離散最適化基礎論

第12回

ラグランジュ緩和(1):原理

岡本 吉央 (電気通信大学)

okamotoy@uec.ac.jp

2023年1月10日

最終更新: 2023年1月10日 10:08

く準備>

1.	整数計画法と線形計画法	(10/4)
2.	線形計画法の復習(1):線形不等式系と凸多面集合	(10/11)

* 休み (体育祭) (10/18)

3. 線形計画法の復習 (2): 単体法と双対定理 (10/25)

4. 線形計画緩和 (11/1)

くモデリング>

5.	整数計画モデリング (1):組合せ最適化問題	(11/8)
----	------------------------	--------

6. 整数計画モデリング(2):より複雑な問題 (11/15)

7. 整数計画モデリング(3): 離接計画 (11/22)

講義計画(後半)

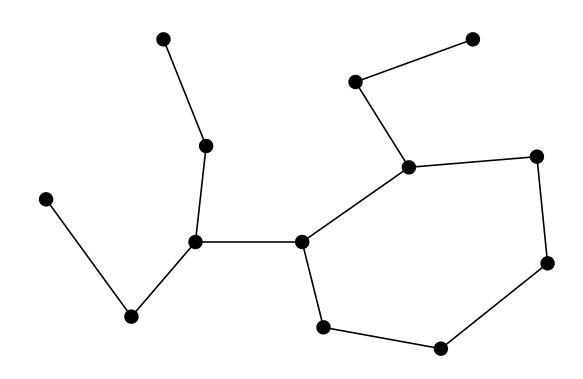
くアルゴリズム>	
8. 分枝限定法	(11/29)
9. 切除平面法	(12/6)
10. 妥当不等式の追加	(12/13)
11. 列生成法	(12/20)
* 休み (国内出張)	(12/27)
* 休み (冬季休業)	(1/3)
12. ラグランジュ緩和 (1):原理	(1/10)
13. ラグランジュ緩和 (2):最適ラグランジュ緩和	(1/17)
14. 前求解	(1/24)

くまとめ>

15. 期末試験 (1/31)

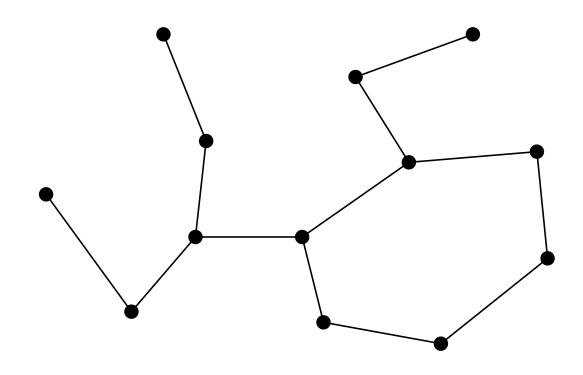
今日の内容

- ラグランジュ緩和:例
- ラグランジュ緩和:一般論
- ・巡回セールスマン問題と 1-木
- 線形計画問題と最強ラグランジュ緩和



今日の内容

- ラグランジュ緩和:例
- ラグランジュ緩和:一般論
- ・巡回セールスマン問題と 1-木
- 線形計画問題と最強ラグランジュ緩和

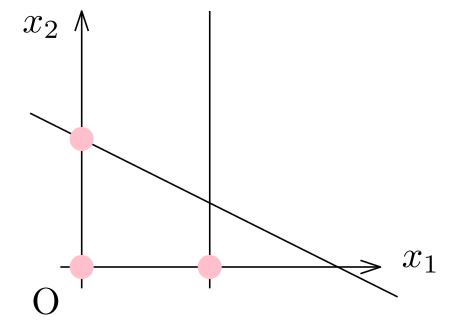


線形計画緩和:例

整数計画問題 P

min.
$$2x_1 - 3x_2$$

s.t. $x_1 + 2x_2 \le 2$, $x_1 \le 1$, $x_1 \ge 0$, $x_2 \ge 0$, $x_1 \ge 0$, $x_2 \ge 0$, $x_1 \le 2$



線形計画緩和:例

整数計画問題 P

緩和

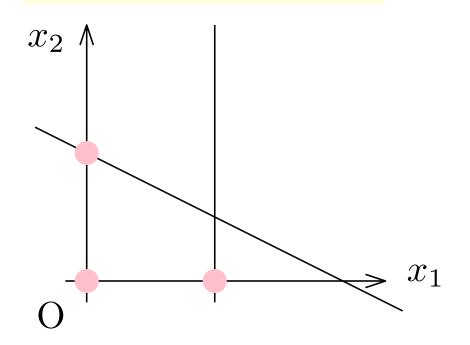
線形計画緩和 R

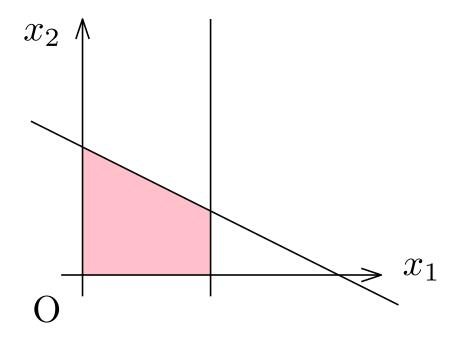
min.
$$2x_1 - 3x_2$$

s.t.
$$x_1 + 2x_2 \le 2$$
,
 $x_1 \le 1$,
 $x_1 \ge 0$,
 $x_2 \ge 0$,
 $x_1, x_2 \in \mathbb{Z}$

min.
$$2x_1 - 3x_2$$

s.t.
$$x_1 + 2x_2 \le 2$$
,
 $x_1 \le 1$,
 $x_1 \ge 0$,
 $x_2 \ge 0$





緩和問題に求められる性質

整数計画問題 P

緩和

線形計画緩和 R

min.
$$2x_1 - 3x_2$$

s.t. $x_1 + 2x_2 \le 2$, $x_1 \le 1$, $x_1 \ge 0$, $x_2 \ge 0$, $x_1, x_2 \in \mathbb{Z}$

min.
$$2x_1 - 3x_2$$

s.t. $x_1 + 2x_2 \le 2$,
 $x_1 \le 1$,
 $x_1 \ge 0$,
 $x_2 \ge 0$

緩和問題に求められる性質

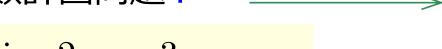
- ・解きたい問題 P の許容領域 ⊂ 緩和問題の許容領域
- ・解きたい問題 P の最適値 > 緩和問題の最適値
- ・解きたい問題 P よりも 緩和問題の方が解きやすい

ラグランジュ緩和:例

整数計画問題 P

min. $2x_1 - 3x_2$

s.t.
$$x_1 + 2x_2 \le 2$$
, $x_1 \le 1$, $x_1 \ge 0$, $x_2 \ge 0$, $x_1, x_2 \in \mathbb{Z}$



 \rightarrow ラグランジュ緩和 $\mathbf{L}(\lambda)$

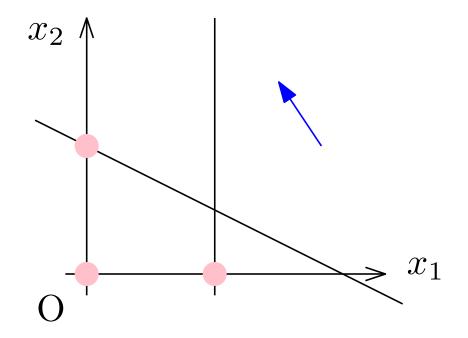
min.
$$2x_1 - 3x_2 + \lambda(x_1 - 1)$$

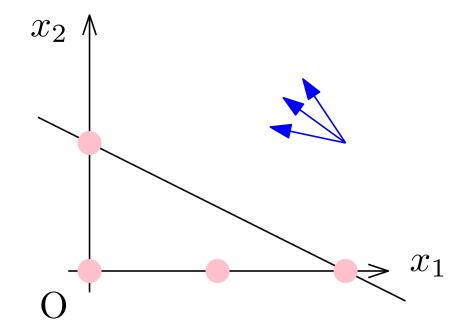
s.t.
$$x_1 + 2x_2 \le 2$$
,

$$x_1 \ge 0,$$

$$x_2 \ge 0,$$

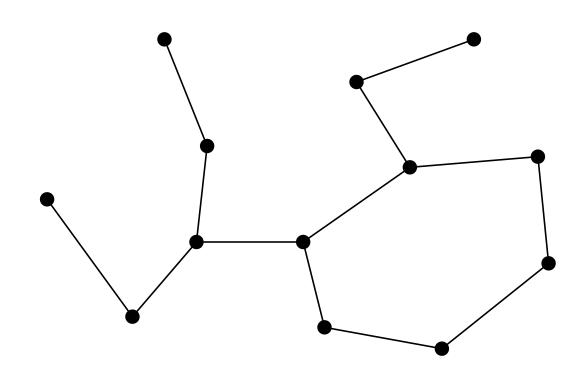
$$x_1, x_2 \in \mathbb{Z}$$





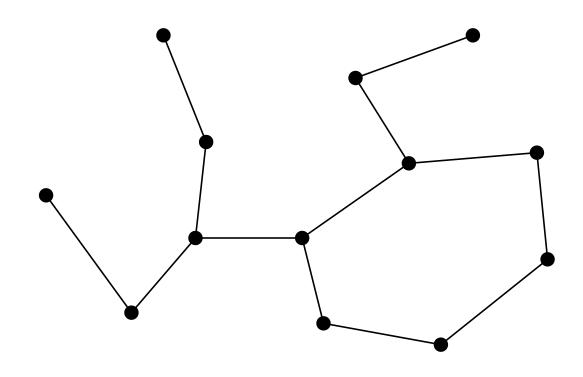
今日の内容

- ラグランジュ緩和:例
- ラグランジュ緩和:一般論
- ・巡回セールスマン問題と 1-木
- 線形計画問題と最強ラグランジュ緩和



今日の内容

- ラグランジュ緩和:例
- ラグランジュ緩和:一般論
- ・巡回セールスマン問題と 1-木
- 線形計画問題と最強ラグランジュ緩和



min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x}$$
s.t. $A_1oldsymbol{x} \geq oldsymbol{b}_1, \ A_2oldsymbol{x} \geq oldsymbol{b}_2, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n$

変数: $x\in\mathbb{R}^n$

定数: $A_1 \in \mathbb{R}^{m_1 \times n}, A_2 \in \mathbb{R}^{m_2 \times n}, \boldsymbol{b}_1 \in \mathbb{R}^{m_1}, \boldsymbol{b}_2 \in \mathbb{R}^{m_2}, \boldsymbol{c} \in \mathbb{R}^n$

min. $c^{\mathrm{T}}x$

 $A_2 \boldsymbol{x} \geq \boldsymbol{b}_2,$

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x} + oldsymbol{\lambda}^{\mathrm{T}}(oldsymbol{b}_2 - A_2oldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} \geq \boldsymbol{b}_1$$
, s.t. $A_1 \boldsymbol{x} \geq \boldsymbol{b}_1$,

変数: $x \in \mathbb{R}^n$

(Lagrangian relaxation)

_{>>} ラグランジュ緩和 **L**(**λ**)

定数: $A_1 \in \mathbb{R}^{m_1 \times n}, A_2 \in \mathbb{R}^{m_2 \times n}, \boldsymbol{b}_1 \in \mathbb{R}^{m_1}, \boldsymbol{b}_2 \in \mathbb{R}^{m_2}, \boldsymbol{c} \in \mathbb{R}^n$

 $oldsymbol{\lambda} \in \mathbb{R}^{m_2}, oldsymbol{\lambda} \geq oldsymbol{0}$ 重要

直感

P における制約の非充足 \rightarrow $L(\lambda)$ における罰則

ラグランジュ緩和:性質

整数計画問題 P

_⇒ ラグランジュ緩和 L(**λ**)

min.
$$oldsymbol{c}^{ ext{T}}oldsymbol{x}$$

s.t.
$$A_1oldsymbol{x} \geq oldsymbol{b}_1, \ A_2oldsymbol{x} \geq oldsymbol{b}_2, \ oldsymbol{x} \geq oldsymbol{0},$$

 $oldsymbol{x} \in \mathbb{Z}^n$

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x} + oldsymbol{\lambda}^{\mathrm{T}}(oldsymbol{b}_2 - A_2oldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} \geq \boldsymbol{b}_1$$
,

$$egin{aligned} oldsymbol{x} & \geq oldsymbol{0}, \ oldsymbol{x} & \in \mathbb{Z}^n \end{aligned}$$

性質

 $P \, \subset L(\lambda)$ が最適解を持つ $\Rightarrow P$ の最適値 $\geq L(\lambda)$ の最適値

ラグランジュ緩和:性質

整数計画問題 P _____ ラグランジュ緩和 $L(\lambda)$

min. $oldsymbol{c}^{ ext{T}}oldsymbol{x}$

s.t.
$$A_1 oldsymbol{x} \geq oldsymbol{b}_1, \ A_2 oldsymbol{x} \geq oldsymbol{b}_2, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n$$

min.
$$\boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b}_2 - A_2\boldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} \geq \boldsymbol{b}_1$$
,

$$egin{aligned} oldsymbol{x} & \geq oldsymbol{0}, \ oldsymbol{x} & \in \mathbb{Z}^n \end{aligned}$$

性質

 $P \, \subset L(\lambda)$ が最適解を持つ $\Rightarrow P$ の最適値 $\geq L(\lambda)$ の最適値

証明: x^* をPの最適解とすると, x^* は $\mathbf{L}(\lambda)$ の許容解

$$\therefore$$
 L($oldsymbol{\lambda}$) の最適値 $\leq oldsymbol{c}^{\mathrm{T}} oldsymbol{x}^* + oldsymbol{\lambda}^{\mathrm{T}} (oldsymbol{b}_2 - A_2 oldsymbol{x}^*) \leq oldsymbol{c}^{\mathrm{T}} oldsymbol{x}^* = P$ の最適値 $\geq oldsymbol{0}$

ラグランジュ緩和:性質(続)

整数計画問題 P

_→ ラグランジュ緩和 L(**λ**)

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x}$$
 s.t. $egin{aligned} A_1oldsymbol{x} \geq oldsymbol{b}_1, \ A_2oldsymbol{x} \geq oldsymbol{b}_2, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n \end{aligned}$

min.
$$m{c}^{\mathrm{T}}m{x} + m{\lambda}^{\mathrm{T}}(m{b}_2 - A_2m{x})$$
s.t. $A_1m{x} \geq m{b}_1,$ $m{x} \geq m{0},$ $m{x} \in \mathbb{Z}^n$

緩和問題に求められる性質

- ・解きたい問題 P の許容領域 ⊆ 緩和問題の許容領域
- ・解きたい問題 P の最適値 > 緩和問題の最適値
- ・解きたい問題 P よりも 緩和問題の方が解きやすい

_→ ラグランジュ緩和 L(**λ**)

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x}$$
 s.t. $egin{aligned} A_1oldsymbol{x} \geq oldsymbol{b}_1, \ A_2oldsymbol{x} \geq oldsymbol{b}_2, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n \end{aligned}$

min.
$$\boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b}_2 - A_2\boldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} \geq \boldsymbol{b}_1$$
,

$$egin{aligned} oldsymbol{x} & \geq oldsymbol{0}, \ oldsymbol{x} & \in \mathbb{Z}^n \end{aligned}$$

$L(\lambda)$ の最適値として得られる

P の最適値の下界として 最大のものを求める問題

ラグランジュ双対 LD

$$\max_{\boldsymbol{\lambda} \geq \mathbf{0}} \min_{\boldsymbol{x}} c^{\mathrm{T}} \boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}} (\boldsymbol{b}_2 - A_2 \boldsymbol{x})$$

s.t.
$$A_1 oldsymbol{x} \geq oldsymbol{b}_1, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n$$

(Lagrangian dual)

_→ 最強ラグランジュ緩和 L(**λ***)

min.
$$oldsymbol{c}^{ ext{T}}oldsymbol{x}$$

s.t.
$$A_1 \boldsymbol{x} \geq \boldsymbol{b}_1$$
,

$$A_2 x \geq b_2,$$

$$x \geq 0$$
,

$$oldsymbol{x} \in \mathbb{Z}^n$$

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x} + oldsymbol{\lambda}^{\mathrm{*T}}(oldsymbol{b}_{2} - A_{2}oldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} \geq \boldsymbol{b}_1$$
,

$$x \geq 0$$
,

$$oldsymbol{x} \in \mathbb{Z}^n$$

$L(\lambda)$ の最適値として得られる

Pの最適値の下界として 最大のものを求める問題

$$\lambda^* = \mathsf{LD}$$
 の最適解

ラグランジュ双対 LD

 $\lambda > 0$

$$\max_{\lambda \geq 0} \min_{\boldsymbol{x}} c^{\mathrm{T}} \boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}} (\boldsymbol{b}_2 - A_2 \boldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} \geq \boldsymbol{b}_1$$
,

$$x \geq 0$$
,

$$oldsymbol{x} \in \mathbb{Z}^n$$

(Lagrangian dual)

_→ ラグランジュ緩和 L(**λ**)

min. $oldsymbol{c}^{ ext{T}}oldsymbol{x}$

s.t.
$$A_1 \boldsymbol{x} = \boldsymbol{b}_1$$
,

$$A_2 \boldsymbol{x} = \boldsymbol{b}_2,$$

$$x \geq 0$$
,

$$oldsymbol{x} \in \mathbb{Z}^n$$

min.
$$\boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b}_2 - A_2\boldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} = \boldsymbol{b}_1$$
,

$$x \geq 0$$
,

$$oldsymbol{x} \in \mathbb{Z}^n$$

変数: $x \in \mathbb{R}^n$ (Lagrangian relaxation)

定数: $A_1 \in \mathbb{R}^{m_1 \times n}, A_2 \in \mathbb{R}^{m_2 \times n}, \boldsymbol{b}_1 \in \mathbb{R}^{m_1}, \boldsymbol{b}_2 \in \mathbb{R}^{m_2}, \boldsymbol{c} \in \mathbb{R}^n$

 $oldsymbol{\lambda} \in \mathbb{R}^{m_2} \ (oldsymbol{\lambda} \geq oldsymbol{0} \ ext{ である必要はない)}$

ラグランジュ緩和:性質

整数計画問題 P _____ ラグランジュ緩和 $L(\lambda)$

min. $oldsymbol{c}^{ ext{T}}oldsymbol{x}$

s.t.
$$A_1oldsymbol{x} = oldsymbol{b}_1, \ A_2oldsymbol{x} = oldsymbol{b}_2, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n$$

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x} + oldsymbol{\lambda}^{\mathrm{T}}(oldsymbol{b}_2 - A_2oldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} = \boldsymbol{b}_1$$
,

$$egin{aligned} oldsymbol{x} & \geq oldsymbol{0}, \ oldsymbol{x} & \in \mathbb{Z}^n \end{aligned}$$

性質

 $P \, \subset L(\lambda)$ が最適解を持つ $\Rightarrow P$ の最適値 $\geq L(\lambda)$ の最適値

証明: x^* をPの最適解とすると, x^* は $\mathbf{L}(\lambda)$ の許容解

$$\therefore$$
 L($oldsymbol{\lambda}$) の最適値 $\leq oldsymbol{c}^{\mathrm{T}}oldsymbol{x}^* + oldsymbol{\lambda}^{\mathrm{T}}(oldsymbol{b}_2 - A_2oldsymbol{x}^*) = oldsymbol{c}^{\mathrm{T}}oldsymbol{x}^* = P$ の最適値

min. $oldsymbol{c}^{ ext{T}}oldsymbol{x}$

s.t.
$$A_1 oldsymbol{x} = oldsymbol{b}_1, \ A_2 oldsymbol{x} = oldsymbol{b}_2, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n$$

→ ラグランジュ緩和 L(λ)

min.
$$\boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b}_2 - A_2\boldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} = \boldsymbol{b}_1$$
,

$$egin{aligned} oldsymbol{x} & \geq oldsymbol{0}, \ oldsymbol{x} & \in \mathbb{Z}^n \end{aligned}$$

$L(\lambda)$ の最適値として得られる

P の最適値の下界として 最大のものを求める問題

ラグランジュ双対 LD

 \max_{λ}

$$\min_{\boldsymbol{x}}. \ \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b}_{2} - A_{2}\boldsymbol{x})$$

s.t.
$$A_1oldsymbol{x} = oldsymbol{b}_1, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n$$

(Lagrangian dual)

制約なし

min. $oldsymbol{c}^{ ext{T}}oldsymbol{x}$

s.t.
$$A_1oldsymbol{x} = oldsymbol{b}_1, \ A_2oldsymbol{x} = oldsymbol{b}_2, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n$$

$_{ o}$ 最強ラグランジュ緩和 ${f L}({m \lambda}^*)$

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x} + oldsymbol{\lambda}^{*\mathrm{T}}(oldsymbol{b}_2 - A_2oldsymbol{x})$$

s.t.
$$A_1 \boldsymbol{x} = \boldsymbol{b}_1$$
,

$$egin{aligned} oldsymbol{x} & \geq oldsymbol{0}, \ oldsymbol{x} & \in \mathbb{Z}^n \end{aligned}$$

$L(\lambda)$ の最適値として得られる

P の最適値の下界として 最大のものを求める問題

 $\lambda^* = \mathsf{LD}$ の最適解

制約なし

ラグランジュ双対 LD

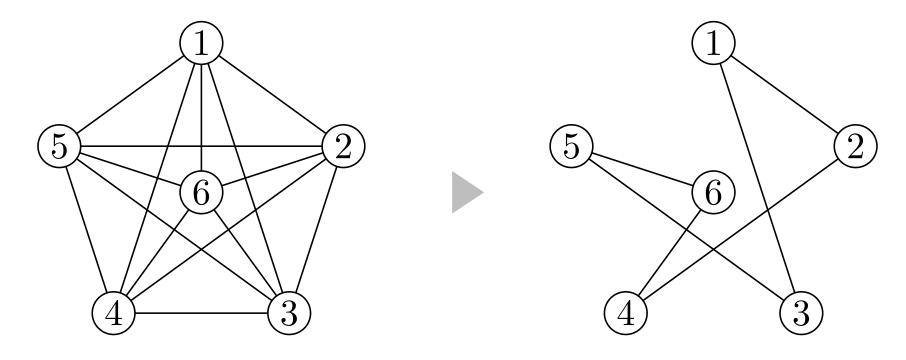
max. λ

min.
$$m{c}^{\mathrm{T}}m{x} + m{\lambda}^{\mathrm{T}}(m{b}_2 - A_2m{x})$$

s.t.
$$A_1oldsymbol{x} = oldsymbol{b}_1, \ oldsymbol{x} \geq oldsymbol{0}, \ oldsymbol{x} \in \mathbb{Z}^n$$

(Lagrangian dual)

対称巡回セールスマン問題もグラフの問題とみなす



無向グラフ G = (V, E)

V =都市集合

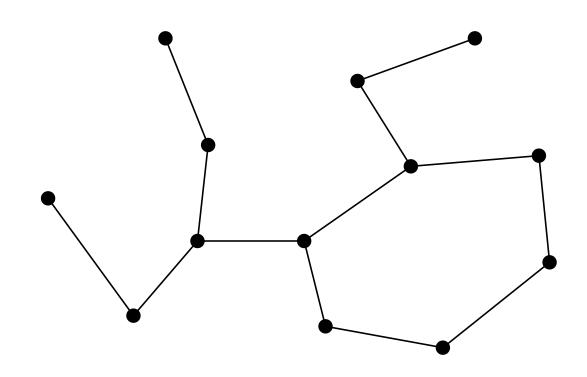
 $E = \{\{i, j\} \mid i, j \in V, i \neq j\}$

すべての頂点を通る単一の閉路

ハミルトン閉路とも呼ばれる

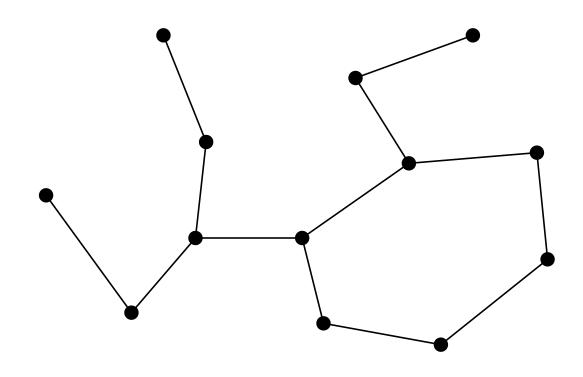
今日の内容

- ラグランジュ緩和:例
- ラグランジュ緩和:一般論
- ・巡回セールスマン問題と 1-木
- 線形計画問題と最強ラグランジュ緩和

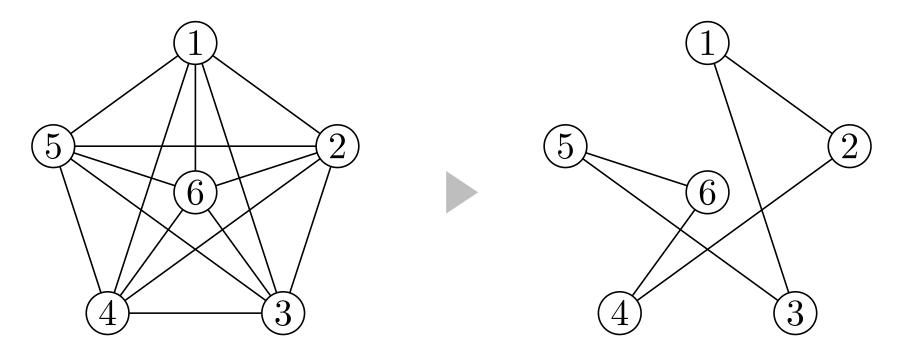


今日の内容

- ラグランジュ緩和:例
- ラグランジュ緩和:一般論
- ・ 巡回セールスマン問題と 1-木
- ・ 線形計画問題と最強ラグランジュ緩和



対称巡回セールスマン問題もグラフの問題とみなす



無向グラフ G = (V, E)

V =都市集合

 $E = \{\{i, j\} \mid i, j \in V, i \neq j\}$

すべての頂点を通る単一の閉路

ハミルトン閉路とも呼ばれる

minimize

$$\sum_{e \in E} d(e)x_e$$

Dantzig, Fulkerson, Johnson ('54)

subject to
$$\sum_{j \in V - \{i\}} x_{\{i,j\}} = 2$$

$$\forall i \in V$$

$$\sum_{\{i,j\}\subseteq S} x_{\{i,j\}} \le |S| - 1$$

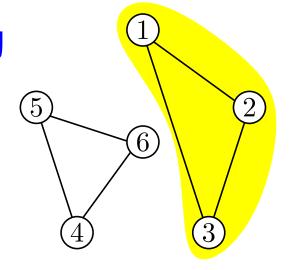
$$\forall S \in 2^V - \{\emptyset, V\}$$

$$x_e \in \{0, 1\}$$

$$\forall e \in E$$

部分巡回路除去制約

変数の総数 = $|E| = \frac{1}{2}|V|(|V| - 1)$ 制約の総数 = $|V| + 2^{|V|} - 2$



minimize
$$\sum_{e \in E} d(e)x_e$$

Dantzig, Fulkerson, Johnson ('54)

subject to

$$\sum_{j \in V - \{i\}} x_{\{i,j\}} = 2$$

$$\forall i \in V$$

$$\sum_{\{i,j\}\subseteq S} x_{\{i,j\}} \le |S| - 1$$

$$\forall S \in 2^V - \{\emptyset, V\}$$

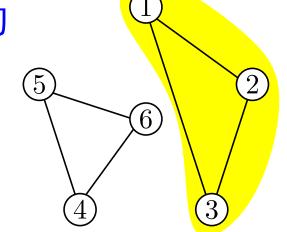
$$x_e \in \{0, 1\}$$

$$\forall e \in E$$

別の書き方

部分巡回路除去制約

$$\sum_{e \in \underline{\delta(i)}} x_e = 2$$



i を端点とする辺の集合

解きたい問題 P

緩和

→ 線形計画緩和 R

min.
$$\sum_{e \in E} d(e)x_e$$

s.t. $\sum_{e \in \delta(i)} x_e = 2$ $\forall i$
 $\sum_{e \subseteq S} x_e \le |S| - 1$ $\forall S$
 $x_e \in \{0, 1\}$ $\forall e$

緩和問題の性質

- ・解きたい問題 P の許容領域 C 緩和問題の許容領域
- ・解きたい問題 P の最適値 > 緩和問題の最適値
- ・解きたい問題 P よりも 緩和問題の方が解きやすい

この節の目標

巡回セールスマン問題のラグランジュ緩和として よいものを作る

これは Held, Karp ('70, '71) によるアイディア

よさの基準

- 得られる下界が大きい
- 効率よく解ける
- 運がよいと,巡回路が得られる

解きたい問題 P

min.
$$\sum_{e \in E} d(e)x_e$$
 s.t.
$$\sum_{e \in \delta(i)} x_e = 2 \qquad \forall i$$

$$\sum_{e \subseteq S} x_e \le |S| - 1 \qquad \forall S$$

$$x_e \in \{0, 1\} \qquad \forall e$$

問題の書き換え

解きたい問題 P-

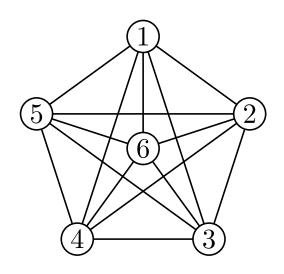
min. $\sum_{e \in F} d(e)x_e$

s.t.
$$\sum_{e \in \delta(i)} x_e = 2 \qquad \forall i$$

$$\sum_{e \subseteq S} x_e \le |S| - 1 \qquad \forall S$$

$$x_e \in \{0, 1\}$$

 $\forall e$



→ 許容領域が同じ問題 P

min.
$$\sum_{e \in E} d(e)x_e$$

$$\forall i$$
 s.t. $\sum_{e \in \delta(i)} x_e = 2$

$$\forall i \neq 1$$

$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = |V|$$

$$\sum_{e \subseteq S} x_e \le |S| - 1 \qquad \forall S$$

$$x_e \in \{0, 1\}$$

 $\forall e$

無向グラフ G = (V, E)

制約の除去

許容領域が同じ問題 P ———> 制約を除去した問題 P'

$$\begin{aligned} & \text{min.} & \sum_{e \in E} d(e) x_e \\ & \text{s.t.} & \sum_{e \in \delta(i)} x_e = 2 & \forall i \neq 1 \\ & \sum_{e \in \delta(1)} x_e = 2 \\ & \sum_{e \in E} x_e = |V| \\ & \sum_{e \subseteq S} x_e \leq |S| - 1 & \forall S \\ & x_e \in \{0,1\} & \forall e \end{aligned}$$

$$\forall i \neq 1 \qquad \text{s.t.} \quad \sum_{e \in S(i)} x_e = 2 \qquad \forall i \neq 1$$

$$\sum_{e \in S(i)} x_e = 2 \qquad \forall i \neq 1$$

$$\sum_{e \in S} x_e = |V|$$

$$\forall S \qquad \sum_{e \subseteq S} x_e \leq |S| - 1 \qquad \forall S \not \supseteq 1$$

$$\forall e \qquad x_e \in \{0, 1\} \qquad \forall e$$

Pの最適値 > P'の最適値

ラグランジュ緩和

制約を除去した問題 $P' \longrightarrow ラグランジュ緩和 L(\lambda)$

$$\begin{aligned} & \text{min.} & \sum_{e \in E} d(e) x_e \\ & \text{s.t.} & \sum_{e \in \delta(i)} x_e = 2 & \forall \, i \neq 1 \\ & \sum_{e \in \delta(1)} x_e = 2 \\ & \sum_{e \in E} x_e = |V| \\ & \sum_{e \in E} x_e \leq |S| - 1 & \forall \, S \not\ni 1 \\ & x_e \in \{0, 1\} & \forall \, e \end{aligned}$$

min.
$$\sum_{e \in E} d(e)x_e + \sum_{i \neq 1} \lambda_i \left(2 - \sum_{e \in \delta(i)} x_e\right)$$
 s.t.
$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = |V|$$

$$\sum_{e \in E} x_e \leq |S| - 1 \quad \forall S \not\ni 1$$

 $x_e \in \{0,1\}$ $\forall e$

P'の最適値 $\geq L(\lambda)$ の最適値

ラグランジュ緩和:何を求めているか? 27/35

ラグランジュ緩和 **L**(**λ**)

min.
$$\sum_{e \in E} d(e)x_e + \sum_{i \neq 1} \lambda_i \left(2 - \sum_{e \in \delta(i)} x_e\right) = \sum_{e \in E} \left(d(e) - \sum_{i \neq 1: e \in \delta(i)} \lambda_i\right) x_e + 2 \sum_{i \neq 1} \lambda_i$$
s.t.
$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in \delta(1)} x_e = |V|$$

$$\sum_{e \in E} x_e \le |S| - 1 \quad \forall S \not\ni 1$$

$$x_e \in \{0, 1\} \qquad \forall e$$

$$= \sum_{e \in E} \left(d(e) - \sum_{\substack{i \neq 1:\\ e \in \delta(i)}} \lambda_i \right) x_e + 2 \sum_{i \neq 1} \lambda_i$$

辺eの新しい長さ 定数 =: d'(e)

ラグランジュ緩和:何を求めているか? 27/35

ラグランジュ緩和 **L**(**λ**)

min.
$$\sum_{e \in E} d(e)x_e + \sum_{i \neq 1} \lambda_i \left(2 - \sum_{e \in \delta(i)} x_e\right) = \sum_{e \in E} \left(d(e) - \sum_{i \neq 1: e \in \delta(i)} \lambda_i\right) x_e + 2 \sum_{i \neq 1} \lambda_i$$
s.t.
$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = |V|$$

$$\sum_{e \in E} x_e \le |S| - 1 \quad \forall S \not\ni 1$$

$$x_e \in \{0, 1\} \qquad \forall e$$

$$= \sum_{e \in E} \left(d(e) - \sum_{\substack{i \neq 1:\\ e \in \delta(i)}} \lambda_i \right) x_e + 2 \sum_{i \neq 1} \lambda_i$$

辺eの新しい長さ 定数 =: d'(e)

頂点 1

ラグランジュ緩和:何を求めているか? 27/35

ラグランジュ緩和 **L**(**λ**)

min.
$$\sum_{e \in E} d(e)x_e + \sum_{i \neq 1} \lambda_i \left(2 - \sum_{e \in \delta(i)} x_e\right) = \sum_{e \in E} \left(d(e) - \sum_{i \neq 1: e \in \delta(i)} \lambda_i\right) x_e + 2 \sum_{i \neq 1} \lambda_i$$
s.t. $\sum_{e \in \delta(1)} x_e = 2$

$$\sum_{e \in E} x_e = |V|$$

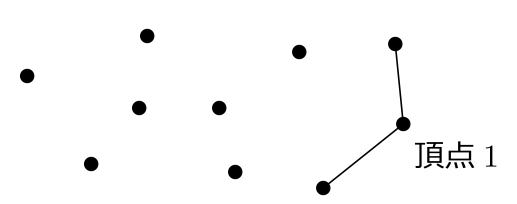
$$\sum_{e \in E} x_e \le |S| - 1 \quad \forall S \not\ni 1$$

$$x_e \in \{0, 1\} \qquad \forall e$$

頂点 1 に接続する辺の数 = 2

$$= \sum_{e \in E} \left(d(e) - \sum_{\substack{i \neq 1:\\ e \in \delta(i)}} \lambda_i \right) x_e + 2 \sum_{\substack{i \neq 1}} \lambda_i$$

辺 e の新しい長さ 定数 =: d'(e)



ラグランジュ緩和:何を求めているか? 27/35

ラグランジュ緩和 L(**λ**)

min.
$$\sum_{e \in E} d(e)x_e + \sum_{i \neq 1} \lambda_i \left(2 - \sum_{e \in \delta(i)} x_e\right)$$
s.t.
$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = |V|$$

$$\sum_{e \in E} x_e \leq |S| - 1 \quad \forall S \not\ni 1$$

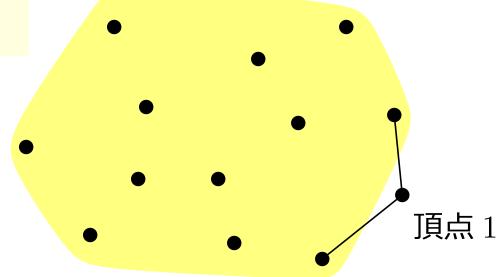
$$x_e \in \{0, 1\} \quad \forall e$$

頂点 1 に接続する辺の数 =2 辺の総数 =|V|

$$\min \sum_{e \in E} \frac{d(e)x_e + \sum_{i \neq 1} \lambda_i}{e \in \delta(i)} \left(2 - \sum_{e \in \delta(i)} x_e \right) = \sum_{e \in E} \left(\frac{d(e) - \sum_{i \neq 1: e \in \delta(i)} \lambda_i}{e \in \delta(i)} \right) x_e + 2 \sum_{i \neq 1} \lambda_i$$

辺 e の新しい長さ 定数 =: d'(e)

この中から |V|-2 個の辺



ラグランジュ緩和:何を求めているか? 27/35

ラグランジュ緩和 **L**(**λ**)

$$\min_{e \in E} \sum_{e \in E} \frac{d(e)x_e + \sum_{i \neq 1} \lambda_i}{x_e} \left(2 - \sum_{e \in \delta(i)} x_e \right) = \sum_{e \in E} \left(\frac{d(e) - \sum_{i \neq 1:} \lambda_i}{e \in \delta(i)} \right) x_e + 2 \sum_{i \neq 1} \lambda_i$$

s.t.
$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = |V|$$

$$\sum_{e \subseteq S} x_e \le |S| - 1 \qquad \forall S \not\ni 1$$

 $x_e \in \{0, 1\}$ $\forall e$

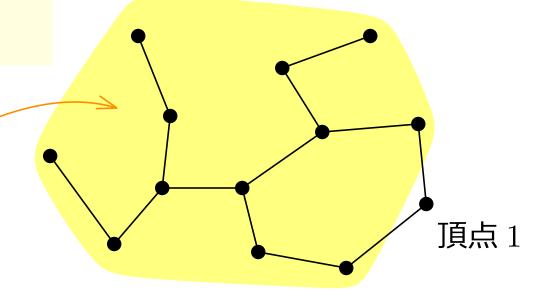
頂点1に接続する辺の数=2

辺の総数 = |V|

ここには閉路がない

辺eの新しい長さ 定数 =: d'(e)

この中から |V|-2 個の辺



ラグランジュ緩和:何を求めているか? 27/35

ラグランジュ緩和 **L**(**λ**)

$$\min_{e \in E} \sum_{e \in E} \frac{d(e)x_e + \sum_{i \neq 1} \lambda_i}{x_e} \left(2 - \sum_{e \in \delta(i)} x_e \right) = \sum_{e \in E} \left(\frac{d(e) - \sum_{i \neq 1:} \lambda_i}{e \in \delta(i)} \right) x_e + 2 \sum_{i \neq 1} \lambda_i$$

s.t.
$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = |V|$$

$$\sum_{e \subset S} x_e \le |S| - 1 \qquad \forall S \not\ni 1$$

$$x_e \in \{0, 1\}$$
 $\forall e$

頂点1に接続する辺の数=2

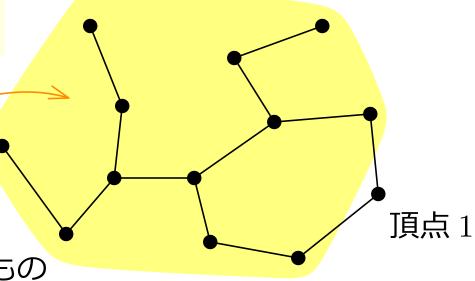
辺の総数 = |V|

ここには閉路がない

その中で, d'(e) の和が最小であるもの

辺eの新しい長さ 定数 =: d'(e)

この中から |V|-2 個の辺



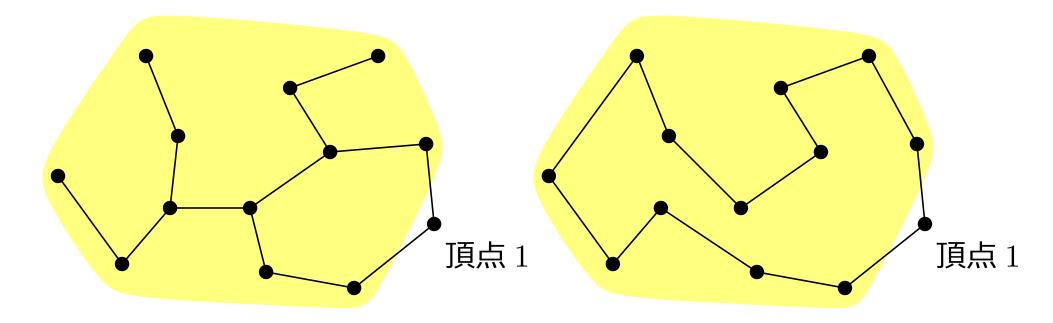
無向グラフ G = (V, E), $V = \{1, 2, \ldots, n\}$

定義:1-木(1-tree)

(Held, Karp '70, '71)

G の 1-木 とは, $\{2,3,\ldots,n\}$ 上の木に, 頂点 1 に接続する 2 辺を付け加えたもの

- 今作ったラグランジュ緩和の許容解は 1-木 (逆も真)
- 巡回路は1-木



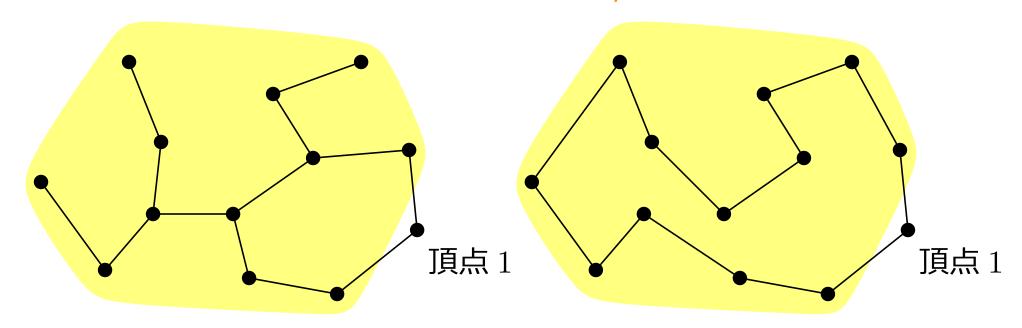
無向グラフ G = (V, E), $V = \{1, 2, \ldots, n\}$

定義:1-木(1-tree)

(Held, Karp '70, '71)

G の 1-木 とは, $\{2,3,\ldots,n\}$ 上の木に, 頂点 1 に接続する 2 辺を付け加えたもの

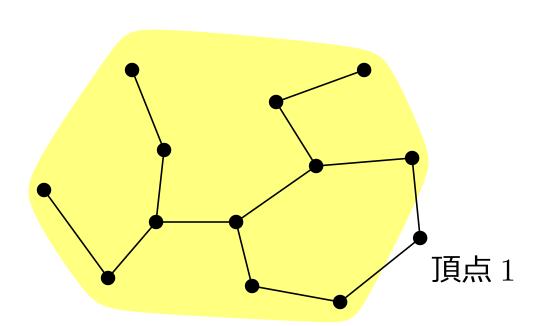
- 今作ったラグランジュ緩和の許容解は1-木 (逆も真)
- 巡回路は1-木 欲しいものは,最小重み1-木



最小重み 1-木問題のアルゴリズム

- 1. {2,3,...,n} 上の最小重み全域木を求める ←
- 2. 頂点 1 に接続する辺の中で重みの小さい方から 2 辺を求める
- 3. それらの合併を出力する

これは多項式時間アルゴリズム



Kruskal 法などで 効率よく実行できる

したがって, いま作ったラグランジュ緩和は 効率よく解ける

 ラグランジュ緩和 L(X)
 → 最適解 (最小重み 1-木)

 効率よく
 計算できる

欲しいもの

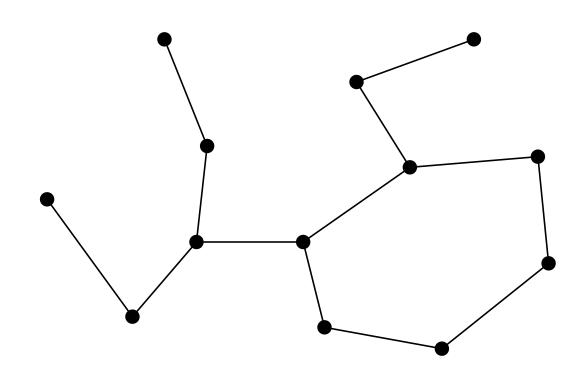
最強ラグランジュ緩和 $L(\lambda^*)$

 $oldsymbol{\lambda}^* =$ ラグランジュ緩和 $oldsymbol{\mathsf{L}}(oldsymbol{\lambda})$ の最適値を最大にする $oldsymbol{\lambda}$

どのように **λ*** を求めるのか → 次回 (劣勾配法)

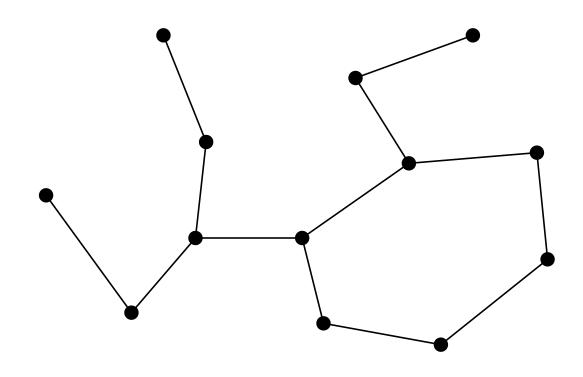
今日の内容

- ラグランジュ緩和:例
- ラグランジュ緩和:一般論
- ・巡回セールスマン問題と 1-木
- 線形計画問題と最強ラグランジュ緩和



今日の内容

- ラグランジュ緩和:例
- ラグランジュ緩和:一般論
- ・巡回セールスマン問題と 1-木
- 線形計画問題と最強ラグランジュ緩和



ラグランジュ緩和は 数理最適化問題一般に対して 適用できる

線形計画問題 P (等式標準形) —> ラグランジュ緩和 L(**λ**)

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x}$$
 s.t. $Aoldsymbol{x} = oldsymbol{b}, \ oldsymbol{x} \geq oldsymbol{0}$

min.
$$oldsymbol{c}^{\mathrm{T}}oldsymbol{x} + oldsymbol{\lambda}^{\mathrm{T}}(oldsymbol{b} - Aoldsymbol{x})$$
 s.t. $oldsymbol{x} \geq oldsymbol{0}$

ラグランジュ双対 LD

 $\begin{array}{ll} \max_{\boldsymbol{\lambda}} & \min_{\boldsymbol{x}}. & \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b} - A\boldsymbol{x}) \\ \text{s.t.} & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

制約なし

ラグランジュ双対 LD

$$\max_{\boldsymbol{\lambda}} \quad \min_{\boldsymbol{x}} \quad \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b} - A\boldsymbol{x}) \\ \text{s.t.} \quad \boldsymbol{x} \geq \boldsymbol{0} \\ = \sum_{i=1}^{n} (\boldsymbol{c} - A^{\mathrm{T}}\boldsymbol{\lambda})^{\mathrm{T}}\boldsymbol{x} \\ = \sum_{i=1}^{n} (\boldsymbol{c} - A^{\mathrm{T}}\boldsymbol{\lambda})_{i} x_{i}$$

与えられた λ に対して,これを最小化する問題を解くには

- $(c A^{T} \lambda)_{i} < 0$ ならば, $x_{i} \to \infty$ とすることで, 目的関数値は非有界
- $(c A^{T}\lambda)_{i} \geq 0$ ならば, $x_{i} = 0$ とすればよい

ラグランジュ双対 LD

$$\max_{\boldsymbol{\lambda}} \quad \min_{\boldsymbol{x}} \quad \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b} - A\boldsymbol{x}) \\ \text{s.t.} \quad \boldsymbol{x} \geq \boldsymbol{0} \\ = \sum_{i=1}^{n} (\boldsymbol{c} - A^{\mathrm{T}}\boldsymbol{\lambda})^{i}\boldsymbol{x}_{i}$$

与えられた λ に対して,これを最小化する問題を解くには

- $(c A^{T} \lambda)_{i} < 0$ ならば, $x_{i} \to \infty$ とすることで, 目的関数値は非有界
- $(\boldsymbol{c} A^{\mathrm{T}}\boldsymbol{\lambda})_i \geq 0$ ならば, $x_i = 0$ とすればよい

つまり, LD は次の問題と等価

max.
$$b^{\mathrm{T}} \lambda$$
 \leftarrow 線形計画問題 P の双対問題 s.t. $A^{\mathrm{T}} \lambda \leq c$

ラグランジュ双対 LD

双対問題 D

$$\begin{array}{ll} \max_{\boldsymbol{x}} & \min_{\boldsymbol{x}}. & \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{b} - A\boldsymbol{x}) \\ \text{s.t.} & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

max.
$$b^{\mathrm{T}} \lambda$$

s.t.
$$A^{\mathrm{T}} \lambda \leq c$$

いままでの議論をまとめると,次の性質が得られる

性質

 λ^* が LD の最適解 $\Leftrightarrow \lambda^*$ が D の最適解

他にも, ラグランジュ緩和/ラグランジュ双対は 数理最適化で重要な役割を果たす

次回予告

次回の内容

最強ラグランジュ緩和の求め方 (アルゴリズム)

• 劣勾配法

