離散最適化基礎論(2025年後学期)

高速指数時間アルゴリズム

第3回

分枝アルゴリズム (2): 高速化

岡本 吉央 (電気通信大学)

okamotoy@uec.ac.jp

2025年10月28日

最終更新: 2025年10月28日 09:57

スケジュール (前半)

1. 高速指数時間アルゴリズムの考え方	(10/7)
* 休み (体育祭)	(10/14)
2. 分枝アルゴリズム:基礎	(10/21)
3. 分枝アルゴリズム: 高速化	(10/28)
4. 分枝アルゴリズム:測度統治法	(11/4)
5. 動的計画法:基礎	(11/11)
6. 動的計画法:例	(11/18)

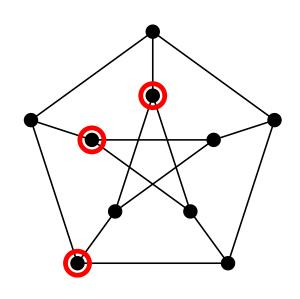
包除原理:原理	(11/25)
休み (秋ターム試験)	(12/2)
包除原理:例	(12/9)
部分集合たたみ込み:原理	(12/16)
休み (出張)	(12/23)
休み (冬季休業)	(12/30)
部分集合たたみ込み:例	(1/6)
指数時間仮説:原理	(1/13)
指数時間仮説:証明	(1/20)
最近の話題	(1/27)
休み (修士論文発表会)	(2/3)
	体み(秋ターム試験) 包除原理:例 部分集合たたみ込み:原理 休み(出張) 休み(冬季休業) 部分集合たたみ込み:例 指数時間仮説:原理 指数時間仮説:証明 最近の話題 休み(修士論文発表会)

(復習)独立集合

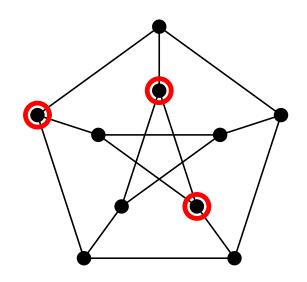
無向グラフ G = (V, E)

定義:独立集合(independent set)

Gの 独立集合 とは,頂点部分集合 $S \subseteq V$ で, どの 2 頂点 $u,v \in S$ も隣接していないもの



独立集合である



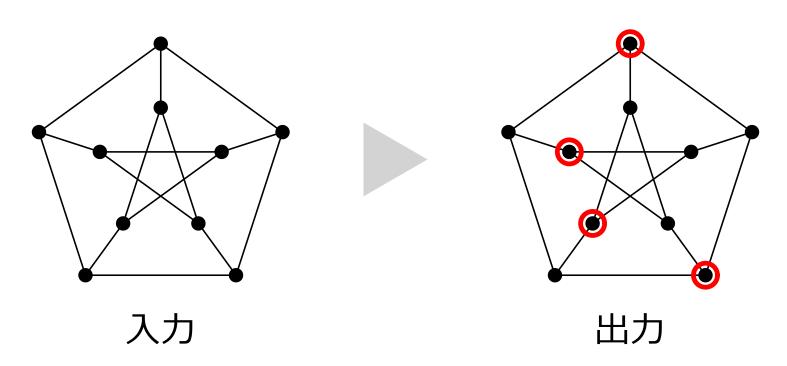
独立集合ではない

問題:最大独立集合問題

入力: 無向グラフG = (V, E)

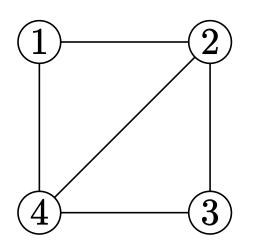
出力: *G* の最大独立集合

要素数最大の独立集合



注:最大独立集合問題は NP 困難 (Karp '72)

定義:頂点vの次数 (degree) とは,vに隣接する頂点の数 $\deg(v)$ で表すことがある



- deg(1) = 2
- deg(2) = 3
- deg(3) = 2
- deg(4) = 3

このグラフにおける

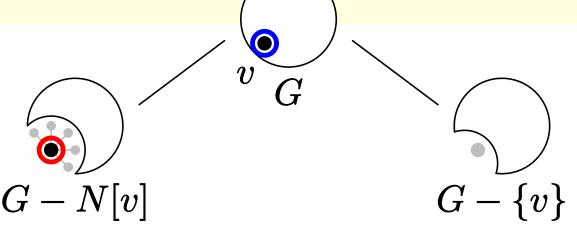
- 最大次数 = 3
- 最小次数 = 2

定義: 頂点vの **開近傍**N(v) = 頂点<math>vの隣接頂点全体の集合 頂点vの **閉近傍** $N[v] = N(v) \cup \{v\}$

•
$$N(3) = \{2, 4\}, N[3] = \{2, 3, 4\}$$

- 1. if *G* の最大次数 ≤ 2:
 - ・ 多項式時間アルゴリズムで 最大独立集合を出力
- 2. v = G の次数最大の頂点
- 3. 次の2つの大きいほうを出力
 - $\mathsf{A}(G-N[v]))$ の出力 $\cup \{v\}$
 - A(G {v}) の出力

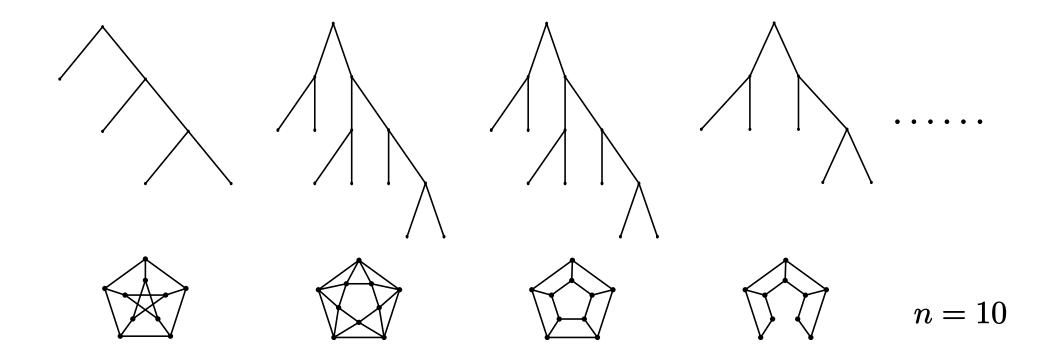
$$G-X=G$$
 から X を
除去してできる
グラフ



記法

アルゴリズム A(·) に対して,次を定義

- T(G) =入力を G としたときの探索木の葉の数
- $T(n) = \max\{T(G) \mid G$ の頂点数 $\leq n\}$



記法

アルゴリズム A(·) に対して,次を定義

- T(G) =入力を G としたときの探索木の葉の数
- $T(n) = \max\{T(G) \mid G$ の頂点数 $\leq n\}$

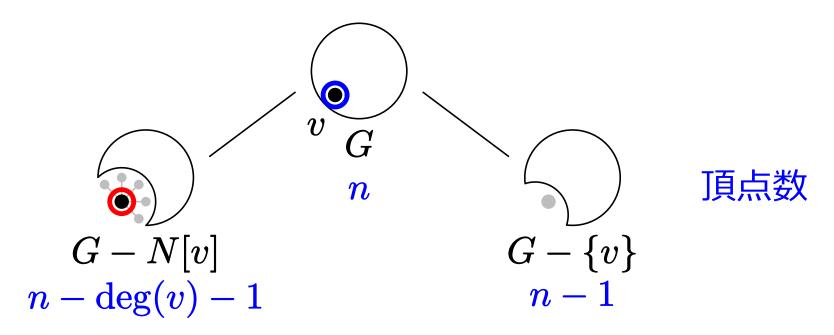
ほしいもの:T(n) に対する小さな上界

性質

$$n \le n' \Rightarrow T(n) \le T(n')$$

正しいことは, 定義から直ちに分かる

 $n \ge 4$ として, T(n) = T(G) を満たすグラフ G を考える



$$T(n) = T(G) = T(G - N[v]) + T(G - \{v\})$$

 $\leq T(n - \deg(v) - 1) + T(n - 1)$
 $\leq T(n - 4) + T(n - 1)$

$$T(n) = O(1.3803^n)$$

(第2回で導出したとおり)

結論 $|: アルゴリズム <math>\mathsf{A}(G)$ の計算量は $O^*(1.3803^n)$

本日の目標

アルゴリズム A よりも **数学的に高速な** アルゴリズムを 設計する

紹介する補題は 最大独立集合問題 にしか適用できないが 基本的な考え方 は 他の問題 にも適用できる

- 前処理
- 分枝規則の精緻化

結論 $|: アルゴリズム <math>\mathsf{A}(G)$ の計算量は $O^*(1.3803^n)$

本日の内容

- 1. 分枝アルゴリズムの高速化:前処理
- 2. 分枝アルゴリズムの高速化: 分枝規則の精緻化
- 3. 付録:メモ化(記憶化)

高速化:考え方1

仮に…

最大次数 ≤3の場合に,多項式時間で解けたら…

- 1. if *G* の最大次数 ≤ 2:
 - ・ 多項式時間アルゴリズムで 最大独立集合を出力
- 2. v = G の次数最大の頂点
- 3. 次の2つの大きいほうを出力
 - ・ $\mathsf{A}(G-N[v]))$ の出力 $\cup \{v\}$
 - A(G {v}) の出力

高速化:考え方1

仮に…

最大次数 ≤3の場合に,多項式時間で解けたら…

- 1. if *G* の最大次数 ≤ X: ³
 - ・ 多項式時間アルゴリズムで 最大独立集合を出力
- 2. v = G の次数最大の頂点
- 3. 次の2つの大きいほうを出力
 - ・ $\mathsf{A}(G-N[v]))$ の出力 $\cup \{v\}$
 - A(G {v}) の出力

高速化:考え方1(続)

$$T(n) \le T(n-5) + T(n-1)$$

$$T(n) = O(1.3247^n)$$

(注:前は $O(1.3803^n)$)

- 1. if *G* の最大次数 ≤ ★: ³
 - ・ 多項式時間アルゴリズムで 最大独立集合を出力
- 2. v = G の次数最大の頂点 $\overline{\qquad}$ $\operatorname{deg}(v) \geq 4$
- 3. 次の2つの大きいほうを出力
 - $\mathsf{A}(G-N[v]))$ の出力 $\cup \{v\}$
 - A(G {v}) の出力

高速化:考え方1(続)

$$T(n) \le T(n-5) + T(n-1)$$

$$T(n) = O(1.3247^n)$$

(注:前は $O(1.3803^n)$)

しかし : 最大次数 ≤ 3 のとき,最大独立集合問題は NP 困難

 $Z' / \Delta(G)$ (Garey, Johnson, Stockmeyer '76)

- 1. if *G* の最大次数 ≤ X: ³
 - ・ 多項式時間アルゴリズムで 最大独立集合を出力
- 2. v = G の次数最大の頂点 $\overline{\qquad}$ $\operatorname{deg}(v) \geq 4$
- 3. 次の2つの大きいほうを出力
 - A(G-N[v])) の出力 $\cup \{v\}$
 - A(G {v}) の出力

高速化:考え方2

考え方

最大次数が3のときを改善したい

最小次数で場合分け

- 最小次数 = 0 のとき
- 最小次数 = 1 のとき
- 最小次数 = 2 のとき
- 最小次数 = 3 のとき

まず,場合分けの中で役立つ補題をいくつか準備する

無向グラフ G = (V, E)

性質:優越

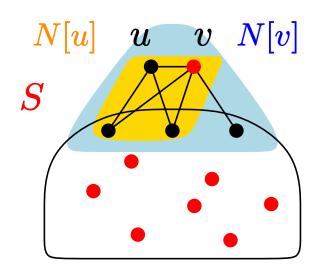
仮定: $u,v\in V$, u
eq v, $N[u]\subseteq N[v]$

 $S \subseteq V$, $v \in S$

結論:SがGの最大独立集合

 $\Rightarrow (S - \{v\}) \cup \{u\}$ は G の最大独立集合

証明:



無向グラフ G = (V, E)

性質:優越

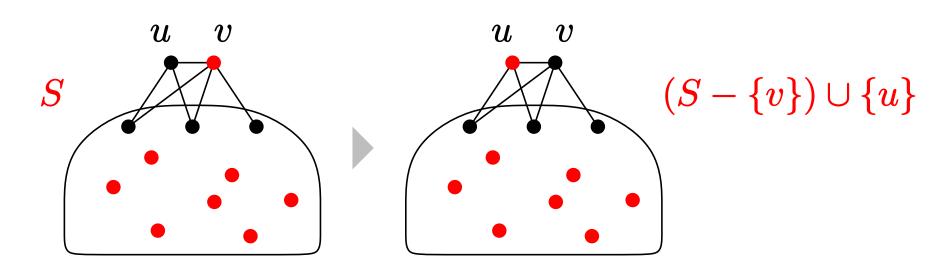
仮定: $u,v\in V$, $u\neq v$, $N[u]\subseteq N[v]$

 $S \subseteq V$, $v \in S$

結論:SがGの最大独立集合

 $\Rightarrow (S - \{v\}) \cup \{u\}$ は G の最大独立集合

証明:



無向グラフ G = (V, E)

性質:優越

仮定: $u,v\in V$, u
eq v, $N[u]\subseteq N[v]$

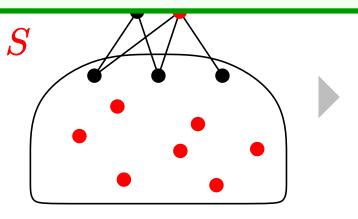
 $S \subseteq V$, $v \in S$

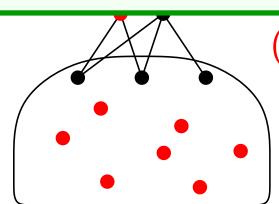
結論:SがGの最大独立集合

 $\Rightarrow (S - \{v\}) \cup \{u\}$ は G の最大独立集合

帰結

vを含まない最大独立集合が存在する

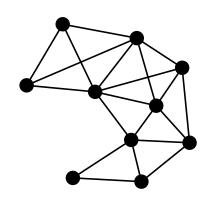




 $(S - \{v\}) \cup \{u\}$

アルゴリズム 優越規則(G)

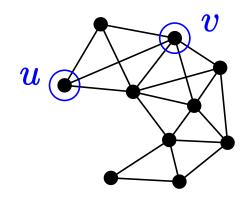
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

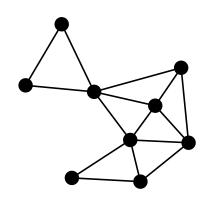
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

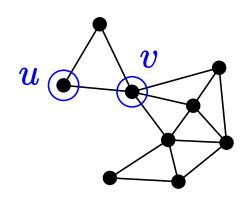
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

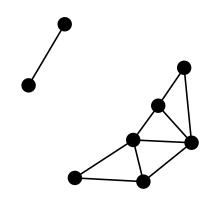
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

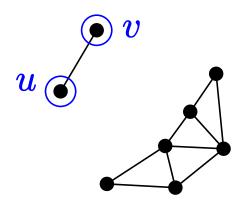
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

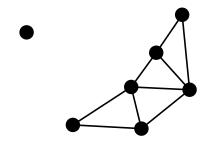
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

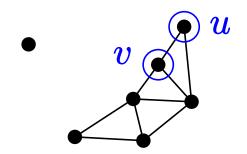
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

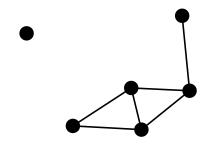
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

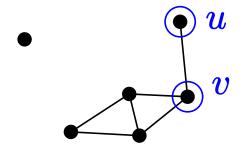
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

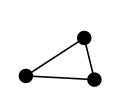
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

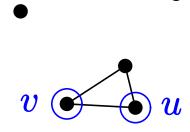
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

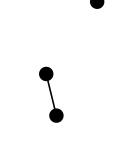
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力

前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力

前のページの性質(とその帰結)より

アルゴリズム 優越規則(G)

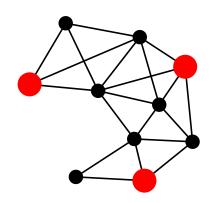
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力

前のページの性質(とその帰結)より

前処理:優越規則

アルゴリズム 優越規則(G)

- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



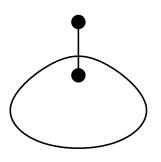
前のページの性質(とその帰結)より

S が 優越規則(G) の最大独立集合

 $\Rightarrow S$ が G の最大独立集合

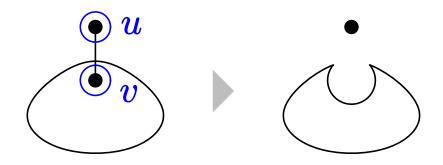
アルゴリズム 優越規則(G)

- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



アルゴリズム 優越規則(G)

- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



性質:次数1の頂点

優越規則(G)には、次数1の頂点が存在しない

アルゴリズム 優越規則(G)

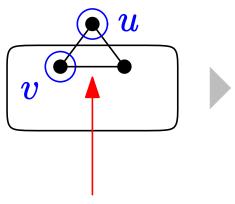
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



隣接している場合

アルゴリズム 優越規則(G)

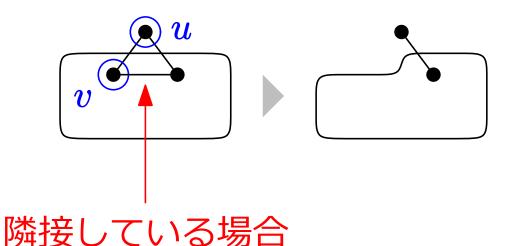
- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



隣接している場合

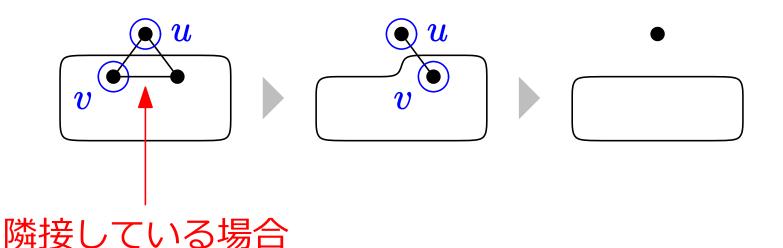
アルゴリズム 優越規則(G)

- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



アルゴリズム 優越規則(G)

- 1. ある異なる頂点 u,v が $N[u]\subseteq N[v]$ を満たす限り反復
 - $G = G \{v\}$
- 2. Gを出力



近傍に関する補題

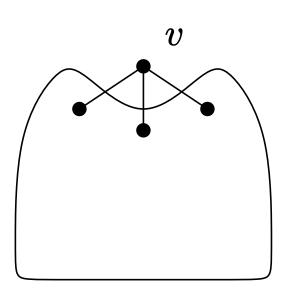
無向グラフ G = (V, E)

補題:近傍から2頂点

仮定: $v \in V$

G のどの最大独立集合もv を含まない

結論:S が G の最大独立集合 $\Rightarrow |S \cap N(v)| \ge 2$



無向グラフ G = (V, E)

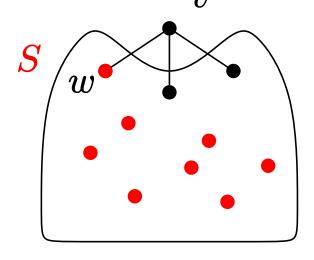
補題:近傍から2頂点

仮定: $v \in V$

G のどの最大独立集合もv を含まない

結論:S が G の最大独立集合 $\Rightarrow |S \cap N(v)| \geq 2$

証明:背理法



無向グラフ G = (V, E)

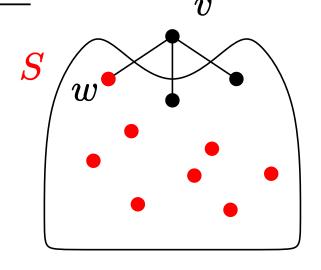
補題:近傍から2頂点

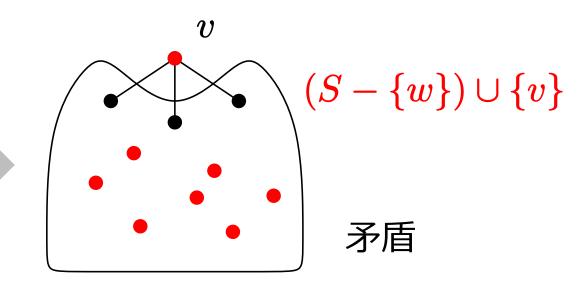
仮定: $v \in V$

G のどの最大独立集合もv を含まない

結論:S が G の最大独立集合 $\Rightarrow |S \cap N(v)| \ge 2$

証明:背理法





折畳(おりたたみ, folding)

無向グラフG=(V,E), 頂点 $v\in V$, 最大独立集合S

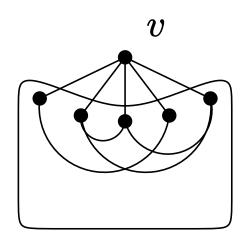
性質:折畳

仮定:N(v) の異なる3 頂点の間に辺が1 つはある

G のどの最大独立集合もv を含まない

結論: $|S \cap N(v)| = 2$

証明:前のページの補題より



折畳(おりたたみ, folding)

無向グラフG=(V,E), 頂点 $v\in V$, 最大独立集合S

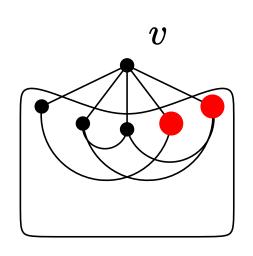
性質:折畳

仮定: N(v) の異なる3 頂点の間に辺が1 つはある

G のどの最大独立集合もv を含まない

結論: $|S \cap N(v)| = 2$

証明:前のページの補題より



補題:近傍から2頂点

仮定: $v \in V$

G のどの最大独立集合も v を含まない

結論:S が G の最大独立集合 $\Rightarrow |S \cap N(v)| \geq 2$

折畳(おりたたみ, folding)

無向グラフG=(V,E), 頂点 $v\in V$, 最大独立集合S

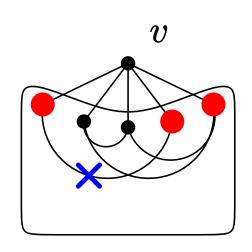
性質:折畳

仮定: N(v) の異なる3 頂点の間に辺が1 つはある

G のどの最大独立集合もv を含まない

結論: $|S \cap N(v)| = 2$

証明:前のページの補題より



補題:近傍から2頂点

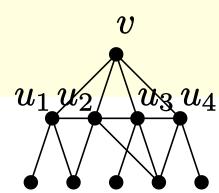
仮定: $v \in V$

G のどの最大独立集合も v を含まない

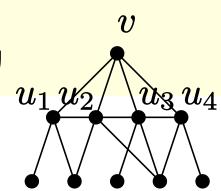
結論:S が G の最大独立集合 $\Rightarrow |S \cap N(v)| \geq 2$

- 1. $\{u_1, u_2, \dots, u_d\} = N(v)$
- 2. すべての非辺 $\{u_i,u_j\}\subseteq N(v)$ に対して
 - ・ 頂点 u_iu_i を追加
 - ・ 頂点 u_iu_j と $N(u_i)\cup N(u_j)$ の各頂点の間に辺を追加
- 3. 追加したすべての頂点間に辺を追加
- 4. N[v] の頂点をすべて削除
- 5. できあがったグラフを出力

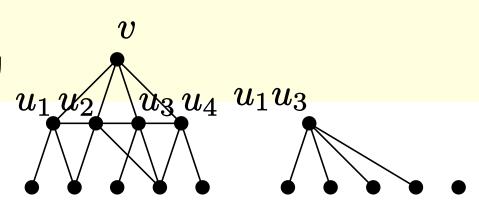
- 1. $\{u_1, u_2, \dots, u_d\} = N(v)$
- 2. すべての非辺 $\{u_i,u_j\}\subseteq N(v)$ に対して
 - ・ 頂点 u_iu_i を追加
 - ・ 頂点 u_iu_j と $N(u_i)\cup N(u_j)$ の各頂点の間に辺を追加
- 3. 追加したすべての頂点間に辺を追加
- 4. N[v] の頂点をすべて削除
- 5. できあがったグラフを出力



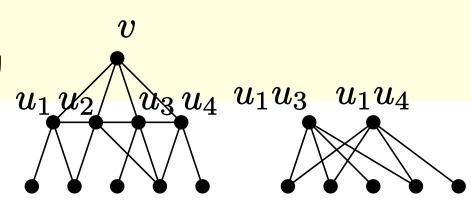
- 1. $\{u_1, u_2, \dots, u_d\} = N(v)$
- 2. すべての非辺 $\{u_i,u_j\}\subseteq N(v)$ に対して
 - ・ 頂点 u_iu_i を追加
 - ・ 頂点 u_iu_j と $N(u_i)\cup N(u_j)$ の各頂点の間に辺を追加
- 3. 追加したすべての頂点間に辺を追加
- 4. N[v] の頂点をすべて削除
- 5. できあがったグラフを出力



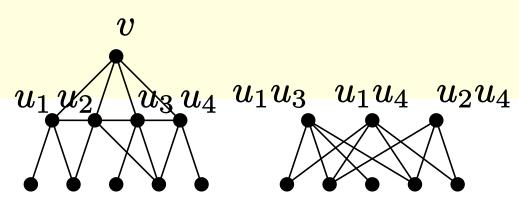
- 1. $\{u_1, u_2, \dots, u_d\} = N(v)$
- 2. すべての非辺 $\{u_i, u_j\} \subseteq N(v)$ に対して
 - ・ 頂点 u_iu_i を追加
 - ・ 頂点 u_iu_j と $N(u_i)\cup N(u_j)$ の各頂点の間に辺を追加
- 3. 追加したすべての頂点間に辺を追加
- 4. N[v] の頂点をすべて削除
- 5. できあがったグラフを出力



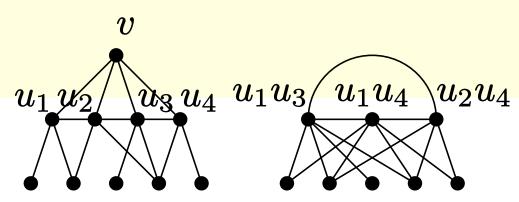
- 1. $\{u_1, u_2, \dots, u_d\} = N(v)$
- 2. すべての非辺 $\{u_i, u_j\} \subseteq N(v)$ に対して
 - ・ 頂点 u_iu_i を追加
 - ・ 頂点 u_iu_j と $N(u_i)\cup N(u_j)$ の各頂点の間に辺を追加
- 3. 追加したすべての頂点間に辺を追加
- 4. N[v] の頂点をすべて削除
- 5. できあがったグラフを出力

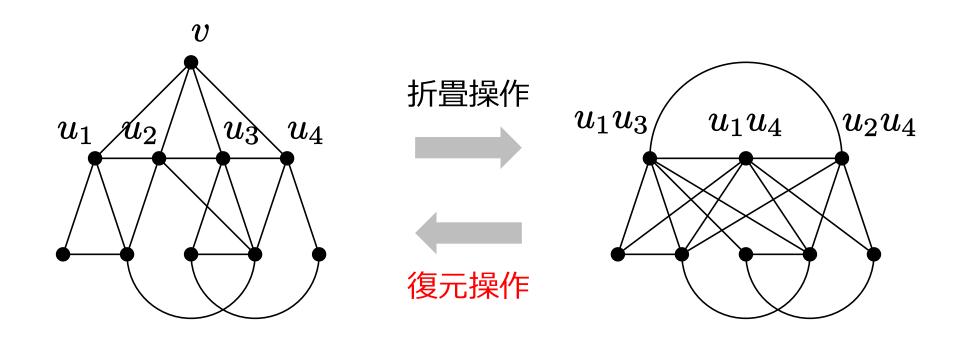


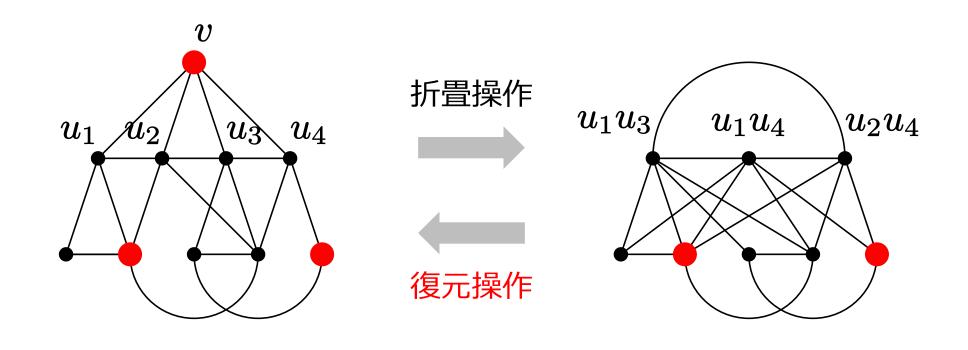
- 1. $\{u_1, u_2, \dots, u_d\} = N(v)$
- 2. すべての非辺 $\{u_i, u_i\} \subseteq N(v)$ に対して
 - ・ 頂点 u_iu_i を追加
 - ・ 頂点 u_iu_j と $N(u_i)\cup N(u_j)$ の各頂点の間に辺を追加
- 3. 追加したすべての頂点間に辺を追加
- 4. N[v] の頂点をすべて削除
- 5. できあがったグラフを出力

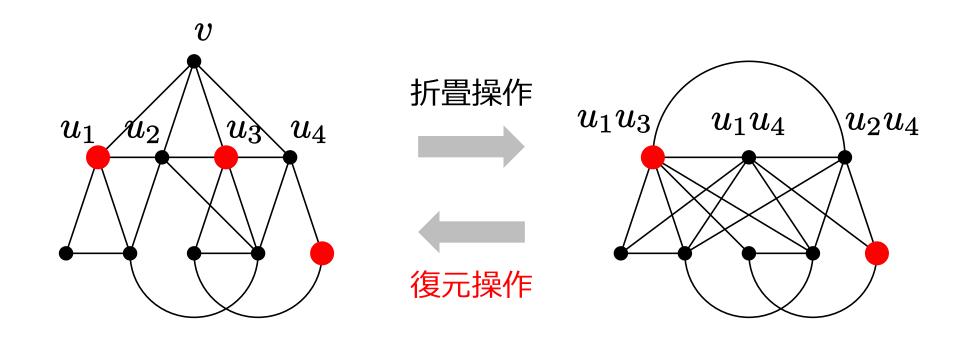


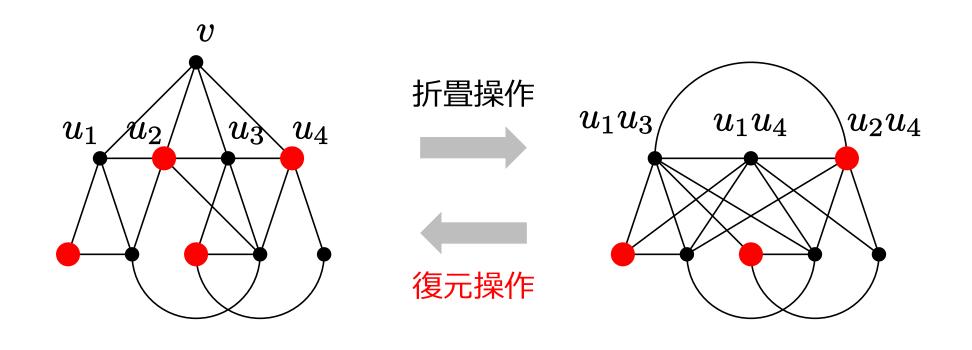
- 1. $\{u_1, u_2, \dots, u_d\} = N(v)$
- 2. すべての非辺 $\{u_i, u_j\} \subseteq N(v)$ に対して
 - ・ 頂点 u_iu_i を追加
 - ・ 頂点 u_iu_j と $N(u_i)\cup N(u_j)$ の各頂点の間に辺を追加
- 3. 追加したすべての頂点間に辺を追加
- 4. N[v] の頂点をすべて削除
- 5. できあがったグラフを出力











前処理:折畳規則

アルゴリズム 折畳規則(G)

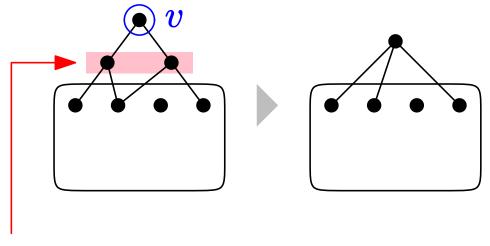
- 1. 折畳操作を行える頂点 v がある限り反復
 - G =折畳(G, v)
- 2. Gを出力

ここまでの議論の帰結

折畳規則(G)の最大独立集合から Gの最大独立集合が (多項式時間で)得られる

アルゴリズム 折畳規則(G)

- 1. 折畳操作を行える頂点 v がある限り反復
 - G =折畳(G, v)
- 2. Gを出力



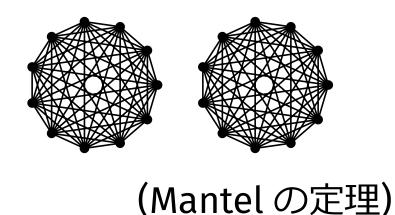
隣接していない場合

注:必ず頂点数が減少



取り除いた頂点の数 $=1+\deg(v)$

付け加える頂点の数 $\leq \lceil \deg(v)/2 \rceil \lfloor \deg(v)/2 \rfloor$



取り除いた頂点の数 $=1+\deg(v)$

付け加える頂点の数 $\leq \lceil \deg(v)/2 \rceil \lfloor \deg(v)/2 \rfloor$

\overline{d}	1+d	$\lceil d/2 \rceil \lfloor d/2 \rfloor$
2	3	1
3	4	2
4	5	4
5	6	6
6	7	9

取り除いた頂点の数 $=1+\deg(v)$

付け加える頂点の数 $\leq \lceil \deg(v)/2 \rceil \lfloor \deg(v)/2 \rfloor$

\overline{d}	1+d	$\lceil d/2 \rceil \lfloor d/2 \rfloor$	
$egin{array}{c} 2 \\ 3 \\ 4 \\ \hline 5 \end{array}$	3 4 5 6	1 2 4 6	deg(v) ≤ 4 のときのみ 折畳操作を行う
6	7	9	

前処理:折畳規則(再掲)

アルゴリズム 折畳規則(G)

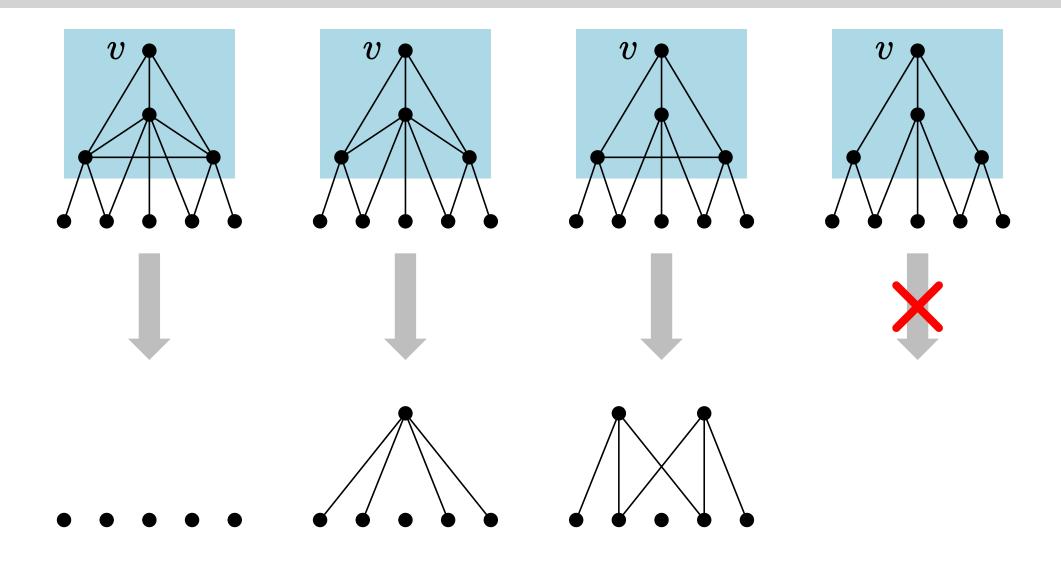
- 1. 折畳操作を行える頂点vがある限り反復
 - G =折畳(G, v)
- 2. Gを出力

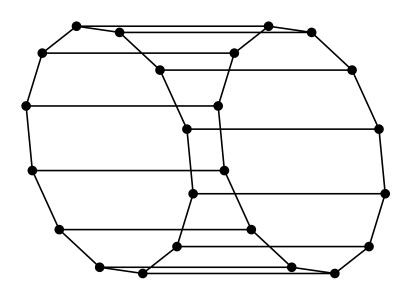
- N(v)の異なる3頂点の間に
 辺が1つはある
- $\deg(v) \leq 4$

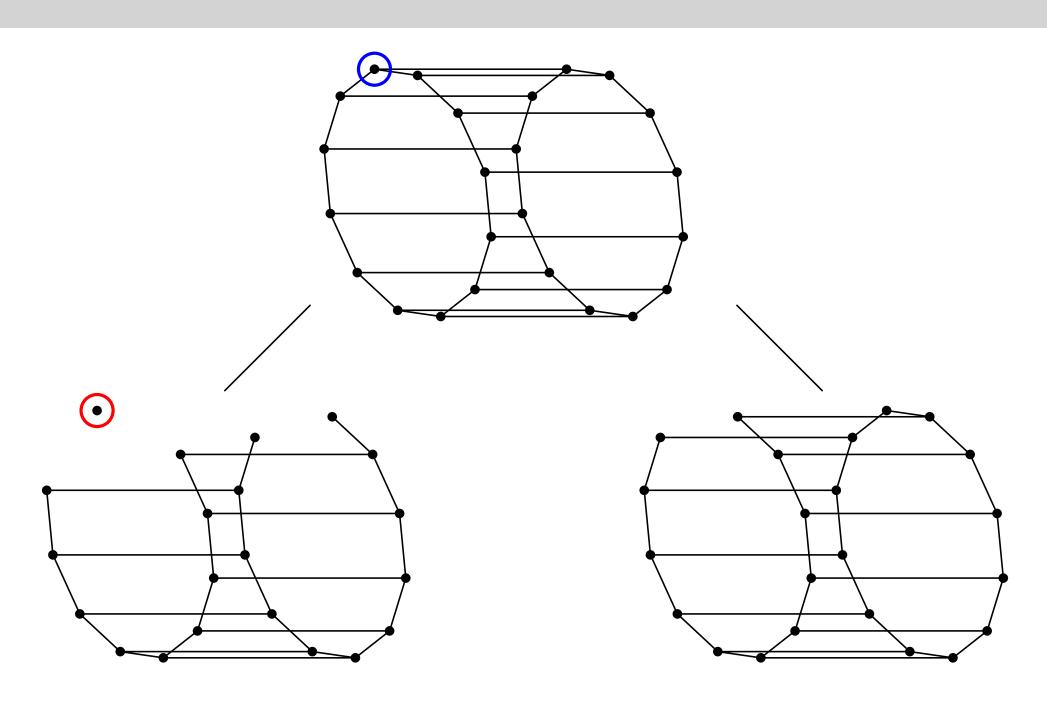
アルゴリズム $\mathsf{A}'(G)$

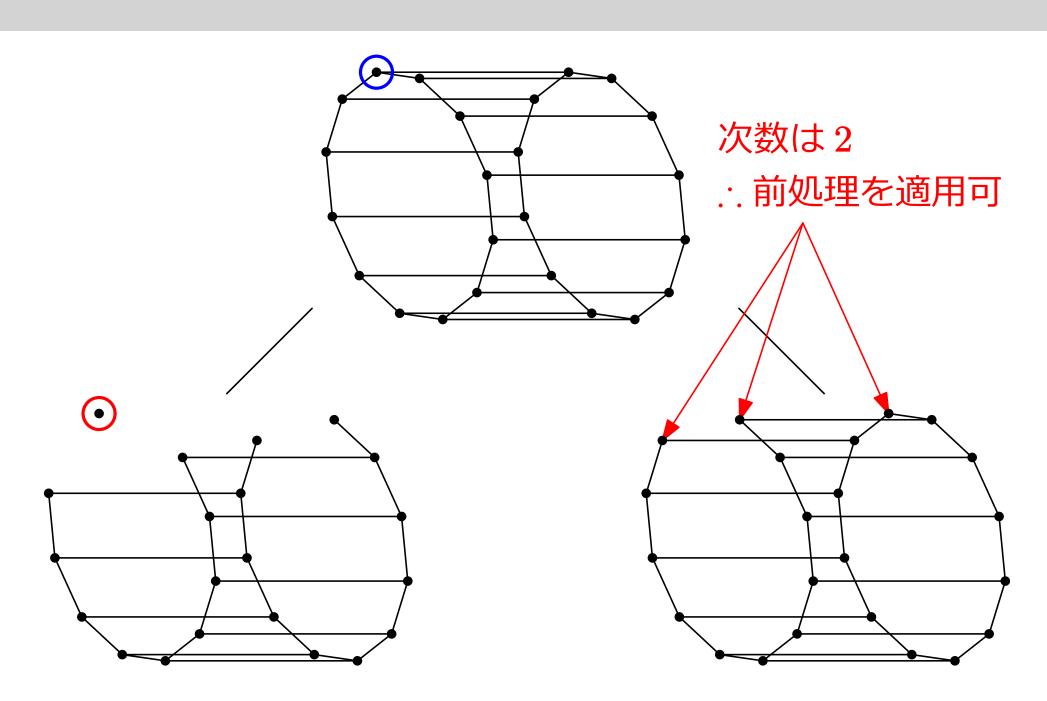
- 1. 優越規則と折畳規則を可能な限り G に適用 ◀
- 2. v = G の次数最大の頂点
- 3. 次の2つの大きいほうを出力
 - A'(G-N[v])) の出力を復元したもの $\cup \{v\}$
 - $A'(G \{v\})$ の出力を復元したもの

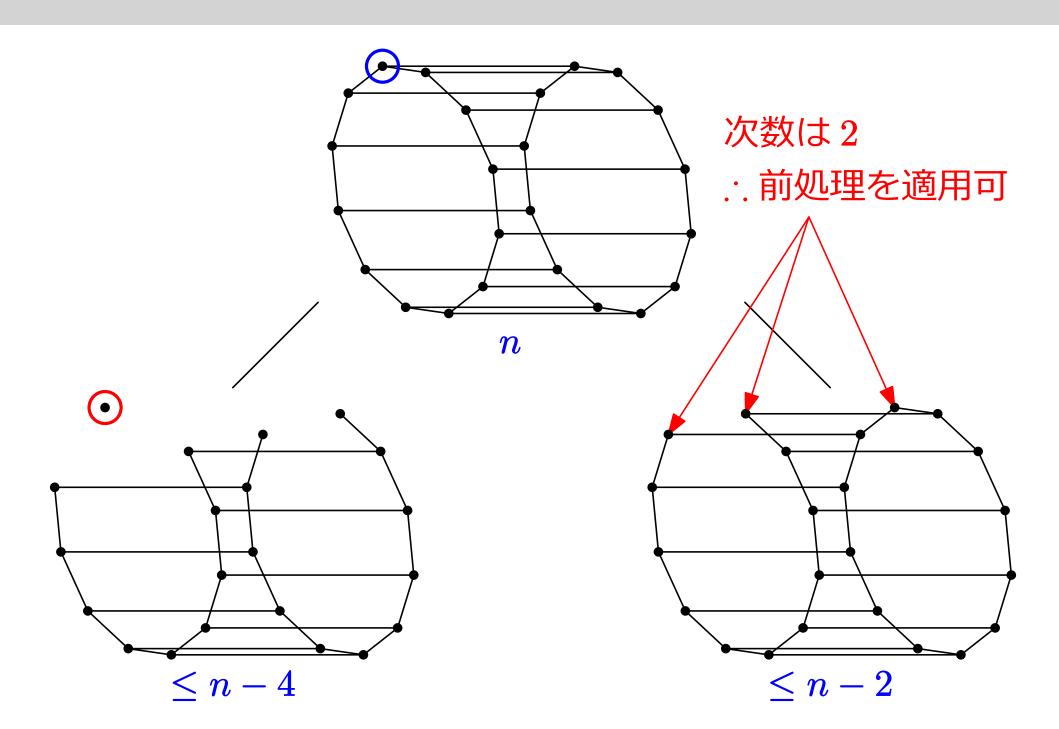
Step 1の終了後,最小次数 ≥ 3











計算量の解析(1)

アルゴリズム $\mathsf{A}'(G)$

- 1. 優越規則と折畳規則を可能な限りGに適用
- 2. v = G の次数最大の頂点 $\leftarrow \deg(v) = 最大次数 > 最小次数 > 3$
- 3. 次の2つの大きいほうを出力
 - $\mathsf{A}'(G-N[v]))$ の出力を復元したもの $\cup \{v\}$
 - $A'(G \{v\})$ の出力を復元したもの

計算量を最大にする頂点数 n のグラフを G とすると Step 2 で $\deg(v) \geq 4$ のとき

•
$$T(n) = T(G) = T(G - N[v]) + T(G - \{v\})$$

 $\leq T(n-5) + T(n-1)$

計算量の解析(1)

アルゴリズム $\mathsf{A}'(G)$

- 1. 優越規則と折畳規則を可能な限りGに適用
- 2. v = G の次数最大の頂点 $\leftarrow \deg(v) = 最大次数 > 最小次数 > 3$
- 3. 次の2つの大きいほうを出力
 - A'(G-N[v])) の出力を復元したもの $\cup \{v\}$
 - $A'(G \{v\})$ の出力を復元したもの

計算量を最大にする頂点数 n のグラフを G とすると Step 2 で $\deg(v)=3$ のとき

•
$$T(n) = T(G) = T(G - N[v]) + T(前処理(G - \{v\}))$$

 $\leq T(n-4) + T(n-2)$

考える漸化式

$$T(n) \le \max\{T(n-5) + T(n-1), T(n-4) + T(n-2)\}$$

どちらが最大値を取るか わからない

考える漸化式

$$T(n) \le \max\{T(n-5) + T(n-1), T(n-4) + T(n-2)\}$$

どちらが最大値を取るか わからない

$$T(n) \le T(n-5) + T(n-1)$$
 に対して

• 特性方程式は $x^5 = 1 + x^4 \sim$ 正の実数解 = 1.3247

$$T(n) \leq T(n-4) + T(n-2)$$
 に対して

• 特性方程式は $x^4 = 1 + x^2 \rightarrow$ 正の実数解 = 1.2720

考える漸化式

$$T(n) \le \max\{T(n-5) + T(n-1), T(n-4) + T(n-2)\}$$

どちらが最大値を取るか わからない

$$T(n) \le T(n-5) + T(n-1)$$
 に対して

• 特性方程式は $x^5 = 1 + x^4 \sim$ 正の実数解 = 1.3247

$$T(n) \le T(n-4) + T(n-2)$$
 に対して

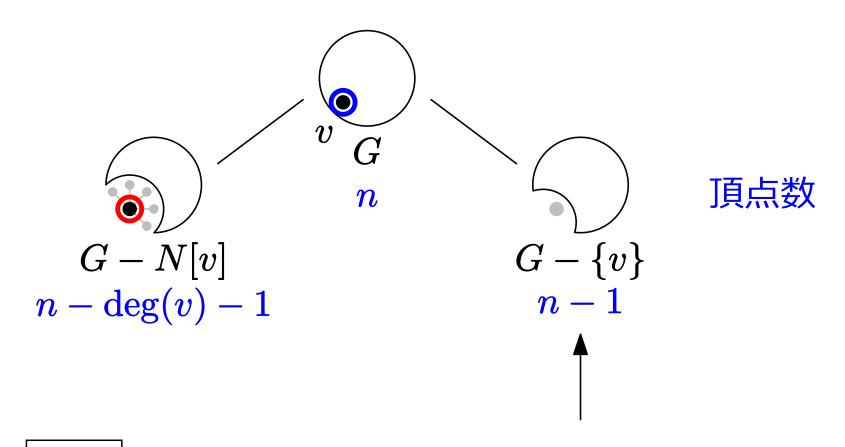
• 特性方程式は $x^4 = 1 + x^2 \sim$ 正の実数解 = 1.2720

結論 $|: アルゴリズム A' の計算量は <math>O^*(1.3247^n)$

注:アルゴリズム A の計算量は $O^*(1.3803^n)$

本日の内容

- 1. 分枝アルゴリズムの高速化:前処理
- 2. 分枝アルゴリズムの高速化: 分枝規則の精緻化
- 3. 付録:メモ化(記憶化)

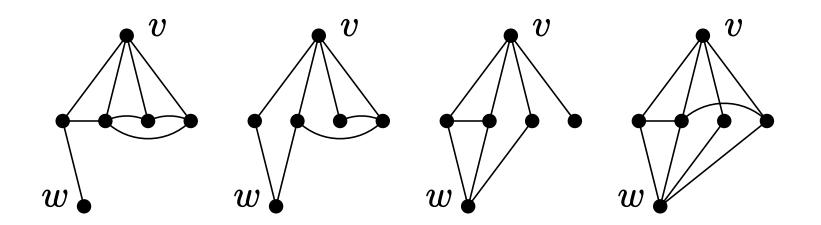


目標 : 頂点数をもっと大きく減らしたい

無向グラフG=(V,E), 頂点 $v,w\in V$, $\{v,w\}\not\in E$

定義:鏡像(mirror)

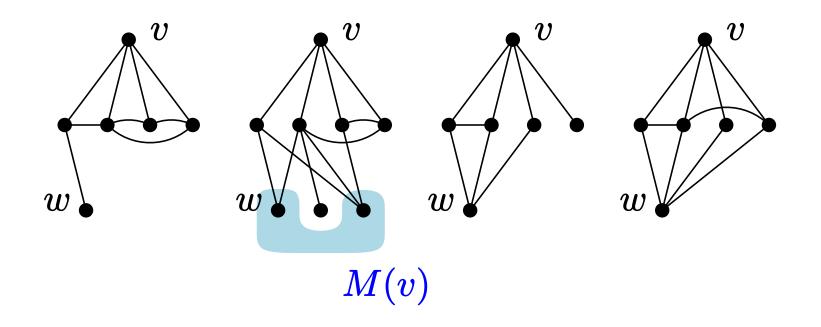
w が v の 鏡像 であるとは, $N(v) \cap N(w) \neq \emptyset$ で N(v) - N(w) の任意の 2 頂点が隣接していること



無向グラフG=(V,E), 頂点 $v,w\in V$, $\{v,w\}\not\in E$

定義:鏡像(mirror)

w が v の 鏡像 であるとは, $N(v) \cap N(w) \neq \emptyset$ で N(v) - N(w) の任意の 2 頂点が隣接していること



記法: M(v) = v の鏡像全体の集合

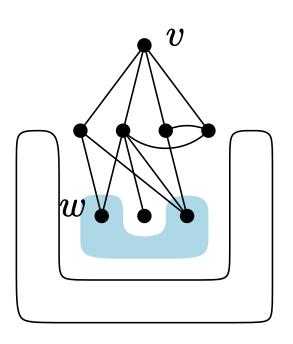
無向グラフG=(V,E), 頂点 $v,w\in V$, $\{v,w\}\not\in E$

性質:鏡像と最大独立集合

仮定:w は v の鏡像

G のどの最大独立集合もv を含まない

結論:Gのどの最大独立集合もwを含まない



無向グラフG=(V,E), 頂点 $v,w\in V$, $\{v,w\}\not\in E$

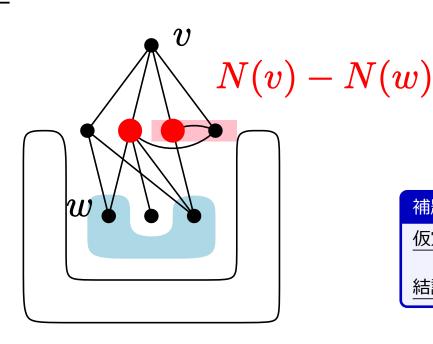
性質:鏡像と最大独立集合

仮定:w は v の鏡像

G のどの最大独立集合もv を含まない

結論:Gのどの最大独立集合もwを含まない

証明:補題(近傍から2頂点)を使う



補題:近傍から2頂点

仮定: $v \in V$

G のどの最大独立集合も v を含まない

結論: S が G の最大独立集合 \Rightarrow $|S\cap N(v)| <math>\geq 2$

無向グラフG=(V,E), 頂点 $v,w\in V$, $\{v,w\}\not\in E$

性質:鏡像と最大独立集合

仮定:w は v の鏡像

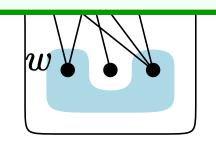
G のどの最大独立集合もv を含まない

結論:Gのどの最大独立集合もwを含まない

<u>証明・湖朝 (近降からり 頂占) を庙う</u>

帰結

v を含まない最大独立集合を探すときにはM(v) もグラフから取り除いてよい



補題:近傍から2頂点

仮定: $v \in V$

G のどの最大独立集合もv を含まない

結論: S が G の最大独立集合 $\Rightarrow |S \cap N(v)| \geq 2$

アルゴリズム $\mathsf{A}''(G)$

- 1. 優越規則と折畳規則を可能な限り G に適用
- 2. v = G の次数最大の頂点
- 3. 次の2つの大きいほうを出力
 - A''(G-N[v])) の出力を復元したもの $\cup \{v\}$
 - $A''(G M(v) \{v\})$ の出力を復元したもの

計算量の解析は次回

注:マイルストーンのみ記載

時間	領域		
$O^*(1.2599^n)$	多項式	Tarjan, Trojanowski	' 77
$O^*(1.2278^n)$	多項式	Robson	'86
$O^*(1.2109^n)$	指数	Robson	'86
$(O^*(1.1893^n)$	指数	Robson	'01)
$O^*(1.2202^n)$	多項式	Fomin, Grandoni, Kratsch	'09
$O^*(1.1996^n)$	多項式	Xiao, Nagamochi	'17

注:マイルストーンのみ記載

時間	領域		
$O^*(1.2599^n)$	多項式	Tarjan, Trojanowski	' 77
$O^*(1.2278^n)$	多項式	Robson	'86
$O^*(1.2109^n)$	指数	Robson	'86
$(O^*(1.1893^n)$	指数	Robson	'01)
$O^*(1.2202^n)$	多項式	Fomin, Grandoni, Kratsch	'09
$O^*(1.1996^n)$	多項式	Xiao, Nagamochi	'17

最初の論文

注:マイルストーンのみ記載

時間	領域		
$O^*(1.2599^n)$	多項式	Tarjan, Trojanowski	' 77
$O^*(1.2278^n)$	多項式	Robson	'86
$O^*(1.2109^n)$	指数	Robson	'86
$(O^*(1.1893^n)$	指数	Robson	'01)
$O^*(1.2202^n)$	多項式	Fomin, Grandoni, Kratsch	'09
$O^*(1.1996^n)$	多項式	Xiao, Nagamochi	'17

現在の 理論上最速

注:マイルストーンのみ記載

時間	領域		
$O^*(1.2599^n)$	多項式	Tarjan, Trojanowski	' 77
$O^*(1.2278^n)$	多項式	Robson	'86
$O^*(1.2109^n)$	指数	Robson	'86
$(O^*(1.1893^n)$	指数	Robson	'01)
$O^*(1.2202^n)$	多項式	Fomin, Grandoni, Kratsch	'09
$O^*(1.1996^n)$	多項式	Xiao, Nagamochi	'17

指数領域による改善(メモ化)

注:マイルストーンのみ記載

時間	領域		
$O^*(1.2599^n)$	多項式	Tarjan, Trojanowski	' 77
$O^*(1.2278^n)$	多項式	Robson	'86
$O^*(1.2109^n)$	指数	Robson	'86
$(O^*(1.1893^n)$	指数	Robson	'01)
$O^*(1.2202^n)$	多項式	Fomin, Grandoni, Kratsch	'09
$O^*(1.1996^n)$	多項式	Xiao, Nagamochi	'17

計算量評価の新たな手法による改善(測度統治法)

次回の予告

第2回以降3回

分枝アルゴリズム (branching algorithm) の設計と解析

第2回(前回)

・分枝アルゴリズムの基礎

第3回(今回)

• 分枝アルゴリズムの改良法

第 4 回 (次回)

• 測度統治法 (measure & conquer) による改良

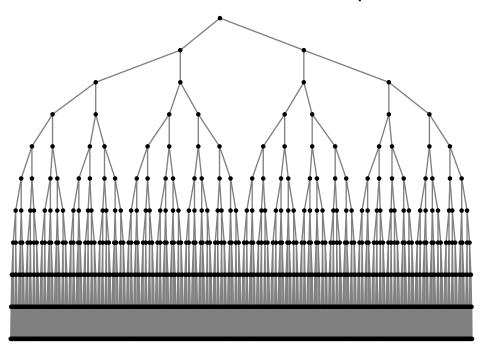
本日の内容

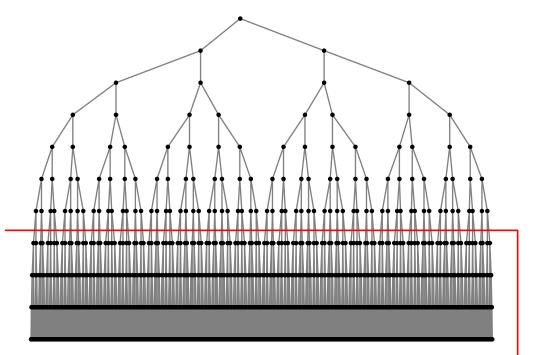
- 1. 分枝アルゴリズムの高速化:前処理
- 2. 分枝アルゴリズムの高速化: 分枝規則の精緻化
- 3. 付録:メモ化(記憶化)

メモ化 (記憶化) の考え方

頂点数が小さい **すべて** のグラフに対する最大独立集合を あらかじめ計算して, 覚えておく

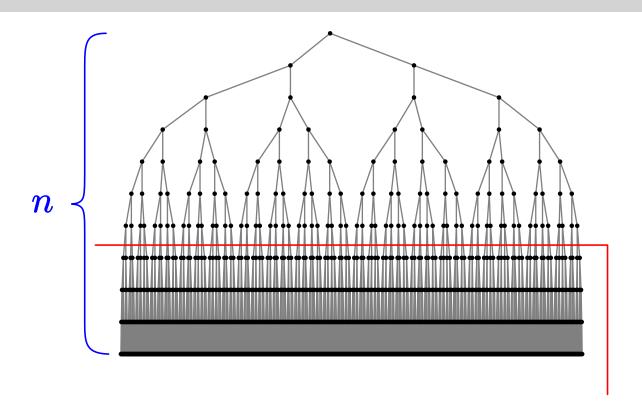
メモ化 = memoization, 記憶化 = memorization

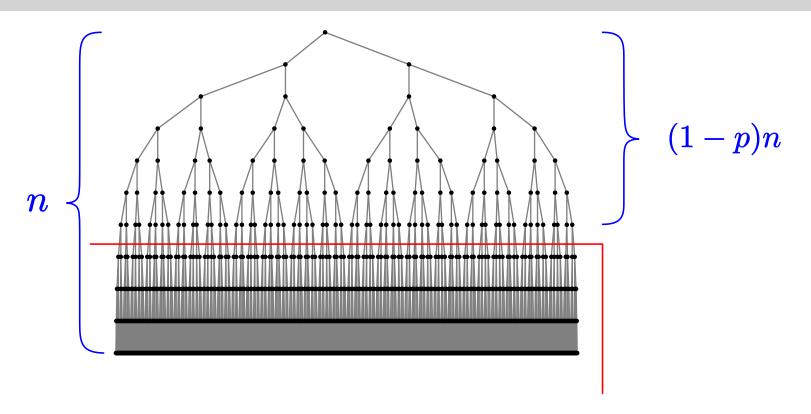




葉の数 $= 2^n$

計算済み ~→ 分枝する必要なし

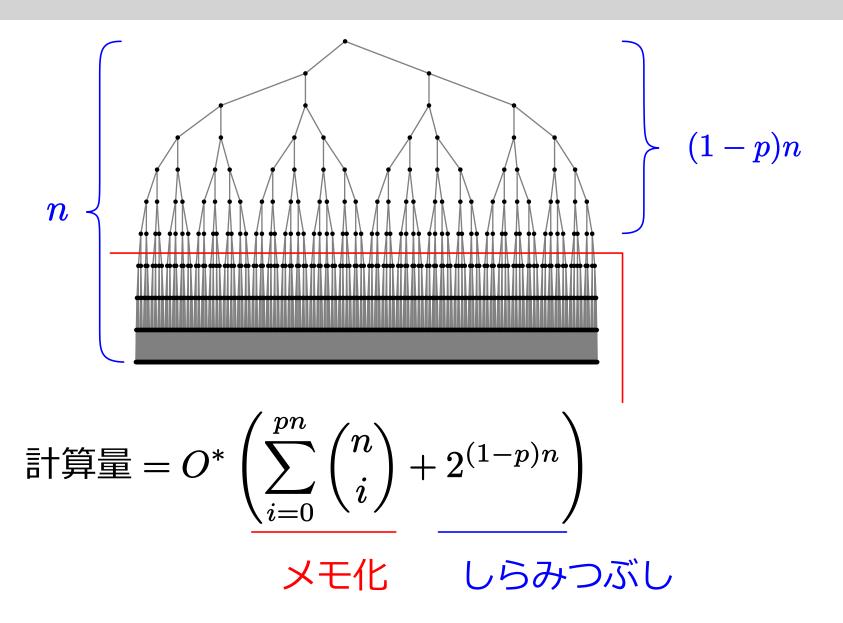




頂点数 pn 以下の部分グラフすべてに対して 覚える

• 頂点数 pn 以下の部分グラフの総数 \leq 要素数 pn 以下の部分集合の総数

$$\leq \sum_{i=0}^{pn} \binom{n}{i}$$
 二項係数 (binomial coefficient)



この2項が釣り合うように, pを定める

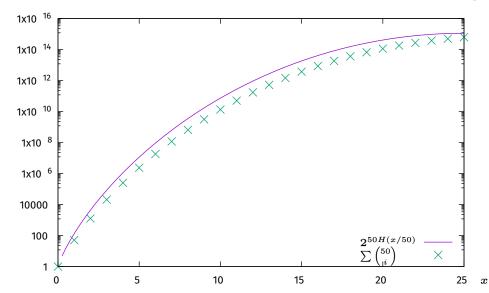
二項係数の和の評価

正整数 n, 実数 $p \in (0, 1/2]$

性質:二項係数の和に対する上界(証明は省略)

$$\sum_{i=0}^{\lfloor pn\rfloor} \binom{n}{i} \le 2^{nH(p)}$$

ただし, $H(p) = -p \log_2 p - (1-p) \log_2 (1-p)$ (二値エントロピー関数,binary entropy function)

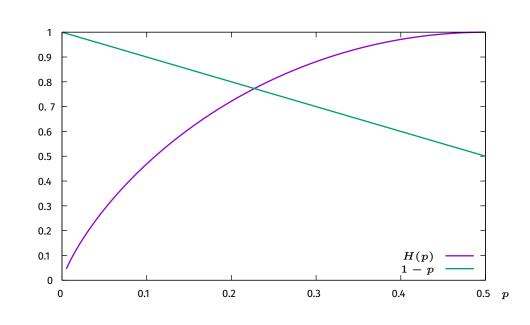


計算量 =
$$O^*$$
 $\left(\sum_{i=0}^{pn} \binom{n}{i} + 2^{(1-p)n}\right)$
= O^* $\left(2^{nH(p)} + 2^{(1-p)n}\right)$

計算量 =
$$O^*$$
 $\left(\sum_{i=0}^{pn} \binom{n}{i} + 2^{(1-p)n}\right)$
= O^* $\left(2^{nH(p)} + 2^{(1-p)n}\right)$

$$H(p) = 1 - p$$

$$\rightarrow$$
 $p=0.22709$



計算量 =
$$O^* \left(\sum_{i=0}^{pn} \binom{n}{i} + 2^{(1-p)n} \right)$$

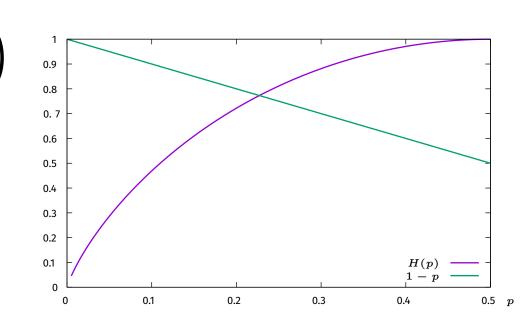
= $O^* \left(2^{nH(p)} + 2^{(1-p)n} \right)$

$$H(p) = 1 - p \qquad \qquad \longrightarrow \qquad p = 0.22709$$

したがって,

計算量 =
$$O^* \left(2^{(1-0.22709)n} \right)$$

= $O^* (1.7087^n)$



計算量 =
$$O^*$$
 $\left(\sum_{i=0}^{pn} \binom{n}{i} + 2^{(1-p)n}\right)$
= O^* $\left(2^{nH(p)} + 2^{(1-p)n}\right)$

$$H(p) = 1 - p \qquad \qquad \longrightarrow \qquad p = 0.22709$$

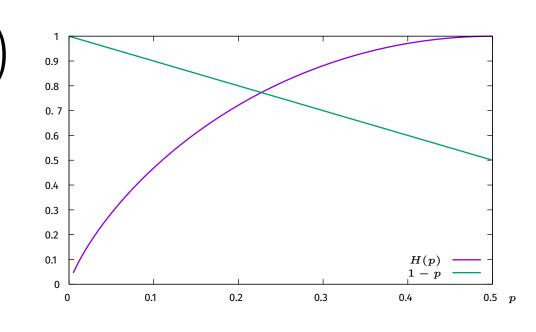
したがって,

計算量 =
$$O^* \left(2^{(1-0.22709)n} \right)$$

= $O^* (1.7087^n)$

領域 =
$$O^* \left(2^{nH(0.22709)} \right)$$

= $O^*(1.7087^n)$



計算量 =
$$O^* \left(2^{nH(p)} + 1.3247^{(1-p)n} \right)$$

= $O^* \left(1.3247^{2.4650nH(p)} + 1.3247^{(1-p)n} \right)$

$$2.4650H(p) = 1 - p$$
 \rightarrow $p = 0.072765$

したがって,

計算量 =
$$O^* \left(1.3247^{(1-0.072765)n} \right) = O^* (1.2978^n)$$

領域 =
$$O^* \left(2^{nH(0.072765)} \right) = O^*(1.2978^n)$$