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2/35[復習]なぜ高次元？

データサイエンスを離散幾何・計算幾何でとらえると

次元 ≈属性の総数

MNISTデータベース (手書き文字認識)

https://commons.wikimedia.org/wiki/File:MNIST_dataset_example.png

R784

28× 28ピクセル



3/35次元削減：例
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4/35今回の目標

今日の目標

• 次元削減の手法として，主成分分析を使える
• 主成分分析と固有値・固有ベクトルを関連付けられる



5/35目次

1. 主成分分析：1次元の場合

2. 主成分分析：2次元以上の場合



6/35次元削減

教訓

アルゴリズムを考えるときは，「入力」と「出力」と

その仕様を明示する

問題：次元削減

入力：点 x1,x2, . . . ,xn ∈ Rd，目標次元 d′ (< d)
出力：点 x′

1,x
′
2, . . . ,x

′
n ∈ Rd′

目標：出力 x′
1,x

′
2, . . . ,x

′
n が入力 x1,x2, . . . ,xn を

うまく説明する

Rd Rd′



7/35アイディア (1)

アイディア (1)

Rd の Rd′
次元アフィン部分空間W へ直交射影を行う

W



8/35アイディア (2)

アイディア (2)
W への距離の二乗の和が最小となるようにする

W



9/35行列を用いた設定

入力：x1,x2, . . . ,xn ∈ Rd 前処理：平均を 0にする
n∑

i=1
xi = 0



9/35行列を用いた設定

入力：x1,x2, . . . ,xn ∈ Rd

行列に変換

X =

xT
1

xT
2

xT
n

d

n

前処理：平均を 0にする
n∑

i=1
xi = 0

1TX = 0T



10/35直線への射影

手始めに：d′ = 1の場合 (直線への射影)を考える

1次元線形空間W

0

x

x′

方向ベクトル u (‖u‖ = 1)

x′ = αuとすると (α ∈ R)
‖x− x′‖2 = ‖x− αu‖2 = (x− αu)T(x− αu)

= ‖x‖2 − 2αxTu+ α2‖u‖2

∴ ‖x− x′‖2 は α = xTuのとき最小値 ‖x‖2 − (xTu)2 をとる



10/35直線への射影

手始めに：d′ = 1の場合 (直線への射影)を考える

1次元線形空間W

0

x

x′

方向ベクトル u (‖u‖ = 1)

x′ = αuとすると (α ∈ R)
‖x− x′‖2 = ‖x− αu‖2 = (x− αu)T(x− αu)

= ‖x‖2 − 2αxTu+ α2‖u‖2

∴ ‖x− x′‖2 は α = xTuのとき最小値 ‖x‖2 − (xTu)2 をとる

xのW への射影 x′ は x′ = (xTu)uで与えられる



11/35最適化問題として考える

考える最適化問題

変数： u ∈ Rd

目的：

n∑
i=1

(‖xi‖2 − (xT
i u)2)の最小化

制約： ‖u‖ = 1



11/35最適化問題として考える

考える最適化問題 (上の問題と等価)
変数： u ∈ Rd

目的：

n∑
i=1

(xT
i u)2 の最大化

制約： ‖u‖ = 1

考える最適化問題

変数： u ∈ Rd

目的：

n∑
i=1

(‖xi‖2 − (xT
i u)2)の最小化

制約： ‖u‖ = 1

‖xi‖2 は入力だけから決まる



11/35最適化問題として考える

考える最適化問題 (上の問題と等価)
変数： u ∈ Rd

目的：

n∑
i=1

(xT
i u)2 の最大化

制約： ‖u‖ = 1

考える最適化問題

変数： u ∈ Rd

目的：

n∑
i=1

(‖xi‖2 − (xT
i u)2)の最小化

制約： ‖u‖ = 1

‖xi‖2 は入力だけから決まる

max
u∈Rd

‖u‖=1

n∑
i=1

(xT
i u)2



12/35最適化問題として考える (続)

max
u∈Rd

‖u‖=1

n∑
i=1

(xT
i u)2 = max

u∈Rd

‖u‖=1

(Xu)T(Xu)

∵ Xu =


xT
1

xT
2
...

xT
n

u =


xT
1 u

xT
2 u
...

xT
nu





12/35最適化問題として考える (続)

max
u∈Rd

‖u‖=1

n∑
i=1

(xT
i u)2 = max

u∈Rd

‖u‖=1

(Xu)T(Xu)

∵ Xu =


xT
1

xT
2
...

xT
n

u =


xT
1 u

xT
2 u
...

xT
nu


= max

u∈Rd

‖u‖=1

uTXTXu



12/35最適化問題として考える (続)

max
u∈Rd

‖u‖=1

n∑
i=1

(xT
i u)2 = max

u∈Rd

‖u‖=1

(Xu)T(Xu)

∵ Xu =


xT
1

xT
2
...

xT
n

u =


xT
1 u

xT
2 u
...

xT
nu


= max

u∈Rd

‖u‖=1

uTXTXu

= max
u∈Rd

‖u‖=1

uTAu (ただし，A = XTX)
注：Aは対称半正定値



13/35[復習]対称正定値行列

定義：対称正定値行列

正則な対称行列M ∈ Rd×d に対して，次は同値

1. ある正則行列 C ∈ Rd×d が存在して，M = CTC
2. M の固有値はすべて正
3. 任意の x ∈ Rd − {0}に対して，xTMx > 0

この性質を持つM を対称正定値行列と呼ぶ



14/35対称半正定値行列

定義：対称半正定値行列

対称行列M ∈ Rd×d に対して，次は同値

1. ある行列 C ∈ Rr×d が存在して，M = CTC
2. M の固有値はすべて非負
3. 任意の x ∈ Rd に対して，xTMx ≥ 0

この性質を持つM を対称半正定値行列と呼ぶ

注：対称半正定値行列は正則であるとは限らない



15/35考える最適化問題

考える最適化問題

入力：実対称半正定値行列 A ∈ Rd×d

出力： max
u∈Rd

‖u‖=1

uTAu



15/35考える最適化問題

考える最適化問題

入力：実対称半正定値行列 A ∈ Rd×d

出力： max
u∈Rd

‖u‖=1

uTAu

性質：最適化と固有値・固有ベクトル

実対称半正定値行列 Aの最大固有値を λ1 ≥ 0として，
λ1 に対応する単位固有ベクトルを v1 とすると

max
u∈Rd

‖u‖=1

uTAu = vT
1 Av1 = λ1

つまり，v1 が最適解で，λ1 が最適値



16/35主成分分析：d′ = 1の場合

次元削減の手法：主成分分析 (直線への射影)
1. x1, . . . ,xn の和が 0となるように平行移動する

2. xT
1 , . . . ,x

T
n を行とする行列X ∈ Rn×d を作る

3. A = XTX を作る

4. Aの最大固有値に対する単位固有ベクトルv1を求める

5. 各 iに対して，xi を xT
i v1 ∈ Rに写す



17/35証明 (1)：最適値 =最大固有値

max
u∈Rd

‖u‖2=1

uTAu ≥ vT
1 Av1 = vT

1 (λ1v1) = λ1(vT
1 v1) = λ1

単位固有ベクトル v1 ∈ Rd は ‖v1‖ = 1を満たすので
証明 (最適値 ≥最大固有値)：



17/35証明 (1)：最適値 =最大固有値

max
u∈Rd

‖u‖2=1

uTAu ≥ vT
1 Av1 = vT

1 (λ1v1) = λ1(vT
1 v1) = λ1

単位固有ベクトル v1 ∈ Rd は ‖v1‖ = 1を満たすので
証明 (最適値 ≥最大固有値)：

証明 (最適値 ≤最大固有値)：
• ‖u‖ = 1を満たす任意のベクトル u ∈ Rd を考える

• Aの固有値を λ1 ≥ λ2 ≥ · · · ≥ λd とし，

{v1,v2, . . . ,vd}が Rd の正規直交基底となるように

λi に対応する固有ベクトル vi をとれる

(注：Aが対称であるとき，これが可能)



18/35証明 (2)：最適値 =最大固有値

• u =
d∑

i=1
αivi とする

証明 (最適値 ≤最大固有値)：

• このとき，1 = ‖u‖2 =

∥∥∥∥∥∑
i

αivi

∥∥∥∥∥
2

=
∑
i

α2
i

∥∥∥∥∥∑
i

αivi

∥∥∥∥∥
2

=
(∑

i

αivi

)T(∑
j

αjvj

)

=
∑
i

∑
j

αiαjv
T
i vj =

∑
i

α2
i

=
{
1 (i = j)
0 (i 6= j)



18/35証明 (2)：最適値 =最大固有値

• u =
d∑

i=1
αivi とする

証明 (最適値 ≤最大固有値)：

• したがって

uTAu =
(

d∑
i=1

αivi

)T

A

(
d∑

j=1
αjvj

)

=
d∑

i=1

d∑
j=1

αiαjv
T
i Avj =

d∑
i=1

d∑
j=1

αiαjλjv
T
i vj

=
d∑

i=1
α2
iλi ≤

d∑
i=1

α2
iλ1 = λ1

• このとき，1 = ‖u‖2 =

∥∥∥∥∥∑
i

αivi

∥∥∥∥∥
2

=
∑
i

α2
i



19/35レイリー商

関連する用語だけ導入する

定義：レイリー商

実対称行列A ∈ Rd×dとベクトル x ∈ Rd−{0}に対する
レイリー商とは，次の比のこと

xTAx

xTx

注：レイリー商は xのスカラー倍に関して不変

つまり，xを cxに変えると (c ∈ R− {0})
(cx)TA(cx)
(cx)T(cx)

= c2(xTAx)
c2(xTx)

= xTAx

xTx



19/35レイリー商

関連する用語だけ導入する

定義：レイリー商

実対称行列A ∈ Rd×dとベクトル x ∈ Rd−{0}に対する
レイリー商とは，次の比のこと

xTAx

xTx

注：レイリー商は xのスカラー倍に関して不変

つまり，xを cxに変えると (c ∈ R− {0})
(cx)TA(cx)
(cx)T(cx)

= c2(xTAx)
c2(xTx)

= xTAx

xTx

したがって， max
x∈Rd−{0}

xTAx

xTx
= Aの最大固有値



20/35レイリー商と最大/最小固有値
いままでの議論を模倣すると，次が分かる

性質：レイリー商と最大/最小固有値
実対称行列 A ∈ Rd×d の最大固有値 λ1，最小固有値 λd

は次を満たす

λ1 = max
x∈Rd−{0}

xTAx

xTx

λd = min
x∈Rd−{0}

xTAx

xTx



21/35目次

1. 主成分分析：1次元の場合

2. 主成分分析：2次元以上の場合



22/35アフィン部分空間への射影

d′ 次元線形空間W

0

x

x′

正規直交基底 {u1,u2, . . . ,ud′}
x′ =

d′∑
j=1

αjuj とすると

‖x− x′‖2 = ‖x−
∑

j αjuj‖2

= ‖x‖2 − 2
∑

j αjx
Tuj +

∑
j α

2
j‖uj‖2

= ‖x‖2 −
∑

j(xTuj)2 (αj = xTuj のとき)



23/35最適化問題として考える

考える最適化問題

変数： u1,u2, . . . ,ud′ ∈ Rd

目的：

n∑
i=1

d′∑
j=1

(‖xi‖2 − (xT
i uj)2)の最小化

制約： ‖uj‖ = 1，uT
j uk = 0 (j 6= k)



23/35最適化問題として考える

考える最適化問題 (上の問題と等価)
変数： u1,u2, . . . ,ud′ ∈ Rd

目的：

n∑
i=1

d′∑
j=1

(xT
i uj)2 の最大化

制約： ‖uj‖ = 1，uT
j uk = 0 (j 6= k)

考える最適化問題

変数： u1,u2, . . . ,ud′ ∈ Rd

目的：

n∑
i=1

d′∑
j=1

(‖xi‖2 − (xT
i uj)2)の最小化

制約： ‖uj‖ = 1，uT
j uk = 0 (j 6= k)

‖xi‖2 は入力だけから決まる



23/35最適化問題として考える

考える最適化問題 (上の問題と等価)
変数： u1,u2, . . . ,ud′ ∈ Rd

目的：

n∑
i=1

d′∑
j=1

(xT
i uj)2 の最大化

制約： ‖uj‖ = 1，uT
j uk = 0 (j 6= k)

考える最適化問題

変数： u1,u2, . . . ,ud′ ∈ Rd

目的：

n∑
i=1

d′∑
j=1

(‖xi‖2 − (xT
i uj)2)の最小化

制約： ‖uj‖ = 1，uT
j uk = 0 (j 6= k)

‖xi‖2 は入力だけから決まる

max
u1,...,ud′∈Rd

‖uj‖=1
uT

j uk=0 (j 6=k)

n∑
i=1

d′∑
j=1

(xT
i uj)2



24/35最適化問題として考える (続)

max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

n∑
i=1

((xT
i u1)2 + (xT

i u2)2)

(ただし，A = XTX)
注：Aは対称半正定値

以下，d′ = 2として，アイディアを説明する

= max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

(uT
1 X

TXu1) + (uT
2 X

TXu2)

= max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

(uT
1 Au1) + (uT

2 Au2)



25/35考える最適化問題

考える最適化問題

入力：実対称半正定値行列 A ∈ Rd×d

出力： max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

(uT
1 Au1) + (uT

2 Au2)



25/35考える最適化問題

考える最適化問題

入力：実対称半正定値行列 A ∈ Rd×d

出力： max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

(uT
1 Au1) + (uT

2 Au2)

性質：最適化と固有値・固有ベクトル

Aの最大・第 2最大固有値を λ1, λ2 ≥ 0として，
λ1, λ2 に対応する単位固有ベクトルを v1,v2 とすると
(ただし，vT

1 v2 = 0)

max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

(uT
1 Au1) + (uT

2 Au2) = vT
1 Av1 + vT

2 Av2

= λ1 + λ2



26/35主成分分析：d′ = 2の場合
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次元削減の手法：主成分分析 (平面への射影)
1. x1, . . . ,xn の和が 0となるように平行移動する

2. xT
1 , . . . ,x

T
n を行とする行列X ∈ Rn×d を作る

3. A = XTX を作る

4. Aの最大固有値，第 2最大固有値に対する単位固有
ベクトル v1,v2を求める (ただし，vT

1 v2 = 0とする)

5. 各 iに対して，xi を (xT
i v1,x

T
i v2) ∈ R2 に写す

d′ > 2の場合も同様
(第 d′ 最大固有値まで考える)



27/35証明 (1)：最適値 = λ1 + λ2

max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

(uT
1 Au1) + (uT

2 Au2) ≥ vT
1 Av1 + vT

2 Av2 = λ1 + λ2

単位固有ベクトル v1,v2 ∈ Rd を

証明 (最適値 ≥ λ1 + λ2)：

以下，証明は発展的内容

‖v1‖, ‖v2‖ = 1と vT
1 v2 = 0を満たすようにとると，

復習

実対称行列X ∈ Rd×d の異なる固有値に対応する

固有ベクトルは直交する



28/35証明 (2)：最適値 = λ1 + λ2

証明 (最適値 ≤ λ1 + λ2)：
• Aは次のように対角化できる

A =

v1 · · · vd


λ1

. . .
λd


 vT

1
...
vT
d



ただし，v1, . . . ,vd は Aの固有ベクトルで
V V T = V TV = Ed

V D V T



28/35証明 (2)：最適値 = λ1 + λ2

証明 (最適値 ≤ λ1 + λ2)：
• Aは次のように対角化できる

A =

v1 · · · vd


λ1

. . .
λd


 vT

1
...
vT
d



ただし，v1, . . . ,vd は Aの固有ベクトルで
V V T = V TV = Ed

V D V T

• 行列 U ∈ Rd×2 を次のように定義する

U =
[
u1 u2

]
‖uj‖ = 1，uT

1 u2 = 0のとき，UTU = E2



29/35証明 (3)：最適値 = λ1 + λ2

• このとき，

UTAU =
[
uT
1

uT
2

]
A
[
u1 u2

]
=
[
uT
1

uT
2

] [
Au1 Au2

]
=
[
uT
1 Au1 uT

1 Au2
uT
2 Au1 uT

2 Au2

]
• したがって，uT

1 Au1 + uT
2 Au2 = tr(UTAU)

定義：トレイス，跡

実対称行列X ∈ Rd×d のトレイスとは，

tr(X) =
d∑

i=1
xii



30/35証明 (4)：最適値 = λ1 + λ2

• すでに導入した記法と性質を使うと

tr(UTAU) = tr(UTV DV TU)
= tr(ZTDZ) (ただし，Z = V TU ∈ Rd×2)

=
d∑

i=1
λi(z2i1 + z2i2)



30/35証明 (4)：最適値 = λ1 + λ2

• すでに導入した記法と性質を使うと

tr(UTAU) = tr(UTV DV TU)
= tr(ZTDZ) (ただし，Z = V TU ∈ Rd×2)

=
d∑

i=1
λi(z2i1 + z2i2)

• ここで，ZTZ = UTV V TU = UTU = E2

特に，tr(ZTZ) = tr(I2) = 2なので，
d∑

i=1
(z2i1 + z2i2) = 2
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補題

いまの設定で，0 ≤ z2i1 + z2i2 ≤ 1
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補題

いまの設定で，0 ≤ z2i1 + z2i2 ≤ 1

補題の証明：z2i1 + z2i2 は ZZT の第 i, i成分

• ZZT = V TUUTV
• P = UUT は次を満たす
– PT = P
– P 2 = P
(∵ P 2 = (UUT)(UUT) = U(UTU)UT = UUT = P )

• したがって，P の固有値は 0か 1
(∵ P の固有値 αに対応する固有ベクトルを zとすると，
αz = Pz = P 2z = P (αz) = α2zで，α = α2)
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• ZZT = V TUUTV = V TPV
• ∴ ZZT の固有値も 0か 1
(∵ det(ZZT − λE) = det(V TPV − λV TV )

= det(V T) det(P − λE) det(V )
= det(P − λE))

• ∴任意のベクトル x ∈ Rd (ただし，‖x‖ = 1)に対して

0 ≤ xT(ZZT)x ≤ 1

• x = ei (第 i基本ベクトル)とすると，

0 ≤ ZZT の第 i, i成分 ≤ 1

• したがって，
0 ≤ z2i1 + z2i2 ≤ 1
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• いままでの議論から次が成り立つ

max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

(uT
1 Au1) + (uT

2 Au2)

≤ max
Z∈Rd×2

{∑
i

λi(z2i1 + z2i2)

∣∣∣∣∣ 0 ≤ z2i1 + z2i2 ≤ 1 ∀ i,∑
i(z2i1 + z2i2) = 2

}



33/35証明 (7)：最適値 = λ1 + λ2

• いままでの議論から次が成り立つ

max
u1,u2∈Rd

‖uj‖=1
uT

1 u2=0

(uT
1 Au1) + (uT

2 Au2)

≤ max
Z∈Rd×2

{∑
i

λi(z2i1 + z2i2)

∣∣∣∣∣ 0 ≤ z2i1 + z2i2 ≤ 1 ∀ i,∑
i(z2i1 + z2i2) = 2

}

= λ1 + λ2

z211 + z212 = 1, z221 + z222 = 1
z2i1 + z2i2 = 0 (i 6= 1, 2)



34/35レイリー商と第 2最大固有値

性質：レイリー商と第 2最大固有値
実対称行列A ∈ Rd×dの第 2最大固有値 λ2は次を満たす

λ2 = max
x∈Rd−{0}
vT
1 x=0

xTAx

xTx

ただし，v1 は最大固有値に対応する固有ベクトル

証明：演習問題



35/35まとめ

今日の目標

• 次元削減の手法として，主成分分析を使える
• 主成分分析と固有値・固有ベクトルを関連付けられる

主成分分析のまとめ

1. データを行列X ∈ Rn×d で表す (平均は 0にする)
2. XTX の固有値・固有ベクトルを求める
3. 大きい方から順に固有値・固有ベクトルを持ってくる
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