提出締切: 2025年11月4日午前9:00

授業内問題 2.1 以下の問いに答えよ.

- 1. 平面上の異なる 3 点 p_1, p_2, p_3 が y 軸と平行ではない 1 直線上にあるとき,そのときに限り,それらの双対 p_1^*, p_2^*, p_3^* が 1 点で交わることを証明せよ.
- 2. 平面上で、y 軸と平行ではない異なる 3 直線 ℓ_1, ℓ_2, ℓ_3 が 1 点で交わるとき、そのときに限り、それらの双 対 $\ell_1^*, \ell_2^*, \ell_3^*$ が 1 直線上にあることを証明せよ.

復習問題 2.2

- 1. 平面上の点 p に対して、その双対の双対 p^{**} が p に 等しいことを証明せよ.
- 2. 平面上で y 軸に平行ではない直線 ℓ に対して,その 双対の双対 ℓ^{**} が ℓ に等しいことを証明せよ.

復習問題 2.3 平面上の点 p と y 軸に平行ではない直線 ℓ を考える.

- 1. 点 p が直線 ℓ の上にあるとき、そのときに限り、点 ℓ^* が直線 p^* の上にあることを証明せよ.
- 2. 点 p が直線 ℓ の上側にあるとき、そのときに限り、点 ℓ^* が直線 p^* の上側にあることを証明せよ.

復習問題 2.4 平面上の有限点集合 $V = \{p_1, p_2, \dots, p_n\} \subseteq \mathbb{R}^2$ に対して、

$$A = \left\{ \sum_{i=1}^{n} \lambda_i p_i \middle| \begin{array}{l} \lambda_i \in \mathbb{R}, \lambda_i \ge 0 & (i \in \{1, 2, \dots, n\}), \\ \sum_{i=1}^{n} \lambda_i = 1 \end{array} \right\}$$

 $B = \bigcap \{ \text{ \mathbb{R}}^2 \mid p_1, p_2, \dots, p_n \in h \}$

とする. このとき, $A \subseteq B$ が成り立つことを証明せよ.

補足問題 2.5 演習問題 2.4 の記法のもとで, $B \subseteq A$ が成り立つことを証明せよ.

補足問題 2.6 平面上の点の集合 $P = \{p_1, p_2, \ldots, p_n\}$ において,どの 2 点の x 座標も異なるとする.点 $p_1 \in P$ が P の上側凸包の内点であるとき,そのときに限り, p_1^* が直線配置 $P^* = \{p_1^*, p_2^*, \ldots, p_n^*\}$ の下側エンベロープに現れないことを証明せよ.(注:授業では直感的に説明を行っているが,この問題では定義に基づいて証明を行うこと.)

追加問題 2.7 n 個の異なる直線からなる直線配置 A を考える. ただし, $n \ge 1$ であるとする

- 1. 直線配置 A の頂点の数が必ず $(n^2 n)/2$ 以下であることを証明せよ.
- 2. 直線配置 A のセルの数が必ず $(n^2 + n + 2)/2$ 以下であることを証明せよ.

追加問題 2.8 平面上の異なる 4 点 p_1, p_2, p_3, p_4 を考える. ただし, これらの x 座標はすべて異なるものとする. このとき, 線分 $\overline{p_1p_2}$ と線分 $\overline{p_3p_4}$ が交わることは双対 $p_1^*, p_2^*, p_3^*, p_4^*$ を使ってどのように表せるだろうか. その方法を記述せよ.