10/38被覆

設定
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• 集合族 S ⊆ 2V

定義：被覆 (cover)
V の被覆とは，次を満たす S ′ = {X1, X2, . . . , Xk} ⊆ S
• X1 ∪X2 ∪ · · · ∪Xk = V
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(覆う)



11/38本日の内容

1. 復習：彩色問題

2. 包除原理に基づく彩色アルゴリズム

3. 染色多項式

• A. Björklund, T. Husfeldt, M. Koivisto. Set partitioning via
inclusion-exclusion. SIAM Journal on Computing 39 (2009) pp.
546–563.



12/38彩色問題を包除原理で解く

目標：包除原理を用いて次の定理を導く

定理 (Björklund, Husfeldt, Koivisto ’09)

彩色問題は O∗(2n)時間で解ける
(nはグラフの頂点数)

第 6回の内容：O∗(2.4423n)時間 (動的計画法による)

包除原理によるアルゴリズムの考え方

0. 数え上げ問題として見なす
1. U と Ai を上手に定める

2. |AS |の計算法を与える



13/38グラフの k彩色

無向グラフ G = (V,E)

定義：k彩色 (k-coloring)

Gの k彩色とは，
写像 c : V → {1, 2, . . . , k}で次を満たすもののこと

{u, v} ∈ E ⇒ c(u) 6= c(v)

1

1 1

2 2

2

3

3

44

4彩色であるが，
3彩色ではない

直感：k色しか使わない彩色



14/38彩色と独立集合被覆列

1

1 1

2 2

2

3

3

44

,

1 2 3

, ,

4



14/38彩色と独立集合被覆列

1

1 1

2 2

2

3

3

44

,

1 2 3

, ,

4

1

1 1

2

2

3 44
4

4
1

1 1

2

2

44
4

4

2



14/38彩色と独立集合被覆列

1

1 1

2 2

2

3

3

44

,

1 2 3

, ,

4

1

1 1

2

2

3 44
4

4
1

1 1

2

2

44
4

4

2

, , ,

, , ,



15/38独立集合被覆列

無向グラフ G = (V,E)

定義：独立集合被覆列

Gの独立集合被覆列とは，
列 〈I1, I2, . . . , Ik〉で，各 Ij が Gの独立集合であり，
I1 ∪ I2 ∪ · · · ∪ Ik = V を満たすもの

観察：Gの k彩色が存在

⇔ Gの独立集合被覆列で長さ kのものが存在

1

1 1

2 2

2

3

3

44

, , ,

注意：I1 = I2 であってもよい，I1 = ∅であってもよい



16/38独立集合被覆列の数え上げ

定義：独立集合被覆列の数え上げ問題

入力：無向グラフ G = (V,E)，非負整数 k
出力： Gの独立集合被覆列で長さ kのものの総数

k = 3

54



17/38独立集合被覆列を包除原理で数え上げる

実際に導出すること

独立集合被覆列の数え上げ問題は O∗(2n)時間で解ける
(nはグラフの頂点数)

定理：再掲 (Björklund, Husfeldt, Koivisto ’09)

彩色問題は O∗(2n)時間で解ける
(nはグラフの頂点数)

Gの独立集合被覆列で

k0
0 1 2 3 4

; Gの最小彩色が使う色数は 2

長さ kのものの総数



18/38包除原理：U を定める

ポイント：U では数えすぎるようにする

U = {〈I1, I2, . . . , Ik〉 | Ij は Gの独立集合 ∀ j ∈ {1, 2, . . . , k}}

つまり，I1 ∪ I2 ∪ · · · ∪ Ik = V を要請しない

, , , ,



19/38包除原理：Aiを定める

V = {v1, v2, . . . , vn}として，i ∈ {1, 2, . . . , n}に対して

Ai =
{
〈I1, I2, . . . , Ik〉

∣∣∣∣ Ij は Gの独立集合 ∀ j ∈ {1, . . . , k}
vi 6∈ I1 ∪ I2 ∪ · · · ∪ Ik

}

, ,

v1 v2

v3 v4

∈ A1

このとき

〈I1, I2, . . . , Ik〉が
Gの独立集合被覆列

⇔ 〈I1, I2, . . . , Ik〉
∈ A1 ∪A2 ∪ · · · ∪An



20/38包除原理：|AS|の計算法 (1)

動的計画法！

動的計画法を考えるときの鍵 (数え上げバージョン)
1. 数え上げ対象の持つ再帰的な構造を見出す
2. 上の構造から状態を適切に定義する
3. 状態の間の再帰式を立てる



20/38包除原理：|AS|の計算法 (1)

動的計画法！

動的計画法を考えるときの鍵 (数え上げバージョン)
1. 数え上げ対象の持つ再帰的な構造を見出す
2. 上の構造から状態を適切に定義する
3. 状態の間の再帰式を立てる

〈I1, I2, . . . , Ik〉 ∈ AS =
⋂
i∈S

Ai

⇔ vi 6∈ Ij ∀ i ∈ S,∀ j ∈ {1, 2, . . . , k}

, ,

v1 v2

v3 v4

∈ A1

⇔ Ij は G−X の独立集合 ∀ j ∈ {1, 2, . . . , k}
ただし，X = {vi | i ∈ S}



20/38包除原理：|AS|の計算法 (1)

動的計画法！

動的計画法を考えるときの鍵 (数え上げバージョン)
1. 数え上げ対象の持つ再帰的な構造を見出す
2. 上の構造から状態を適切に定義する
3. 状態の間の再帰式を立てる

〈I1, I2, . . . , Ik〉 ∈ AS =
⋂
i∈S

Ai

⇔ vi 6∈ Ij ∀ i ∈ S,∀ j ∈ {1, 2, . . . , k}

, ,

v1 v2

v3 v4

∈ A1

⇔ Ij は G−X の独立集合 ∀ j ∈ {1, 2, . . . , k}

∴ |AS | = (G−X の独立集合の総数)k
ただし，X = {vi | i ∈ S}



21/38包除原理：|AS|の計算法 (2)
次の問題を解ければ，|AS |も計算できる

入力：無向グラフ G = (V,E)
出力：すべてのX ⊆ V に対する，G−X の独立集合の総数

v1 v2

v3

X G−X の独立集合

∅
{v1}
{v2}
{v3}

{v1, v2}
{v1, v3}
{v2, v3}

{v1, v2, v3}

5
4
3
3
2
2
2
1

の総数



22/38包除原理：|AS|の計算法 (3)
記法：a(X) = G−X の独立集合の総数

a(X)に対する再帰式

a(X) =
{
1 (X = V のとき)
a(X ∪ {v}) + a(X ∪N [v]) (v 6∈ X のとき)

X

v

X ∪ {v}

X ∪N [v]

vを含まない独立集合

vを含む独立集合



22/38包除原理：|AS|の計算法 (3)
記法：a(X) = G−X の独立集合の総数

a(X)に対する再帰式

a(X) =
{
1 (X = V のとき)
a(X ∪ {v}) + a(X ∪N [v]) (v 6∈ X のとき)

X

v

X ∪ {v}

X ∪N [v]I

vを含まない独立集合

vを含む独立集合



22/38包除原理：|AS|の計算法 (3)

I

記法：a(X) = G−X の独立集合の総数

a(X)に対する再帰式

a(X) =
{
1 (X = V のとき)
a(X ∪ {v}) + a(X ∪N [v]) (v 6∈ X のとき)

X

v

X ∪ {v}

X ∪N [v]

vを含まない独立集合

vを含む独立集合



23/38包除原理：|AS|の計算法 (4)まとめ

アルゴリズム is-dp(G = (V,E)) // n = |V |

1. a(V ) = 1

2. すべてのX ⊆ V,X 6= V に対して，
|X|の大きい方から順に，a(X)を再帰式に基づいて計算

3. すべてのX ⊆ V に対して a(X)を出力

再帰式 ： a(X) = a(X ∪ {v}) + a(X ∪N [v])



23/38包除原理：|AS|の計算法 (4)まとめ

アルゴリズム is-dp(G = (V,E)) // n = |V |

1. a(V ) = 1

2. すべてのX ⊆ V,X 6= V に対して，
|X|の大きい方から順に，a(X)を再帰式に基づいて計算

3. すべてのX ⊆ V に対して a(X)を出力

再帰式 ： a(X) = a(X ∪ {v}) + a(X ∪N [v])

∴ 全体の計算量 = O∗(2n)，全体のメモリ使用量 = O∗(2n)



24/38包除原理：アルゴリズム

アルゴリズム col(G = (V,E), k)

1. sum = 0 //初期化

2. a = is-dp(G) //独立集合の数え上げ

3. 各X ⊆ V に対して，次を実行

(a) term = a(X)k

(b) sum = sum+ (−1)|X| term

4. sumを出力
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3. 各X ⊆ V に対して，次を実行

(a) term = a(X)k
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4. sumを出力

ビット長 = O(log a(X)k) = O(log(2n)k) = O(nk) = O(n2)

彩色問題では，k ≤ n



24/38包除原理：アルゴリズム

アルゴリズム col(G = (V,E), k)

1. sum = 0 //初期化

2. a = is-dp(G) //独立集合の数え上げ

3. 各X ⊆ V に対して，次を実行

(a) term = a(X)k

(b) sum = sum+ (−1)|X| term

4. sumを出力

∴計算量 = O∗(2n) メモリ使用量 = O∗(2n)

O∗(1)

O∗(2n)回の繰返し

O∗(2n)

ビット長 = O(log a(X)k) = O(log(2n)k) = O(nk) = O(n2)

彩色問題では，k ≤ n



25/38彩色問題を包除原理で解く：まとめ

包除原理を用いて次の定理を導いた

定理 (Björklund, Husfeldt, Koivisto ’09)

彩色問題は O∗(2n)時間で解ける
(nはグラフの頂点数)

第 6回の内容：O∗(2.4423n)時間 (動的計画法による)

未解決問題

次を満たす定数 c < 2は存在するか？
彩色問題は O∗(cn)時間で解ける



26/38本日の内容

1. 復習：彩色問題

2. 包除原理に基づく彩色アルゴリズム

3. 染色多項式



27/38k彩色の数え上げ

定義：k彩色の数え上げ問題

入力：無向グラフ G = (V,E)，非負整数 k
出力： Gの k彩色の総数

k = 3 21

2 1 3

1 3

1

2

21

1 2

23

3 3

3

3

31

1 2

2
1

2 1

3 1 2

13

2

1

1

3 21

13 2

21

2

23

3 1

21

2

3

3

2

2 1

3

3

3

31

12

2 3

3

1 23

312

18

注意：長さ 3の独立集合被覆列の総数 = 54



28/38k彩色の数え上げ：予告

定理 (Björklund, Husfeldt, Kaski, Koivisto ’08)

k彩色の数え上げ問題は O∗(2n)時間で解ける
(nはグラフの頂点数)

第 10回の授業で次の定理を導出する (予定)

残りの時間で，「k彩色の数え上げ」が満たす性質を紹介する



29/38k彩色の数え上げ：例

k k彩色の総数

1
2
3
4
5
6
7

9
8

0
2

18
84
260
630

1 302

4 104
2 408 1

10

100

1000

10000

10

#
k
-c
ol
or
in
gs

k

(k − 1)4
truth

両対数プロット



30/38Whitneyの公式

定理：Whitneyの公式

無向グラフG = (V,E)の k彩色の総数は次で計算できる∑
F⊆E

(−1)|F |kc(F )

ここで，c(F )は無向グラフ (V, F )の連結成分の総数

4 3 3 2 3 2 2 1

3 2 2 1 2 1 1 1

∴ k彩色の総数 = k4 − 4k3 + 6k2 − 3k



31/38染色多項式

定理：Whitneyの公式

無向グラフG = (V,E)の k彩色の総数は次で計算できる∑
F⊆E

(−1)|F |kc(F )

ここで，c(F )は無向グラフ (V, F )の連結成分の総数

帰結：Gの k彩色の総数は kに関する多項式

(Gの染色多項式 (chromatic polynomial)と呼ぶ)



32/38Whitneyの公式：包除原理による証明

定理：Whitneyの公式

無向グラフG = (V,E)の k彩色の総数は次で計算できる∑
F⊆E

(−1)|F |kc(F )

ここで，c(F )は無向グラフ (V, F )の連結成分の総数

証明：包除原理を用いる

包除原理によるアルゴリズムの考え方

1. U と Ai を上手に定める

2. |AS |の計算法を与える



33/38Whitneyの公式：U を定める

ポイント：U では数えすぎるようにする

U = {c | c : V → {1, 2, . . . , k}}

つまり，辺 {u, v} ∈ E に対して c(u) 6= c(v)を要請しない

1 1

11

1

1

2 2

2

3

3 32

2 1

1

このとき，|U | = k|V |



34/38Whitneyの公式：Aiを定める

E = {e1, e2, . . . , em}として，i ∈ {1, 2, . . . ,m}に対して

Ai = {c | c : V → {1, 2, . . . , k}, c(ui) = c(vi)}

ただし，ei = {ui, vi}とする

2

2 1

1
∈ A1 ∩A3e1 e3

e2

e4

このとき，cが Gの彩色⇔ c ∈ A1 ∪A2 ∪ · · · ∪Am



35/38Whitneyの公式：|AS|の計算法

E = {e1, e2, . . . , em}として，i ∈ {1, 2, . . . ,m}に対して

Ai = {c | c : V → {1, 2, . . . , k}, c(ui) = c(vi)}

ただし，ei = {ui, vi}とする

S ⊆ {1, 2, . . . ,m}に対して，F = {ei ∈ E | i ∈ S}とする

(これは一対一対応)



35/38Whitneyの公式：|AS|の計算法

E = {e1, e2, . . . , em}として，i ∈ {1, 2, . . . ,m}に対して

Ai = {c | c : V → {1, 2, . . . , k}, c(ui) = c(vi)}

ただし，ei = {ui, vi}とする

S ⊆ {1, 2, . . . ,m}に対して，F = {ei ∈ E | i ∈ S}とする

c(F ) = 4

; |AS | = kc(F )

(これは一対一対応)



36/38Whitneyの公式 (再掲)

定理：Whitneyの公式 (再掲)

無向グラフG = (V,E)の k彩色の総数は次で計算できる∑
F⊆E

(−1)|F |kc(F )

ここで，c(F )は無向グラフ (V, F )の連結成分の総数

帰結：k彩色の総数は O∗(2|E|)時間で計算できる

第 10回の授業：k彩色の総数を O∗(2|V |)時間で計算する



37/38まとめ

前回と今回

包除原理 (inclusion-exclusion principle)による
アルゴリズムの設計と解析

前回

• 包除原理の説明
– 二部完全マッチングの数え上げ
– ハミルトン路の数え上げ

今回

• 包除原理による彩色問題の解法 (O∗(2n)時間)



38/38次回の予告

次回と次々回

部分集合畳み込み (subset convolution)による
アルゴリズムの設計と解析

次回

• 部分集合畳み込みの説明
– 最小シュタイナー木問題 (O∗(2|K|)時間)

次々回

• k彩色の数え上げ (O∗(2n)時間)


	第8回
	スケジュール (前半)
	スケジュール (後半)
	包除原理： 一般形

	彩色問題
	グラフの彩色
	彩色問題
	彩色と独立集合
	彩色は独立集合による被覆
	被覆

	包除原理に基づく彩色アルゴリズム
	彩色問題を包除原理で解く
	グラフの$k$彩色
	彩色と独立集合被覆列
	独立集合被覆列
	独立集合被覆列の数え上げ
	独立集合被覆列を包除原理で数え上げる
	包除原理： $U$を定める
	包除原理： $A_i$を定める
	包除原理： $|A_S|$の計算法 (1)
	包除原理： $|A_S|$の計算法 (2)
	包除原理： $|A_S|$の計算法 (3)
	包除原理： $|A_S|$の計算法 (4) まとめ
	包除原理： アルゴリズム
	彩色問題を包除原理で解く： まとめ

	染色多項式
	$k$彩色の数え上げ
	$k$彩色の数え上げ： 予告
	$k$彩色の数え上げ： 例
	Whitneyの公式
	染色多項式
	Whitneyの公式： 包除原理による証明
	Whitneyの公式： $U$を定める
	Whitneyの公式： $A_i$を定める
	Whitneyの公式： $|A_S|$の計算法
	Whitneyの公式 (再掲)

	まとめと次回の予告
	次回の予告


