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2/40今回の目標

今日の目標

凸集合に関する用語を正しく使えるようになる

• 楕円体
• 凸結合と凸包
• 凸多面集合と凸多面体



3/40[復習]凸集合
X ⊆ Rd

定義：凸集合

X が凸集合であるとは，次を満たすこと
x1,x2 ∈ X , λ ∈ [0, 1] ⇒ λx1 + (1− λ)x2 ∈ X

直感：2点 ∈ X ⇒その 2点を結ぶ線分 ⊆ X

凸集合である 凸集合ではない

注：凹集合とは言わない
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4/40[復習]凸集合の例
• アフィン部分空間
– {x ∈ Rd | Ax = b} (A ∈ Rm×d, b ∈ Rd)

• 半空間
– {x ∈ Rd | aTx ≤ b} (a ∈ Rd, b ∈ R)

• 球体

–

x ∈ Rd

∣∣∣∣∣∣
√√√√ d∑

i=1
x2
i ≤ 1





5/40[復習]凸集合の共通部分
X,Y ⊆ Rd

性質：凸集合の共通部分は凸集合

X,Y が凸集合⇒ X ∩ Y は凸集合

注意：X,Y が凸集合でも，X ∪ Y が凸集合とは限らない

Y

X



6/40目次

1. アフィン変換と楕円体

2. アフィン結合と凸結合

3. 凸多面集合と凸多面体



7/40アフィン変換，アフィン像

定義：アフィン変換

アフィン変換とは次のように書ける写像 (変換)

x ∈ Rd 7→ Ax+ b ∈ Rd

ここで，A ∈ Rd×d, b ∈ Rd

例：d = 2
[
x1
x2

]
7→

[
2 1
−1 1

] [
x1
x2

]
+

[
−1
1

]



7/40アフィン変換，アフィン像

定義：アフィン変換

アフィン変換とは次のように書ける写像 (変換)

x ∈ Rd 7→ Ax+ b ∈ Rd

ここで，A ∈ Rd×d, b ∈ Rd

例：d = 2
[
x1
x2

]
7→

[
2 1
−1 1

] [
x1
x2

]
+

[
−1
1

]
定義：アフィン像

アフィン変換による像をアフィン像と呼ぶ



8/40凸集合のアフィン像は凸集合

性質：凸集合のアフィン像は凸集合

X ⊆ Rd が凸集合⇒次のX ′ は凸集合

X ′ = {Ax+ b ∈ Rd | x ∈ X}

ただし，A ∈ Rd×d, b ∈ Rd

証明：x1,x2 ∈ X，λ ∈ [0, 1]とする
• 示すこと：λ(Ax1 + b) + (1− λ)(Ax2 + b) ∈ X ′

• λ(Ax1 + b) + (1− λ)(Ax2 + b)
= A(λx1 + (1− λ)x2) + b

∈ X ′ ∈ X



9/40楕円体

定義：楕円体

楕円体とは，球体の正則行列によるアフィン像

例：d = 3

A =

1 −2 3
0 1 −2
0 0 1


b =

00
0





10/40楕円体の記述法

B =
{
x ∈ Rd

∣∣∣∣∣
d∑

i=1
x2
i ≤ 1

}
，正則行列 A ∈ Rd×d に対して

B′ =
{
Ax ∈ Rd | x ∈ B

}
とすると，B′ は楕円体

y ∈ B′ ⇔ A−1y ∈ B

xTx

⇔ (A−1y)T(A−1y) ≤ 1
⇔ yT(A−1)TA−1y ≤ 1

∴ B′ =
{
y ∈ Rd | yT(A−1)TA−1y ≤ 1

}



10/40楕円体の記述法

B =
{
x ∈ Rd

∣∣∣∣∣
d∑

i=1
x2
i ≤ 1

}
，正則行列 A ∈ Rd×d に対して

B′ =
{
Ax ∈ Rd | x ∈ B

}
とすると，B′ は楕円体

y ∈ B′ ⇔ A−1y ∈ B

xTx

⇔ (A−1y)T(A−1y) ≤ 1
⇔ yT(A−1)TA−1y ≤ 1

∴ B′ =
{
y ∈ Rd | yT(A−1)TA−1y ≤ 1

}
この行列の性質は？



11/40対称正定値行列

定義：対称正定値行列

正則な対称行列M ∈ Rd×d に対して，次は同値

1. ある正則行列 C ∈ Rd×d が存在して，M = CTC
2. M の固有値はすべて正
3. 任意の x ∈ Rd − {0}に対して，xTMx > 0

この性質を持つM を対称正定値行列と呼ぶ

証明 (1)⇒ (3)：M = CTC，x 6= 0とする

• xTMx = xTCTCx = (Cx)T(Cx) ≥ 0
• ここで，(Cx)T(Cx) = 0 ⇔ Cx = 0 ⇔ x = 0
• ∴ xTMx > 0



12/40対称正定値行列 (続)

定義：対称正定値行列

正則な対称行列M ∈ Rd×d に対して，次は同値

1. ある正則行列 C ∈ Rd×d が存在して，M = CTC
2. M の固有値はすべて正
3. 任意の x ∈ Rd − {0}に対して，xTMx > 0

この性質を持つM を対称正定値行列と呼ぶ

証明 (3)⇒ (2)：Mv = λv, v 6= 0とする

• 0 < vTMv = vT(λv) = λvTv
• vTv ≥ 0なので，λ > 0



13/40実対称行列は直交行列で対角化可能

(2)⇒(1)の証明に，次の性質を用いる

定義：直交行列

A ∈ Rd×d が直交行列であるとは，

ATA = AAT = E (単位行列)であること

性質：実対称行列は直交行列で対角化可能

A ∈ Rd×d が対称行列⇒
∃直交行列 P ∈ Rd×d と対角行列D ∈ Rd×d

A = PDPT

ここで，Dの対角成分は Aの固有値にできる

証明：演習問題



14/40対称正定値行列 (続 2)

定義：対称正定値行列

正則な対称行列M ∈ Rd×d に対して，次は同値

1. ある正則行列 C ∈ Rd×d が存在して，M = CTC
2. M の固有値はすべて正
3. 任意の x ∈ Rd − {0}に対して，xTMx > 0

この性質を持つM を対称正定値行列と呼ぶ

証明 (2)⇒ (1)：M の固有値を λ1, . . . , λd > 0とする
• M は対称なので，ある直交行列 P と λ1, . . . , λd を

対角成分とする対角行列DでM = PDPT と書ける
• F を対角成分が

√
λ1, . . . ,

√
λd の対角行列とすると，

D = FFT

• ∴ M = P (FFT)PT = (PF )(PF )T



15/40楕円体の別の記述

いままでの議論をまとめると，次が得られる

性質：楕円体の記述法

任意の楕円体は，対称正定値行列M ∈ Rd×d と

ベクトル c ∈ Rd を使って次のように書ける

{x ∈ Rd | (x− c)TM(x− c) ≤ 1}

A =

1 −2 3
0 1 −2
0 0 1


⇒ M = (A−1)TA−1

=

1 2 1
2 5 4
1 4 6





16/40楕円体：まとめ

楕円体の表現

• 球体のアフィン像として (A ∈ Rd×d, b ∈ Rd)
{Ax+ b | xTx ≤ 1}

• 対称正定値行列による (M ∈ Rd×d 対称正定値)
{x | (x− c)TM(x− c) ≤ 1}

性質 ：楕円体は凸集合



17/40目次

1. アフィン変換と楕円体

2. アフィン結合と凸結合

3. 凸多面集合と凸多面体



18/40[復習]アフィン結合
点 p1,p2, . . . ,pm ∈ Rd

定義：アフィン結合

p1,p2, . . . ,pm のアフィン結合とは，

線形結合

m∑
i=1

λipi で，

m∑
i=1

λi = 1を満たすもののこと

⇔
[
x
1

]
∈ Rd+1 が

[
p1
1

]
, . . . ,

[
pm

1

]
の線形結合

性質：x ∈ Rd が p1, . . . ,pm のアフィン結合

例：d = 2のとき
p1

p2



19/40[復習]アフィン包
点の集合 P = {p1,p2, . . . ,pm} ⊆ Rd

定義：アフィン包

P のアフィン包とは，次の集合

aff(P ) =


m∑
i=1

λipi

∣∣∣∣∣∣∣
λi ∈ R, i ∈ {1, 2, . . . ,m},
m∑
i=1

λi = 1


P の張るアフィン部分空間とも言う

重要な性質：アフィン包はアフィン部分空間

直感：アフィン包はアフィン結合全体の集合



20/40[復習]アフィン包：有限集合でない場合
点の集合 P ⊆ Rd

定義：アフィン包

P のアフィン包とは，次の集合

aff(P ) =


d+1∑
i=1

λipi

∣∣∣∣∣∣∣
pi ∈ P, λi ∈ R, i ∈ {1, . . . , d+ 1},
d+1∑
i=1

λi = 1





21/40アフィン独立・アフィン従属

点 p1,p2, . . . ,pm ∈ Rd

定義：アフィン独立・アフィン従属

p1,p2, . . . ,pm がアフィン独立であるとは，

m∑
i=1

λipi = 0

m∑
i=1

λi = 0
⇒ λ1, . . . , λm = 0

p1,p2, . . . ,pm がアフィン従属であるとは，

p1,p2, . . . ,pm がアフィン独立でないこと



22/40アフィン独立：例

例：p1 =

12
1

 ,p2 =

−2
0
2

 ,p3 =

12
4

 ,p4 =

 0
−1
2

は
アフィン独立

アフィン独立：

m∑
i=1

λipi = 0,
m∑
i=1

λi = 0 ⇒ λi = 0 ∀ i
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アフィン独立：

m∑
i=1

λipi = 0,
m∑
i=1

λi = 0 ⇒ λi = 0 ∀ i

証明：

1 −2 1 0
2 0 2 −1
1 2 4 2
1 1 1 1



λ1
λ2
λ3
λ4

 =


0
0
0
0





23/40アフィン独立：例 (続)

アフィン独立：

m∑
i=1

λipi = 0,
m∑
i=1

λi = 0 ⇒ λi = 0 ∀ i

証明：
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1 −2 1 0
2 0 2 −1
1 2 4 2
1 1 1 1



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23/40アフィン独立：例 (続)

アフィン独立：

m∑
i=1

λipi = 0,
m∑
i=1

λi = 0 ⇒ λi = 0 ∀ i

証明：

1 −2 1 0
2 0 2 −1
1 2 4 2
1 1 1 1



λ1
λ2
λ3
λ4

 =


0
0
0
0



行基本変形=⇒


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



λ1
λ2
λ3
λ4

 =


0
0
0
0





23/40アフィン独立：例 (続)

アフィン独立：

m∑
i=1

λipi = 0,
m∑
i=1

λi = 0 ⇒ λi = 0 ∀ i

証明：

1 −2 1 0
2 0 2 −1
1 2 4 2
1 1 1 1



λ1
λ2
λ3
λ4

 =


0
0
0
0



行基本変形=⇒


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



λ1
λ2
λ3
λ4

 =


0
0
0
0


=⇒ λ1 = λ2 = λ3 = λ4 = 0



24/40アフィン独立な点の最大数

性質：アフィン独立性と線形独立性

p1,p2, . . . ,pm ∈ Rd がアフィン独立⇔[
p1
1

]
,

[
p2
1

]
, . . . ,

[
pm

1

]
∈ Rd+1 が線形独立

この性質から次の性質がただちに導かれる

性質：アフィン独立な点の最大数

p1,p2, . . . ,pm ∈ Rd がアフィン独立

⇒ m ≤ d+ 1



25/40アフィン従属な点

超平面 {x ∈ Rd | aTx = b}上の
d+ 1点 p1,p2, . . . ,pd+1 はアフィン従属

(a 6= 0)



25/40アフィン従属な点

超平面 {x ∈ Rd | aTx = b}上の
d+ 1点 p1,p2, . . . ,pd+1 はアフィン従属


| | · · · |
p1 p2 · · · pd+1
| | · · · |
1 1 · · · 1




λ1
λ2
...

λd+1

 =


0
0
...
0


= A

証明：

(a 6= 0)



25/40アフィン従属な点

超平面 {x ∈ Rd | aTx = b}上の
d+ 1点 p1,p2, . . . ,pd+1 はアフィン従属


| | · · · |
p1 p2 · · · pd+1
| | · · · |
1 1 · · · 1




λ1
λ2
...

λd+1

 =


0
0
...
0


[
aT −b

]
A =

[
aTp1 − b · · · aTpd+1 − b

]
=

[
0 · · · 0

]= A

∴ rank(A) < d+ 1

証明：

(a 6= 0)



26/40凸結合

点 p1,p2, . . . ,pm ∈ Rd

定義：凸結合

p1,p2, . . . ,pm の凸結合とは，

線形結合

m∑
i=1

λipi で，

m∑
i=1

λi = 1と λi ≥ 0 ∀ iを

満たすもののこと

例：d = 2のとき
p1

p2



27/40凸包

点の集合 P = {p1,p2, . . . ,pm} ⊆ Rd

定義：凸包

P の凸包とは，次の集合

CH(P ) =


m∑
i=1

λipi

∣∣∣∣∣∣∣
λi ≥ 0, i ∈ {1, 2, . . . ,m},
m∑
i=1

λi = 1


性質：CH(P )は凸集合



28/40凸包：有限集合でない場合

点の集合 P ⊆ Rd

定義：凸包

P の凸包とは，次の集合

CH(P ) =


d+1∑
i=1

λipi

∣∣∣∣∣∣∣
pi ∈ P, λi ≥ 0, i ∈ {1, . . . , d+ 1},
d+1∑
i=1

λi = 1



CH(P )P



29/40カラテオドリの定理

性質：カラテオドリの定理

点 p ∈ Rd が p1, . . . ,pm ∈ Rd の凸結合

⇒ d+ 1個の添え字 i1, . . . , id+1 が存在して
pは pi1 , . . . ,pid+1 の凸結合



30/40カラテオドリの定理：証明

証明：p =
m∑
i=1

λipi とする (ただし，
m∑
i=1

λi = 1, λi ≥ 0 (∀ i))

方針

m > d+ 1のとき，ある係数を 0にできる



30/40カラテオドリの定理：証明

証明：p =
m∑
i=1

λipi とする (ただし，
m∑
i=1

λi = 1, λi ≥ 0 (∀ i))

• m ≥ d+ 2で，λi > 0 (∀ i)とする
• p1, . . . ,pm はアフィン従属なので，すべてが 0ではない
実数 µi で次を満たすものが存在する

m∑
i=1

µipi = 0
m∑
i=1

µi = 0

• このとき，任意の実数 αに対して，

p =
m∑
i=1

λipi − α
m∑
i=1

µipi =
m∑
i=1

(λi − αµi)pi

ある項は正で，

ある項は負



31/40カラテオドリの定理：証明 (続)
• このとき，任意の実数 αに対して，

p =
m∑
i=1

λipi − α
m∑
i=1

µipi =
m∑
i=1

(λi − αµi)pi



31/40カラテオドリの定理：証明 (続)
• このとき，任意の実数 αに対して，

p =
m∑
i=1

λipi − α
m∑
i=1

µipi =
m∑
i=1

(λi − αµi)pi

• α∗ = min
{
λi

µi
| i ∈ {1, . . . ,m}, µi > 0

}
として，

その最小値を与える添え字を i∗ とすると

– λi∗ − α∗µi∗ = λi∗ − λi∗

µi∗
µi∗ = 0

– λi − α∗µi = λi −
λi∗

µi∗
µi ≥ 0

–
∑
i

(λi − α∗µi) =
∑
i

λi − α∗
∑
i

µi = 1− α∗ · 0 = 1

= 1 = 0



32/40カラテオドリの定理：証明 (続 2)
• つまり，pは p1, . . . ,pm の中の

m− 1個の点の凸結合として書ける

• これを繰り返すと，pが p1 . . . ,pm の中の

d+ 1個の点の凸結合として書ける



33/40目次

1. アフィン変換と楕円体

2. アフィン結合と凸結合

3. 凸多面集合と凸多面体



34/40凸多面集合

定義：凸多面集合

凸多面集合とは，有限個の閉半空間の共通部分

凸多面集合の次元とは，そのアフィン包の次元



35/40凸多面体

定義：凸多面体

凸多面体とは，有限点集合の凸包

凸多面体の次元とは，そのアフィン包の次元



36/40凸多面集合と凸多面体

性質 (ここでは証明しないが，重要)
1. 凸多面体は有界な凸多面集合
2. 有界な凸多面集合は凸多面体

つまり，凸多面体は次の 2つの記述法を持つ

• 頂点記述：有限点集合の凸包
• 超平面記述：有限個の閉半空間の共通部分



37/40凸多面体の例：立方体

定義：立方体

d次元立方体とは，次で定義される凸多面体
• 頂点記述：

CH(
{∑d

i=1(−1)siei | si ∈ {0, 1}
}
)

(ei は基本ベクトル)
• 超平面記述：{

x ∈ Rd | −1 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , d}
}



38/40凸多面体の例：十字多面体

定義：十字多面体

d次元十字多面体とは，次で定義される凸多面体
• 頂点記述：

CH({±ei | i ∈ {1, . . . , d}})
• 超平面記述：{

x ∈ Rd

∣∣∣∣∣
d∑

i=1
(−1)sixi ≤ 1 ∀ si ∈ {0, 1}

}



39/40凸多面体の例：単体

定義：単体

d次元単体とは，
d+ 1個のアフィン独立な点の集合の凸包

次元 0 1 2 3

三角形 四面体線分



40/40まとめ

今日の目標

凸集合に関する用語を正しく使えるようになる

• 楕円体
• 凸結合と凸包
• 凸多面集合と凸多面体
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