離散最適化基礎論 第9回

準同型が導く半順序(1):構成

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2021年12月14日

最終更新: 2021年12月13日 10:08

スケジュール 後半 (予定)

★ 国内出張 のため 休み	(12/7)
g 準同型が導く半順序 (1):構成	(12/14)
🔟 準同型が導く半順序 (2): 構造	(12/21)
💶 アルゴリズム (1) : 例	(1/4)
🔟 アルゴリズム (2): 整合性	(1/11)
📧 アルゴリズム (3): 双対性	(1/18)
💶 アルゴリズム (4): 多数決	(1/25)
★ 予備	(2/8)

注意:予定の変更もありうる

岡本 吉央 (電通大)	離散最適化基礎論 (9)	2021年12月14日	3 / 55

目次

- 1 前回までの復習
- 2 一般論: 擬順序から得られる半順序
- 3 準同型から得られる半順序
- 4 準同型から得られる半順序は束である
- 5 次回につながる疑問
- 6 今日のまとめ と 次回の予告

岡本 吉央 (電通大)	離散最適化基礎論 (9)	2021年12月14日	

コアの一意性

グラフ G, H_0, H_1

性質:コアの一意性

 H_0, H_1 が G のコア \Rightarrow $H_0 \simeq H_1$

例: C_6 のコアは K_2 である

 \overline{ll} : G のコアを G^{ullet} で表すことがある

1 フランの杉口に牛肉主	(10/3)
2 準同型の基本性質 (1):部分構造	(10/12)
3 準同型の基本性質 (2): 準同型の合成	(10/19)
4 グラフの円彩色	(10/26)
5 グラフの分数彩色	(11/2)
6 グラフの積と準同型	(11/9)
7 グラフの商と引き込み	(11/16)

(10/5)

(11/23)

(11/30)

8 グラフのコア

グラフの彩色と淮同型

★ 調布祭片付け のため 休み

今日の目標

今日の目標

021年12月14日 1/55

準同型写像が作る順序構造の性質を調べる

- ▶ 半順序の構成
- ▶ その半順序が束であることの証明

岡本 吉央 (電通大)	離散最適化基礎論 (9)	2021年12月14日	4 / 55

グラフのコア

グラフG

定義:グラフのコアとは?

Gの **コア** (core) とは、Gの極小なレトラクトのこと

- ▶ レトラクト:引き込みによって得られる部分グラフ
- ▶ 引き込み:ある性質を持った準同型写像

岡本 吉央 (電通大) 離散最適化基礎論 (9) 2021 年 12 月 14 日 6 / 55

コアと準同型同値性

グラフ $\,G\,$

性質:コアと準同型同値性

任意のグラフに対して, $G \rightleftarrows G^{\bullet}$

岡本 吉央 (電通大)

化基礎論 (9) 2021 年 12 月 14 日

グラフG

定義:コアとは?

G が **コア** であるとは, $G \simeq G^{\bullet}$ を満たすこと

つまり,任意の準同型写像 $r\colon V(G) \to V(G)$ が同型写像であること

前回の復習

次のグラフはすべてコア

- ▶ 完全グラフ K_n
- ▶ 奇閉路 C_{2k+1}
- ▶ クネーザー・グラフ $\mathrm{KG}(n,k)$ (ただし, $n \geq 2k+1$)

岡本 吉央 (電通大)

準同型同値性と同値関係

グラフG, H, K

「性質:準同型同値性は同値関係

ightharpoonup G
ightleftharpoonup G

(反射性)

ightharpoonup G
ightleftharpoonup H
ightleftharpoonup H
ightleftharpoonup G
ightleftharpoonup H
ightleftharpoonup G
ightleftharpoonup H
ightleftharpoonup G
ightleftharpoonup H
ightleftharpoonup G
ightleftha

(対称性) (推移性)

 $\blacktriangleright \ G\rightleftarrows H \ \text{thom}\ H\rightleftarrows K\Rightarrow G\rightleftarrows K$

つまり, 二項関係「⇒」は同値関係である

定義:同値関係とは?

集合 X 上の二項関係 \sim が 同値関係 (equivalence relation) であるとは, 次の3つの性質を満たすこと

今から行うこと

(反射性)

 $x \sim y \Rightarrow y \sim x$

(対称性)

 $lacksymbol{\triangleright}$ $x\sim y$ かつ $ypprox z\Rightarrow x\sim z$

擬順序「→」から半順序を得ること

次の3つの性質を満たすこと

▶ $x \leq y$ かつ $y \leq x \Rightarrow x = y$

 $\triangleright x \leq y \text{ for } y \leq z \Rightarrow x \leq z$

(推移性)

(反射性)

(反対称性) (推移性)

岡本 吉央 (電通大)

定義:半順序とは?

 $ightharpoonup x \leq x$

1 前回までの復習

② 一般論:擬順序から得られる半順序

3 準同型から得られる半順序

5 次回につながる疑問

6 今日のまとめ と 次回の予告

岡本 吉央 (電通大)

離散最適化基礎論 (9)

2021年12月14日 14/55

岡本 吉央 (電通大)

離散最適化基礎論 (9)

集合 X 上の二項関係 \preceq が 半順序 (partial order) であるとは,

2021年12月14日 13/55

擬順序から得られる同値関係

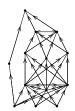
集合 X, 擬順序 \lesssim

性質:擬順序から得られる同値関係

X 上の二項関係 \sim を次のように定義する

 $x \sim y \quad \Leftrightarrow \quad x \precsim y$ かつ $y \precsim x$

このとき、二項関係 \sim は X 上の同値関係である



性質:二項関係「→」の性質

「すべてのグラフ」上の二項関係「→」は次の性質を持つ

ightharpoonup G
ightharpoonup G

(反射性) (推移性)

▶ $G \to H$ かつ $H \to K \Rightarrow G \to K$ つまり, 二項関係「→」は擬順序である

定義:擬順序とは?

集合 X 上の二項関係 \lesssim が 擬順序 (quasiorder) であるとは, 次の2つの性質を満たすこと

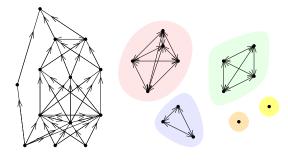
 $\rightarrow x \lesssim x$

(反射性) (推移性)

 $ightharpoonup x \lesssim y \text{ thouse} y \lesssim z \Rightarrow x \lesssim z$

-般論:擬順序と同値関係の図示

集合 X 上の擬順序と同値関係は, X が有限であれば, 次のように図示できる



目次

4 準同型から得られる半順序は束である

擬順序から得られる同値関係:証明 (1)

゙証明すべきこと $\rightarrow x \sim x$

(対称性)

 $x \sim y$ かつ $y \sim z \Rightarrow x \sim z$

 $ightharpoonup x \sim y \Rightarrow y \sim x$

(推移性)

(反射性)

 \Box

反射性の証明:

▶ \precsim は反射性を持つので, $x \precsim x$ となり, よって, $x \sim x$ 対称性の証明:

▶ $x \sim y$ と仮定すると, \sim の定義から, $x \lesssim y$ かつ $y \lesssim x$

▶ したがって, $y \sim x$

擬順序から得られる同値関係:証明(2)

 $x \sim y$ かつ $y \sim z \Rightarrow x \sim z$

証明すべきこと

 $\rightarrow x \sim x$

(反射性)

(対称性)

 $x \sim y \Rightarrow y \sim x$

(推移性)

П

推移性の証明:

- ▶ $x \sim y$ かつ $y \sim z$ と仮定すると, \sim の定義から, $x \preceq y \text{ bol } y \preceq x \text{ bol } y \preceq z \text{ bol } z \preceq y$
- ▶ $x \preceq y \succeq y \preceq z \succeq \preceq$ の推移性より, $x \preceq z$
- ▶ $z \preceq y \succeq y \preceq x \succeq z$ の推移性より, $z \preceq x$
- ▶ したがって, $x \sim z$

同値関係から得られる分割

性質:同値関係から得られる分割

- ▶ [x] を x の 同値類 と呼ぶ
 - (equivalence class)
- ullet X/\sim を \sim による X の **商集合** と呼ぶ (quotient set)

同値関係から得られる分割:証明(2)

証明 (続き): X/\sim が次の性質を満たすことを証明すればよい

▶ 任意の $A,B \in X/\sim$ に対して, $A \neq B \Rightarrow A \cap B = \emptyset$

▶ ある $x,y \in X$ が存在して, A = [x], B = [y] である

ullet $z \in [x]$ より, $x \sim z$ であり, $z \in [y]$ より, $y \sim z$ である

▶ 対称性より $z \sim x$ であるので、推移性より $y \sim x$ となる

▶ したがって、任意の $x' \in [x]$ に対して、 $y \sim x'$ となる

素性の証明:任意の異なる $A,B\in X/\sim$ を考える

▶ 同様に, $[y] \subseteq [x]$ となるので, [x] = [y].

集合 X,同値関係 \sim (先ほどのように擬順序から作られたものでなくてもよい)

 $[x] = \{x' \in X \mid x \sim x'\}$

任意の $x \in X$ に対して、集合 [x] を次のように定義する

このとき, 集合族 $X/\sim =\{[x]\mid x\in X\}$ は X の分割である

(素性)

同値関係から得られる分割:証明(1)

証明: X/\sim が次の性質を満たすことを証明すればよい

$igcap 分割の定義: X/\sim$ が X の分割であるとは

 $X/\sim \neq \emptyset$

(非空性)

▶ 任意の $A,B \in X/\sim$ に対して, $A \neq B \Rightarrow A \cap B = \emptyset$

(素性)

▶ 任意の $x \in X$ に対して,ある $A \in X/\sim$ が存在して, $x \in A$ (被覆性)

非空性の証明:

▶ 任意の $x \in X$ を考えると, $[x] \in X/\sim$ なので, $X/\sim \neq \emptyset$

被覆性の証明:任意の $x \in X$ を考える

▶ このとき, $[x] \in X/\sim$ であり、同値関係の反射性より $x \in [x]$

П

▶ したがって, $[x] \subseteq [y]$

▶ 対偶を証明するために、ある $z \in [x] \cap [y]$ が存在すると仮定する

擬順序から得られる半順序

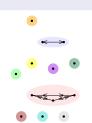
集合 X , 擬順序 \precsim , 先ほどのように \precsim から作った同値関係 \sim

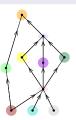
性質: 擬順序から得られる半順序

商集合 X/\sim 上の二項関係 \leq を次のように定義する

 $[x] \leq [y]$ \Leftrightarrow 任意の $x' \in [x], y' \in [y]$ に対して $x' \lesssim y'$

このとき, ≤は半順序





岡本 吉央 (電涌大

21年12月14日

擬順序から得られる半順序:証明(2)

反対称性の証明:任意の $[x],[y]\in X/\sim$ を考える

- [x] ≤ [y] と [y] ≤ [x] を仮定する
- ▶ つまり, 任意の $x' \in [x], y' \in [y]$ に対して, $x' \precsim y'$ かつ $y' \precsim x'$
- ▶ したがって, $x' \sim y'$
- $\mathbf{r} \times x' \in [x] \& \mathfrak{O}, \ x \sim x'$
- ▶ \sim の推移性より, $x \sim y'$ (特に, $y' \in [x]$)
- ▶ 分割の素性より, [x] = [y]

擬順序から得られる半順序:証明 (1)

反射性の証明:任意の $[x] \in X/\sim$ を考える

- ▶ このとき, 任意の $x', x'' \in [x]$ に対して, $x \sim x'$ かつ $x \sim x''$
- ightharpoonup ~ の対称性と推移性より, $x' \sim x''$ (特に, $x' \lesssim x''$)
- $ightharpoonup : [x] \leq [x]$

離散最適化基礎論(9)

擬順序から得られる半順序:証明(3)

推移性の証明:任意の $[x],[y],[z]\in X/\sim$ を考える

- [x] ≤ [y] と [y] ≤ [z] を仮定する
- ▶ つまり, 任意の $x' \in [x], y' \in [y], z' \in [z]$ に対して, $x' \lesssim y'$ かつ $y' \lesssim z'$
- ▶ \lesssim の推移性より, $x' \lesssim z'$
- したがって, [x] ≤ [z]

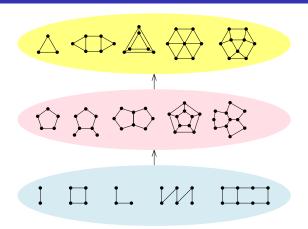
目次

- 1 前回までの復習
- ② 一般論:擬順序から得られる半順序
- 3 準同型から得られる半順序
- 4 準同型から得られる半順序は束である
- 5 次回につながる疑問

岡本 吉央 (電通大)

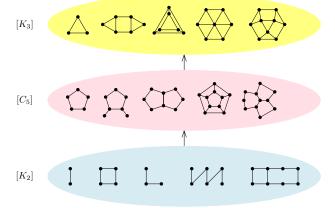
6 今日のまとめ と 次回の予告

準同型から得られる半順序:一部分



離散最適化基礎論 (9)

準同型から得られる半順序:一部分



岡本 吉央 (電通大)

離散最適化基礎論 (9)

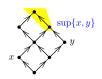
一般論:半順序における上限

集合 X,半順序 \preceq ,要素 $x,y \in X$

定義:上限

 $x \ge y$ の上限 (supremum) あるいは 結び (join) とは, 次を満たす $z \in X$ のこと

- $1 x \leq z$ かつ $y \leq z$
- 2 任意の $w \in X$ に対して, $x \leq w$ かつ $y \leq w \Rightarrow z \leq w$



準同型から得られる半順序

ここまでの一般論を, 準同型から得られる擬順序に適用する

▶ グラフ G に対して、同値類 [G] を次で定義する

 $[G] = \{G' \mid G \rightleftarrows G'\}$ (G と準同型同値であるグラフの全体)

▶ このとき,次の二項関係 < は半順序である

 $[G] \leq [H]$ \Leftrightarrow 任意の $G' \in [G]$, $H' \in [H]$ に対して $G' \rightarrow H'$

岡本 吉央 (電通大)

同値類は何なのか?

任意のグラフGを考える

 $ightharpoonup G^{ullet} \in [G]$

- $(\cdot : G \rightleftharpoons G^{\bullet})$
- ▶ 同様に, 任意の $H \in [G]$ に対して, $H^{\bullet} \in [G]$
- $ightharpoonup : G^{\bullet} \rightleftharpoons H^{\bullet}$

主張:このとき

 $G^{\bullet} \simeq H^{\bullet}$

この主張は,「コアの一意性」の証明と同様に行うことができる

- ▶ この主張 \Rightarrow G^{\bullet} で [G] を定められる
- ▶ 別の言い方: G^{\bullet} を [G] の 代表元 (representative) として選べる

目次

- 1 前回までの復習
- ② 一般論:擬順序から得られる半順序
- 3 準同型から得られる半順序
- 4 準同型から得られる半順序は束である
- 5 次回につながる疑問
- 6 今日のまとめ と 次回の予告

岡本 吉央 (電通大)

離散最適化基礎論 (9)

一般論:上限の一意性

集合 X, 半順序 \preceq , 要素 $x,y \in X$

性質:上限の一意性

 $x \ge y$ の上限は、存在すれば、ただ1つである

証明:z,z'がxとyの上限であるとする

- ▶ 上限の性質 1 より, $x \leq z$, $y \leq z$, $x \leq z'$, $y \leq z'$
- ▶ 上限の性質 2 を用いると, $z \preceq z'$ かつ $z' \preceq z$ となる
- ▶ 半順序の反対称性より, z=z'

一般論:半順序における下限

集合 X, 半順序 \leq , 要素 $x, y \in X$

定義:下限

 $x \ge y$ の下限 (infimum) あるいは 交わり (meet) とは, 次を満たす $z \in X$ のこと

- $1 z \leq x$ かつ $z \leq y$
- 2 任意の $w \in X$ に対して, $w \leq x$ かつ $w \leq y \Rightarrow w \leq z$

般論:上限や下限が存在しない例

離散最適化基礎論 (9)

2021年12月14日 33/55

岡本 吉央 (電通大)

一般論:下限の一意性

性質:下限の一意性

集合 X, 半順序 \preceq , 要素 $x, y \in X$

証明は上限の一意性と同様に行なえる

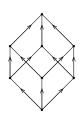
 $x \ge y$ の下限は、存在すれば、ただ1つである

集合 X, 半順序 \leq

-般論:束

半順序 \leq を持つ集合 X が $\mathbf{\bar{p}}$ (lattice) であるとは, 任意の $x,y \in X$ に対して, $x \succeq y$ の上限と下限が存在すること

岡本 吉央 (電通大)



束において, x と y の上限を $x \lor y$ と書き, x と y の下限を $x \land y$ と書く

離散最適化基礎論 (9)



準同型から得られる半順序は束である

準同型から得られる半順序≤

性質:準同型から得られる半順序は束である

任意のグラフG, Hに対して, $[G] \mathrel{\,\,\succeq\,\,} [H]$ の上限 $[G] \mathrel{\,\vee\,\,} [H]$ と下限 $[G] \mathrel{\,\wedge\,\,} [H]$ が存在する

つまり、半順序 < から束が得られる

準同型から得られる半順序は束である:証明

結論を先に述べると,次のようになる

証明すること

- $[G] \vee [H] = [G + H]$
- $\ \, \mathbf{[}G]\wedge [H]=[G\times H]$

グラフの和G+Hと積 $G\times H$ を復習しながら,証明を行う

岡本 吉央 (電通大)

離散最適化基礎論 (9)

2021年12月14日 37/55

復習:グラフの和

無向グラフ G, H , $V(G) \cap V(H) = \emptyset$

定義:グラフの和とは?

(復習)

 $G \ge H$ の 和 (sum) とは、次のグラフ G + H のこと

- $V(G+H) = V(G) \cup V(H)$
- $E(G+H) = E(G) \cup E(H)$

有向グラフに対しても, 同様に定義される

直感 : G と H を横に並べたもの

岡本 吉央 (電通大)

離散最適化基礎論 (9)

2021年12月14日 38/55

グラフG, H

性質:グラフの和と準同型(1)

 $\blacktriangleright \ G \to G + H \text{, } H \to G + H$

復習:グラフの和の性質:準同型(1)

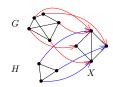
実際, $G\subseteq G+H, H\subseteq G+H$ である

復習:グラフの和の性質:準同型(2)

グラフG, H, X

性質:グラフの和と準同型(2)

ullet G o X かつ H o X ならば、G + H o X



岡本 吉央 (電通大)

グラフの和の性質:準同型(3)

性質:グラフの和と準同型(3)

グラフG, H, G', H'

 $G \longleftrightarrow \to G'$

 $H \longrightarrow H'$

準同型から得られる半順序は束である:上限の証明

証明すること

 $[G] \vee [H] = [G + H]$

1 の証明:任意のグラフ $G' \in [G], H' \in [H]$ を考える

ightharpoonup このとき, $G'+H'\in [G+H]$

(∵性質(3))

▶ また, $G' \rightarrow G' + H'$ かつ $H' \rightarrow G' + H'$

(∵性質(1))

▶ $: [G] \le [G+H] \text{ thom} [H] \le [G+H]$

▶ 任意のグラフ X を考え, $[G] \leq [X]$ かつ $[H] \leq [X]$ と仮定

▶ 任意のグラフ $X' \in [X]$ に対して, $G' \to X'$ かつ $H' \to X'$

lacktriangle このとき, G'+H' o X'

(∵性質(2))

 $: [G+H] \leq [X]$

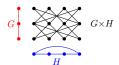
▶ ゆえに, [G] ∨ [H] = [G + H]

復習:グラフの積の性質:準同型(1)

グラフG, H

(1) 性質:グラフの積と準同型

 $\blacktriangleright \ G \times H \to G \text{, } G \times H \to H$



岡本 吉央 (電通大)

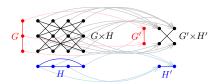
離散最適化基礎論(9)

グラフの和の性質:準同型(3)

グラフG, H, G', H'

性質:グラフの積と準同型(3)

ullet G o G' かつ H o H' ならば, G imes H o G' imes H'



(復習)

復習:グラフの積

無向グラフG, H

た義:グラフの積

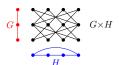
 $G \mathrel{\succeq} H$ の $\overline{\mathfrak{h}}$ (product) とは、次のグラフ $G \mathrel{\times} H$ のこと

ullet G o G' かつ H o H' ならば, G + H o G' + H'

 $\blacktriangleright \ V(G\times H)=V(G)\times V(H)$

 ${\color{red} \blacktriangleright} \ E(G \times H) = \{ \{(u,v),(u',v')\} \mid \{u,u'\} \in E(G), \{v,v'\} \in E(H) \}$

有向グラフに対しても, 同様に定義される



復習:グラフの積の性質:準同型(2)

グラフG, H, X

性質:グラフの積と準同型(2)

▶ $X \to G$ かつ $X \to H$ ならば, $X \to G \times H$

離散最適化基礎論(9)

グラフの和の性質:準同型(3) — 証明

証明 (無向): 準同型写像 $f\colon V(G)\to V(G'),\ g\colon V(H)\to H(H')$ を考える

▶ 写像 $h: V(G \times H) \rightarrow V(G' \times H')$ を次のように定義する

 $h((u,v)) = (f(u),g(v)) \quad \forall \ (u,v) \in V(G \times H) = V(G) \times V(H)$

ightharpoonup 次のとおり, h は G imes H から G' imes H' への準同型写像である

 $\{(u_1, v_1), (u_2, v_2)\} \in E(G \times H)$

 $\Leftrightarrow \{u_1, u_2\} \in E(G)$ かつ $\{v_1, v_2\} \in E(H)$

 $\Rightarrow \{f(u_1), f(u_2)\} \in E(G')$ かつ $\{g(v_1), g(v_2)\} \in E(H')$

 $\Leftrightarrow \{(f(u_1),g(v_1)),(f(u_2),g(v_2))\} \in E(G' \times H')$

 $\Leftrightarrow \{h((u_1, v_1)), h((u_2, v_2))\} \in E(G' \times H')$

準同型から得られる半順序は束である:下限の証明

証明すること

 $[G] \wedge [H] = [G \times H]$

2 の証明:任意のグラフ $G' \in [G], H' \in [H]$ を考える

ightharpoonup このとき, $G' imes H' \in [G imes H]$

(∵性質(3))

▶ また, $G' \times H' \rightarrow G'$ かつ $G' \times H' \rightarrow H'$

(∵性質(1))

 $ightharpoonup : [G imes H] \leq [G] かつ [G imes H] \leq [H]$

▶ 任意のグラフ X を考え, $[X] \leq [G]$ かつ $[X] \leq [H]$ と仮定

▶ 任意のグラフ $X' \in [X]$ に対して, $X' \to G'$ かつ $X' \to H'$

ightharpoonup このとき, X' o G' imes H'

(∵性質 (2))

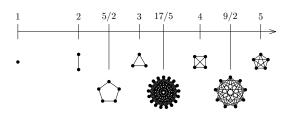
 $\blacktriangleright \ \ \therefore \ [X] \leq [G \times H]$

▶ ゆえに, $[G] \wedge [H] = [G \times H]$

離散最適化基礎論 (9)

岡本 吉央 (電通大)

復習:円完全グラフと準同型



この部分だけ取り出すと,

準同型から得られる半順序 pprox 得られる半順序 (全順序)

のように思える → 本当か?

目次

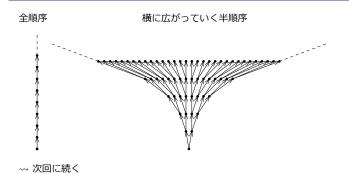
- 1 前回までの復習
- ② 一般論:擬順序から得られる半順序
- 3 準同型から得られる半順序
- ◆ 準同型から得られる半順序は束である
- 5 次回につながる疑問
- 6 今日のまとめ と 次回の予告

目次

- 1 前回までの復習
- 2 一般論:擬順序から得られる半順序
- 3 準同型から得られる半順序
- 4 準同型から得られる半順序は束である
- 6 次回につながる疑問
- 6 今日のまとめ と 次回の予告

岡本 吉央 (電通大) 離散最適化基礎論 (9)

準同型から得られる半順序 はどちらに似ているのか?



今日のまとめ と 次回の予告

今日のまとめ

準同型写像が作る順序構造の性質を調べる

- ▶ 半順序の構成
- ▶ その半順序が束であることの証明

次回の予告

準同型写像が作る順序構造の性質をさらに深く調べる

- ▶ 無限鎖, 無限反鎖
- ▶ 稠密性

岡本 吉央 (電通大) 離散最適化基礎論 (9)