グラフとネットワーク 第 13 回

平面グラフ:数理

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2021年7月9日

最終更新: 2021年7月1日 22:52

概要

今日の目標

平面グラフに関する基礎を理解し,次ができるようになる

- ▶ 平面グラフの構造 (頂点, 辺, 面) を記述できる
- ▶ オイラーの公式を用いて平面的グラフではないことの証明ができる
- ▶ グラフのマイナーを用いて平面的グラフではないことの証明ができる

注意:「平面グラフ」と「平面的グラフ」の違い

- 1 平面的グラフと平面グラフ
- 2 オイラーの公式
- 3 グラフのマイナーと平面性
- 4 平面グラフの双対グラフ
- 5 応用:正多面体の分類
- 6 今日のまとめ

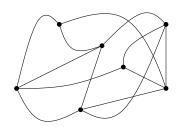
グラフの描画

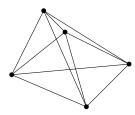
無向グラフ G = (V, E)

定義:グラフの描画とは?

グラフGの描画とは、平面上に次のようにGを表現したもの

- ト 各頂点 $v \in V$ は平面上の点
- ト 各辺 $\{u,v\} \in E$ は u と v を表す点を結ぶ (自己交差のない) 曲線



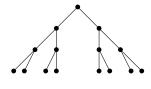


グラフの平面描画

無向グラフ G = (V, E)

定義:グラフの平面描画とは?

グラフGの 平面描画 とは、Gの描画で、 辺を表す曲線どうしが端点以外に共有点を持たないこと



平面描画のことを 平面グラフ とも呼ぶ

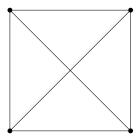
平面的グラフ

無向グラフ G = (V, E)

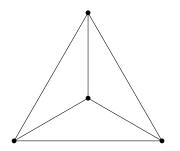
定義:平面的グラフとは?

G が **平面的グラフ** であるとは, G が平面描画を持つこと

例: K_4 は平面的グラフである

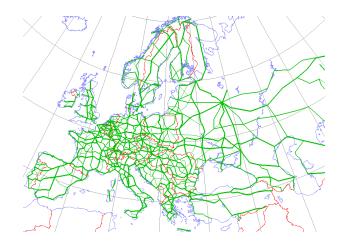


 K_4 の非平面描画



 K_4 の平面描画

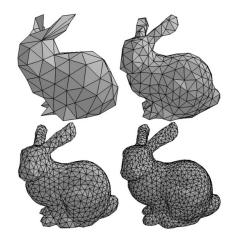
平面グラフが出てくる場面 (1): 道路ネットワーク



 $http://en.wikipedia.org/wiki/File:International_E_Road_Network_green.png$

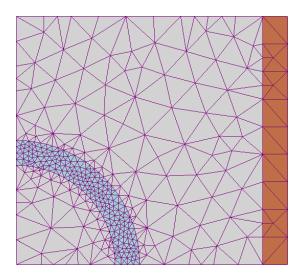
平面的グラフと平面グラフ

平面グラフが出てくる場面 (2): コンピュータグラフィックス (立体モデリング)



https://humaan.com/blog/web-3d-graphics-using-three-js/

平面グラフが出てくる場面 (3):2次元有限要素法 (三角形メッシュ)

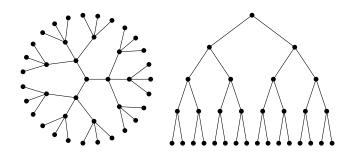


 $http://en.wikipedia.org/wiki/File:Example_of_2D_mesh.png$

木は平面的グラフである

性質:木の平面性

木は平面的グラフである

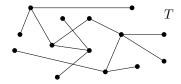


証明:頂点数nに関する帰納法

ightharpoonup n = 1 のとき, グラフは辺を持たないので, 平面的である

証明:頂点数 n に関する帰納法

- ightharpoonup n = 1 のとき, グラフは辺を持たないので, 平面的である
- ▶ $n = k \ge 1$ のとき,頂点数 k の任意の木が平面的グラフであると仮定
- ▶ $n = k + 1 \ge 2$ のとき, 頂点数 k + 1 の任意の木 T を考える



目標: T の平面描画を構成する

証明:頂点数 n に関する帰納法

- ightharpoonup n=1 のとき, グラフは辺を持たないので, 平面的である
- ▶ $n=k\geq 1$ のとき,頂点数 k の任意の木が平面的グラフであると仮定

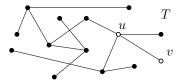
目標: T の平面描画を構成する

木の性質 (復習)

- ▶ 頂点数 2 以上の木は,次数 1 の頂点 (葉)を持つ
- 木から葉を除去しても木である

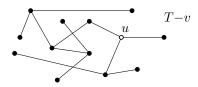
証明:頂点数 n に関する帰納法

ightharpoonup T の任意の葉 v を考え, v に隣接する頂点を u とする



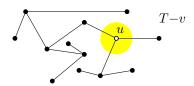
証明:頂点数 n に関する帰納法

- lacktriangleright T の任意の葉 v を考え, v に隣接する頂点を u とする
- ト T-v は頂点数 k の木なので、帰納法の仮定から、 T-v は平面的グラフである



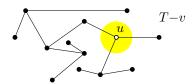
証明:頂点数 n に関する帰納法

- lacktriangleright T の任意の葉 v を考え, v に隣接する頂点を u とする
- ▶ T-v は頂点数 k の木なので、帰納法の仮定から、T-v は平面的グラフである
- ightharpoonup すなわち, T-v は平面描画を持つ



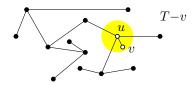
証明:頂点数nに関する帰納法

- ightharpoonup T の任意の葉 v を考え, v に隣接する頂点を u とする
- ト T-v は頂点数 k の木なので、帰納法の仮定から、 T-v は平面的グラフである
- ▶ すなわち, T v は平面描画を持つ
- ト T-v の平面描画において, u を表す点の周りに v を表す点と 辺 $\{u,v\}$ を表す曲線を描く余白がある



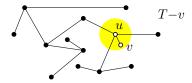
証明:頂点数nに関する帰納法

- lacktriangleright T の任意の葉 v を考え, v に隣接する頂点を u とする
- ト T-v は頂点数 k の木なので、帰納法の仮定から、 T-v は平面的グラフである
- ightharpoonup すなわち, T-v は平面描画を持つ
- ト T-v の平面描画において, u を表す点の周りに v を表す点と 辺 $\{u,v\}$ を表す曲線を描く余白がある

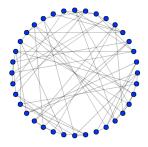


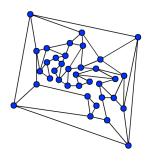
証明:頂点数nに関する帰納法

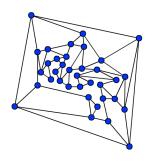
- lacktriangleright T の任意の葉 v を考え, v に隣接する頂点を u とする
- ▶ T-v は頂点数 k の木なので、帰納法の仮定から、T-v は平面的グラフである
- ightharpoonup すなわち, T-v は平面描画を持つ
- ト T-v の平面描画において, u を表す点の周りに v を表す点と 辺 $\{u,v\}$ を表す曲線を描く余白がある
- ▶ したがって、T も平面描画を持つ



- 1 平面的グラフと平面グラフ
- 2 オイラーの公式
- 3 グラフのマイナーと平面性
- 4 平面グラフの双対グラフ
- 5 応用:正多面体の分類
- 6 今日のまとめ



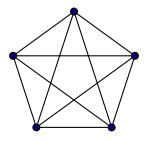


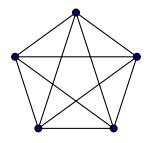


平面的グラフであることを証明するには?

平面描画を見つければよい

http://planarity.net/で,平面描画を作る練習ができる





平面的グラフでないことを証明するには?

「どうやっても平面描画が作れないから」ではもちろん不十分

平面グラフの面

平面グラフ G = (V, E) (平面描画を想定)

定義:平面グラフの面とは?(常識に基づく定義)

Gの \mathbf{m} とは, Gの辺 (を表す曲線) で囲まれた平面上の領域のこと

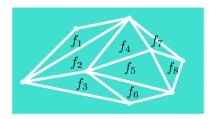
- ▶ G の面で非有界であるものを G の 外面 と呼ぶ
- ▶ G の面をすべて集めた集合を G の 面集合 と呼ぶ

平面グラフの面

平面グラフG = (V, E) (平面描画を想定)

定義:平面グラフの面とは? (常識に基づく定義)

Gの $\mathbf{\overline{n}}$ とは, Gの辺 (を表す曲線) で囲まれた平面上の領域のこと



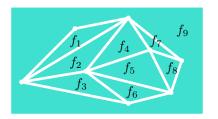
- ▶ G の面で非有界であるものを G の 外面 と呼ぶ
- ▶ G の面をすべて集めた集合を G の 面集合 と呼ぶ

平面グラフの面

平面グラフ G = (V, E) (平面描画を想定)

定義:平面グラフの面とは? (常識に基づく定義)

Gの \mathbf{m} とは, Gの辺 (を表す曲線) で囲まれた平面上の領域のこと



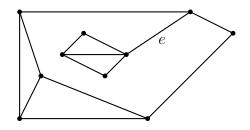
- ▶ G の面で非有界であるものを G の 外面 と呼ぶ
- ▶ G の面をすべて集めた集合を G の 面集合 と呼ぶ

切断辺と面

平面グラフG = (V, E) (平面描画を想定)

性質:切断辺と面

e が G の切断辺 \Leftrightarrow e を境界に持つ面は唯一

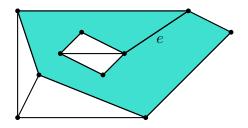


切断辺と面

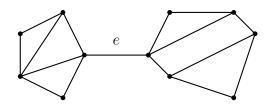
平面グラフG = (V, E) (平面描画を想定)

性質:切断辺と面

e が G の切断辺 \Leftrightarrow e を境界に持つ面は唯一

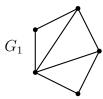


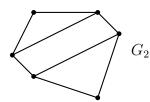
「 \Rightarrow 」の証明: e が G の切断辺であると仮定



「 \Rightarrow 」の証明:eがGの切断辺であると仮定

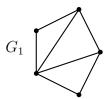
ightharpoonup G - e は G のある連結成分を 2 つに分ける (それらを G_1 , G_2 とする)

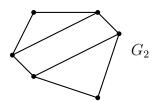




「 \Rightarrow 」の証明:e が G の切断辺であると仮定

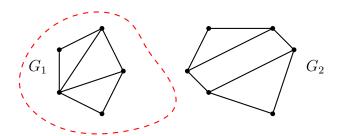
- ightharpoonup G e は G のある連結成分を 2 つに分ける (それらを G_1 , G_2 とする)
- ▶ G は平面グラフなので、 G_1, G_2 も平面グラフであり、 G_1 の辺と G_2 の辺は交差しない





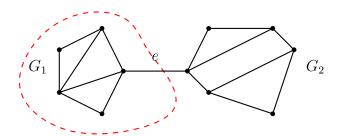
「 \Rightarrow 」の証明: e が G の切断辺であると仮定

- ▶ G e は G のある連結成分を 2 つに分ける (それらを G_1 , G_2 とする)
- ト G は平面グラフなので、 G_1, G_2 も平面グラフであり、 G_1 の辺と G_2 の辺は交差しない
- ▶ ∴ G₁ と G₂ を分離するように閉曲線を描ける



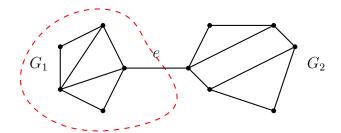
「 \Rightarrow 」の証明:e が G の切断辺であると仮定

- ▶ G e は G のある連結成分を 2 つに分ける (それらを G_1 , G_2 とする)
- ▶ G は平面グラフなので、 G_1, G_2 も平面グラフであり、 G_1 の辺と G_2 の辺は交差しない
- ▶ ∴ G₁ と G₂ を分離するように閉曲線を描ける
- ightharpoonup この閉曲線は、G において、e を持つ面に含まれる

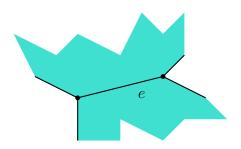


「⇒」の証明:e が G の切断辺であると仮定

- ightharpoonup G e は G のある連結成分を 2 つに分ける (それらを G_1 , G_2 とする)
- ullet G は平面グラフなので, G_1,G_2 も平面グラフであり, G_1 の辺と G_2 の辺は交差しない
- $ightharpoonup : G_1 ext{ } C_2$ を分離するように閉曲線を描ける
- ightharpoonup この閉曲線は、G において、e を持つ面に含まれる
- : e を持つ面は唯一

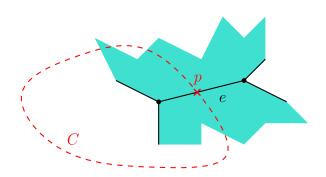


「 \leftarrow 」の証明: e を持つ面が唯一であると仮定 (その面を f とする)



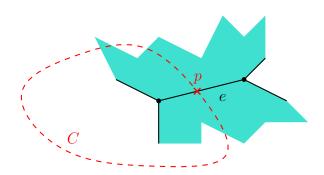
「 \leftarrow 」の証明: eを持つ面が唯一であると仮定 (その面を f とする)

ightharpoonup e 上の点 p から出発し, f の内部だけを通って, p に e の反対側から到達する閉曲線 C が描ける



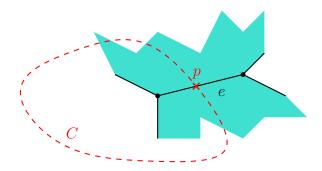
「 \leftarrow 」の証明: e を持つ面が唯一であると仮定 (その面を f とする)

- e 上の点 p から出発し, f の内部だけを通って, p に e の反対側から到達する閉曲線 C が描ける
- e の両端点は C が分離する異なる領域に属する



「 \leftarrow 」の証明: e を持つ面が唯一であると仮定 (その面を f とする)

- ightharpoonup e 上の点 p から出発し, f の内部だけを通って, p に e の反対側から到達する閉曲線 C が描ける
- e の両端点は C が分離する異なる領域に属する
- : e は G の切断辺である



平面グラフG = (V, E) (平面描画を想定)

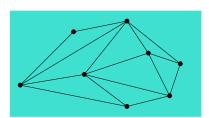
性質:オイラーの公式

(重要)

G の頂点数が n, 辺数が m, 面数が f, 連結成分数が k のとき,

$$n - m + f = 1 + k$$

特に,Gが連結ならば,k=1なので,n-m+f=2



平面グラフG = (V, E) (平面描画を想定)

性質:オイラーの公式

重要)

G の頂点数が n, 辺数が m, 面数が f, 連結成分数が k のとき,

$$n - m + f = 1 + k$$

特に, G が連結ならば, k=1 なので, n-m+f=2

- n = 8
- m = 15
- $\triangleright k = 1$

平面グラフG = (V, E) (平面描画を想定)

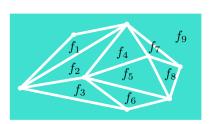
性質:オイラーの公式

(重要)

G の頂点数が n, 辺数が m, 面数が f, 連結成分数が k のとき,

$$n - m + f = 1 + k$$

特に,Gが連結ならば,k=1なので,n-m+f=2



- n = 8
- m = 15
- f = 9
- $\triangleright k = 1$

平面グラフG = (V, E) (平面描画を想定)

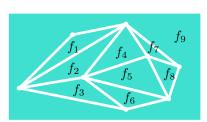
性質:オイラーの公式

(重要)

G の頂点数が n, 辺数が m, 面数が f, 連結成分数が k のとき,

$$n - m + f = 1 + k$$

特に,Gが連結ならば,k=1なので,n-m+f=2



- n = 8
- m = 15
- f = 9
- k=1
- n-m+f=8-15+9=2

オイラーの公式:証明(1)

証明: 辺数 m に関する帰納法

- ▶ m = 0 のとき

オイラーの公式:証明(1)

証明:辺数mに関する帰納法

- ▶ m = 0 のとき
- n = k であり, かつ, f = 1
- ▶ したがって, n-m+f=k-0+1=1+k

オイラーの公式:証明(1)

証明:辺数 m に関する帰納法

- ▶ m = 0 のとき
- ▶ n = k であり, かつ, f = 1
- ▶ したがって, n-m+f=k-0+1=1+k

- ▶ 辺数 $m \ge 0$ の平面グラフがオイラーの公式を満たすと仮定
- ▶ 辺数 $m+1 \ge 1$ の任意の平面グラフ G' を考える

オイラーの公式:証明(2)

- ▶ 辺数 $m'=m+1\geq 1$ の任意の平面グラフ G' を考える
- ightharpoonup G' の頂点数を n', 面数を f', 連結成分数を k' とする

オイラーの公式: 証明 (2)

- ▶ 辺数 $m' = m + 1 \ge 1$ の任意の平面グラフ G' を考える
- ightharpoonup G' の頂点数を n', 面数を f', 連結成分数を k' とする
- ightharpoonup 証明すべきことは, $\left[n'-m'+f'=1+k'
 ight]$

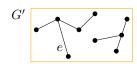
オイラーの公式: 証明 (2)

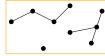
- ▶ 辺数 $m' = m + 1 \ge 1$ の任意の平面グラフ G' を考える
- ightharpoonup G' の頂点数を n', 面数を f', 連結成分数を k' とする
- ightharpoonup 証明すべきことは, n'-m'+f'=1+k'
- ▶ 場合分け
 - (1) G' が閉路を含まない場合
 - (2) G' が閉路を含む場合

オイラーの公式:証明(3)

場合 (1):G' が閉路を含まない場合

- ▶ すなわち, G' は森であり, f'=1
- ▶ $m' \ge 1$ なので, G' は辺を持つ
- ▶ G' の辺を任意に1つ選び, e とする
- ▶ G = G' e として, G の頂点数, 辺数, 面数, 連結成分数をそれぞれ n, m, f, k とする

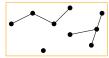




オイラーの公式: 証明 (4)

場合(1):G'が閉路を含まない場合

- ▶ 帰納法の仮定より, n-m+f=1+k である
- ightharpoonup Gも森なので, f=1=f'

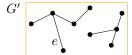


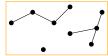
G=G'-e

オイラーの公式: 証明 (4)

場合(1):G'が閉路を含まない場合

- ▶ 帰納法の仮定より, n-m+f=1+k である
- ightharpoonup Gも森なので, f=1=f'
- ト 森の連結成分は木であり、木の任意の辺は切断辺なので、k=k'+1 (第 3 回スライド 24 ページ)





オイラーの公式:証明 (4)

場合 (1):G' が閉路を含まない場合

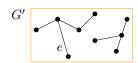
- ▶ 帰納法の仮定より, n-m+f=1+k である
- ▶ G も森なので, f=1=f'
- ▶ 森の連結成分は木であり、木の任意の辺は切断辺なので、k=k'+1 (第 3 回スライド 24 ページ)
- ▶ さらに, n = n' かつ m = m' 1

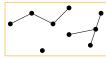


オイラーの公式:証明 (4)

場合 (1):G' が閉路を含まない場合

- ▶ 帰納法の仮定より, n-m+f=1+k である
- ightharpoonup Gも森なので, f=1=f'
- 森の連結成分は木であり、木の任意の辺は切断辺なので、k=k'+1 (第 3 回スライド 24 ページ)
- **>** さらに, n = n' かつ m = m' 1
- ▶ したがって, n'-(m'-1)+f'=1+(k'+1) となる
- ▶ ゆえに, n' m' + f' = 1 + k' となり, この場合の証明は終わる

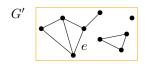




オイラーの公式: 証明 (5)

場合 (2):G' が閉路を含む場合

- ightharpoonup G' の閉路に含まれる辺を任意に1つ選び,eとする
- ▶ G = G' e として, G の頂点数, 辺数, 面数, 連結成分数をそれぞれ n, m, f, k とする



オイラーの公式:証明 (6)

場合 (2):G' が閉路を含む場合

▶ 帰納法の仮定より, n-m+f=1+k である

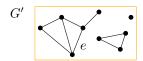
G=G'-e

オイラーの公式: 証明 (6)

場合 (2):G' が閉路を含む場合

- ▶ 帰納法の仮定より, n-m+f=1+k である
- ▶ 閉路に含まれる辺は切断辺ではないので, k = k'

(第3回スライド36ページ)



オイラーの公式:証明(6)

場合 (2):G' が閉路を含む場合

- ▶ 帰納法の仮定より, n-m+f=1+k である
- ▶ 閉路に含まれる辺は切断辺ではないので、k = k' (第3回スライド36ページ)
- ▶ e を除去することで, e を境界上に持つ 2 つの面が 1 つになるので, f = f' 1



オイラーの公式:証明(6)

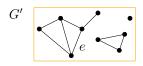
場合 (2):G' が閉路を含む場合

- ▶ 帰納法の仮定より, n-m+f=1+k である
- ▶ 閉路に含まれる辺は切断辺ではないので、k = k' (第3回スライド36ページ)
- ▶ e を除去することで, e を境界上に持つ 2 つの面が 1 つになるので, f=f'-1
- ▶ さらに, n = n' かつ m = m' 1

オイラーの公式:証明(6)

場合 (2):G' が閉路を含む場合

- ▶ 帰納法の仮定より, n-m+f=1+k である
- ▶ 閉路に含まれる辺は切断辺ではないので、 k = k' (第3回スライド36ページ)
- ▶ e を除去することで, e を境界上に持つ 2 つの面が 1 つになるので, f=f'-1
- ▶ さらに, n = n' かつ m = m' 1
- ▶ したがって, n'-(m'-1)+(f'-1)=1+k' となる
- ▶ ゆえに, n'-m'+f'=1+k' となり, この場合の証明も終わる [



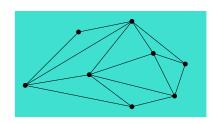
平面的グラフの辺数

連結無向グラフ G = (V, E)

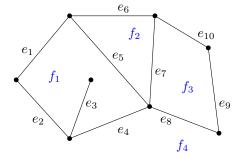
性質:平面的グラフの辺数は小さい

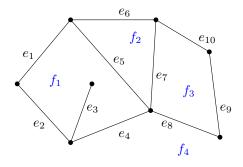
G が平面的で, $|V| \geq 3$ ならば,

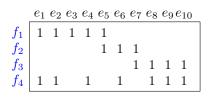
$$|E| \le 3|V| - 6$$

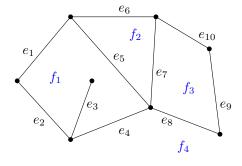


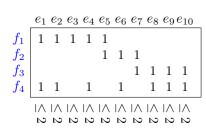
- |V| = 8
- |V| 6 = 18
- |E| = 15

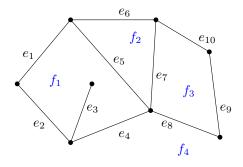


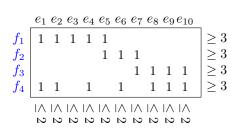




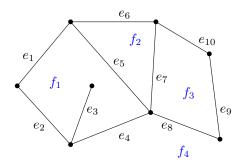


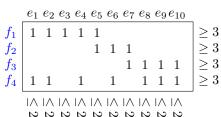




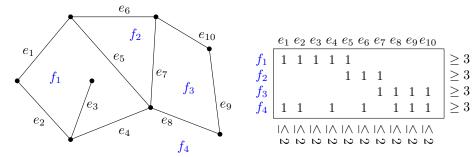


数え上げ論法 + オイラーの公式





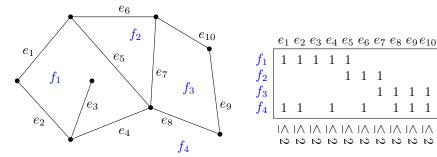
▶ 3f ≤ 2m



- ▶ 3*f* ≤ 2*m*
- ▶ オイラーの公式より, 1+k=n-m+f

$$1 + k = n - m +$$

数え上げ論法 + オイラーの公式

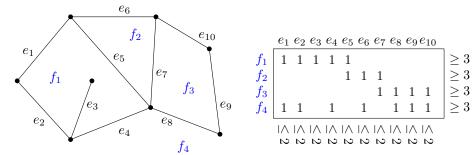


- ▶ 3*f* ≤ 2*m*

▶ オイラーの公式より,
$$1+k=n-m+f \le n-m+\frac{2}{3}m$$

 $\begin{array}{l} \geq 3 \\ \geq 3 \\ \geq 3 \\ \geq 3 \end{array}$

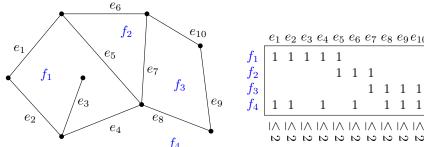
数え上げ論法 + オイラーの公式



- ▶ 3*f* ≤ 2*m*
- ト オイラーの公式より, $2=1+k=n-m+f\leq n-m+\frac{2}{3}m$

注:n=3 のときだけ個別の扱いが必要

数え上げ論法 + オイラーの公式



- ▶ $3f \le 2m$
- ▶ オイラーの公式より, $2 = 1 + k = n m + f \le n m + \frac{2}{3}m$
- ▶ : m < 3n 6

注:n = 3 のときだけ個別の扱いが必要

平面的グラフの辺数:証明(1)

- ▶ 頂点数 |V|=3 のとき,連結グラフの辺数 |E| は3以下
- ▶ よって, $|E| \le 3 = 3 \cdot 3 6 = 3 \cdot |V| 6$ で成立
- ▶ したがって, $|V| \ge 4$ と仮定
- ightharpoonup ここで、辺集合を E, 面集合を F として、数え上げ論法を適用
- ▶ 行列 $M \in \mathbb{R}^{E \times F}$ を次で定義する

任意の
$$e \in E, f \in F$$
 に対して, $M_{e,f} = \begin{cases} 1 & (e \text{ if } f \text{ of } g \text{ of }$

平面的グラフの辺数:証明(2)

 $lackbrack |V| \geq 4$ なので,各面 $f \in F$ の境界上には 3 つ以上辺が存在し, ゆえに

$$\sum_{e \in E} \sum_{f \in F} M_{e,f} = \sum_{f \in F} \left(\sum_{e \in E} M_{e,f} \right) \ge \sum_{f \in F} 3 = 3|F|$$

ightharpoonup 一方,各辺 $e \in E$ は高々 2 つの面の境界にしか存在しないので

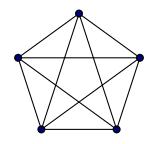
$$\sum_{e \in E} \sum_{f \in F} M_{e,f} = \sum_{e \in E} \left(\sum_{f \in F} M_{e,f} \right) \le \sum_{e \in E} 2 = 2|E|$$

- ▶ したがって, $3|F| \le 2|E|$.
- ▶ オイラーの公式から, |V| |E| + |F| = 2 が成り立つので,

$$2 = |V| - |E| + |F| \le |V| - |E| + \frac{2}{3}|E| = |V| - \frac{1}{3}|E|$$

▶ したがって, $|E| \le 3|V| - 6$

このグラフは平面的グラフか?:証明

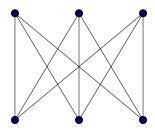


平面的ではないことの証明

- ▶ 頂点数 |V| は 5, 辺数 |E| は 10
- $|V| 6 = 3 \cdot 5 6 = 9 < 10 = |E|$
- ▶ $\therefore |E| \le 3|V| 6$ を満たさないので、平面的グラフではない

このグラフも平面的ではない

(演習問題)



性質:K3を含まない平面的グラフの辺数はもっと小さい

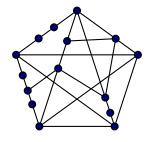
(演習問題)

G が平面的で K_3 を部分グラフとして持たず, $|V| \ge 3$ ならば

$$|E| \le 2|V| - 4$$

- 1 平面的グラフと平面グラフ
- 2 オイラーの公式
- 3 グラフのマイナーと平面性
- 4 平面グラフの双対グラフ
- 5 応用:正多面体の分類
- 6 今日のまとめ

このグラフも平面的ではないが, なぜか?



注:
$$|E| = 24 < 39 = 3 \cdot 15 - 6 = 3 \cdot |V| - 6$$

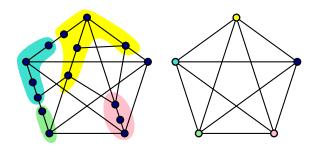
このグラフも平面的ではないが, なぜか?

注:
$$|E| = 24 < 39 = 3 \cdot 15 - 6 = 3 \cdot |V| - 6$$

答え

このグラフは K_5 から「作られている」から

このグラフも平面的ではないが, なぜか?



注:
$$|E| = 24 < 39 = 3 \cdot 15 - 6 = 3 \cdot |V| - 6$$

答え

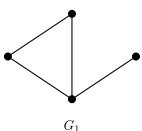
このグラフは K_5 から「作られている」から

無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$

定義:グラフのマイナーとは?

 G_1 が G_2 の **マイナー** であるとは, V_2 の分割 $V_2^0, V_2^1, V_2^2, \ldots, V_2^n$ が存在して次が成り立つこと

1 任意の $i \in \{1, \dots, n\}$ に対して $G[V_2^i]$ は連結



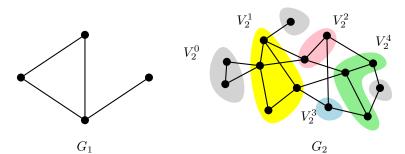
 G_2

無向グラフ $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$

定義:グラフのマイナーとは?

 G_1 が G_2 の **マイナー** であるとは, V_2 の分割 $V_2^0, V_2^1, V_2^2, \dots, V_2^n$ が存在して次が成り立つこと

1 任意の $i \in \{1,\ldots,n\}$ に対して $G[V_2^i]$ は連結

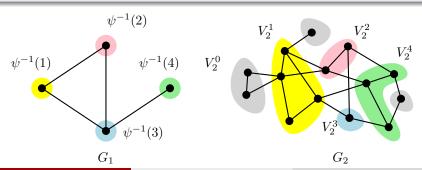


無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$

定義:グラフのマイナーとは?

 G_1 が G_2 の **マイナー** であるとは, V_2 の分割 $V_2^0, V_2^1, V_2^2, \dots, V_2^n$ が存在して次が成り立つこと

2 全単射 $\psi\colon V_1 o\{1,\dots,n\}$ が存在して次を満たす $\{u,v\}\in E_1$ ならば, $V_2^{\psi(u)}$ と $V_2^{\psi(v)}$ の間に辺がある

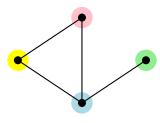


無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$

定義:グラフのマイナーとは?

 G_1 が G_2 の **マイナー** であるとは, V_2 の分割 $V_2^0, V_2^1, V_2^2, \dots, V_2^n$ が存在して次が成り立つこと

2 全単射 $\psi\colon V_1 \to \{1,\dots,n\}$ が存在して次を満たす $\{u,v\}\in E_1$ ならば, $V_2^{\psi(u)}$ と $V_2^{\psi(v)}$ の間に辺がある



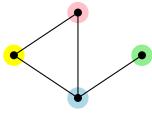
 G_2

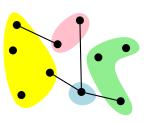
無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$

定義:グラフのマイナーとは?

 G_1 if G_2 or $\mathbf{\nabla} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d}$ representation V_2 の分割 $V_2^0, V_2^1, V_2^2, \dots, V_2^n$ が存在して次が成り立つこと

2 全単射 $\psi: V_1 \to \{1, \ldots, n\}$ が存在して次を満たす $\{u,v\} \in E_1$ ならば, $V_2^{\psi(u)} \geq V_2^{\psi(v)}$ の間に辺がある





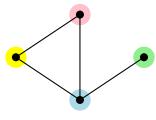
 G_2

無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$

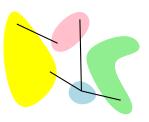
定義:グラフのマイナーとは?

 G_1 if G_2 on $\mathbf{\nabla} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d}$ reposition. V_2 の分割 $V_2^0, V_2^1, V_2^2, \dots, V_2^n$ が存在して次が成り立つこと

2 全単射 $\psi: V_1 \to \{1, \ldots, n\}$ が存在して次を満たす $\{u,v\} \in E_1$ ならば, $V_2^{\psi(u)} \geq V_2^{\psi(v)}$ の間に辺がある



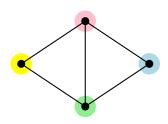
 G_1



 G_2

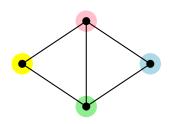
無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

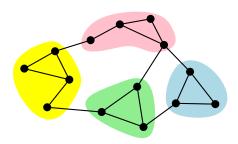
性質: 平面的グラフのマイナーは平面的



無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

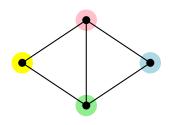
性質: 平面的グラフのマイナーは平面的

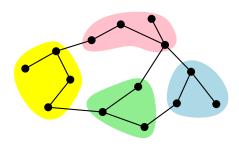




無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

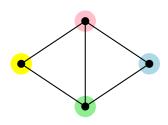
性質: 平面的グラフのマイナーは平面的

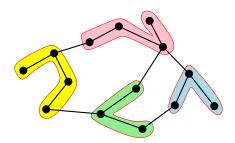




無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

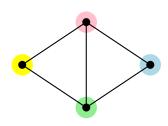
性質: 平面的グラフのマイナーは平面的

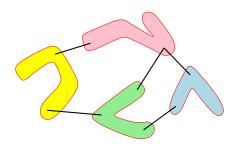




無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

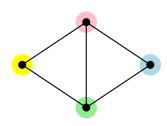
性質: 平面的グラフのマイナーは平面的

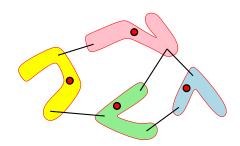




無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

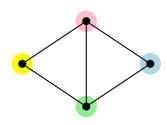
性質: 平面的グラフのマイナーは平面的

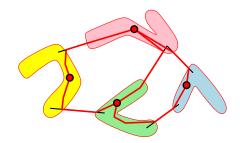




無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

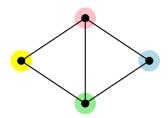
性質: 平面的グラフのマイナーは平面的

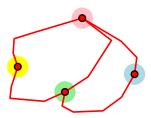




無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

性質: 平面的グラフのマイナーは平面的





マイナーと平面性:証明

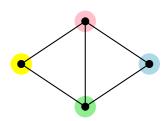
無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

性質:平面的グラフのマイナーは平面的

 G_2 が平面的 $\Rightarrow G_1$ も平面的

<u>証明</u>: G_1 は G_2 のマイナーなので、マイナーの定義にある V_2 の分割 $V_2^0, V_2^1, \dots, V_2^n$ と全単射 $\psi \colon V_1 \to \{1, \dots, n\}$ が存在

▶ このときに、 V_2^0 を削除し、 V_2^i $(i \in \{1, ..., n\})$ を「縮約」すると、 G_1 の平面描画が得られる



マイナーと平面性:対偶

無向グラフ $G_1=(V_1,E_1),G_2=(V_2,E_2)$, G_1 は G_2 のマイナー

性質:平面的グラフのマイナーは平面的

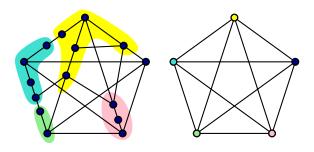
 G_2 が平面的 $\Rightarrow G_1$ も平面的

この性質の対偶を考えると,次が正しいと分かる

性質: 非平面的グラフをマイナーとして含むグラフは非平面的

 G_1 が平面的ではない $\Rightarrow G_2$ は平面的ではない

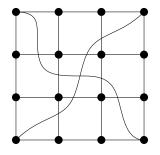
このグラフも平面的ではないが, なぜか?



答え

 K_5 はこのグラフのマイナーであり、 K_5 は平面的ではないから

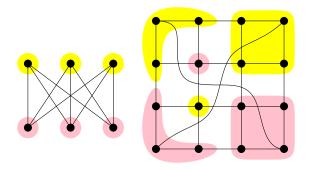
このグラフも平面的ではないが, なぜか?



グラフのマイナーと平面性

このグラフは平面的グラフか?:別の例パート3

このグラフも平面的ではないが, なぜか?



- ► K_{3.3} は平面的ではない (既出, 演習問題)
- $ightharpoonup K_{3,3}$ はこのグラフのマイナーである

非平面的グラフであるための証拠

実は、次の性質が成り立つ(証明は難しい)

ワグナーの定理 (1937)

無向グラフGに対して、次は同値

- *G* は平面的グラフ
- \mathbf{Z} K_5 と $K_{3,3}$ が G のマイナーではない
 - ▶ 今までの議論で「 1 ⇒ 2」が分かる
- ▶ 難しいのは「2 ⇒ 1」の証明

しかし、ワグナーの定理のフルパワーを ここでは必要としない

平面性と非平面性の証拠

無向グラフGに対して

G が平面的グラフで 53 ことを証明するためには…

G の平面描画を見つければよい

G が平面的グラフで ない ことを証明するためには…

 K_5 か $K_{3,3}$ が G のマイナーであることを示せばよい

ワグナーの定理は, これが必ず可能であることを保証してくれる

- 1 平面的グラフと平面グラフ
- 2 オイラーの公式
- 3 グラフのマイナーと平面性
- 4 平面グラフの双対グラフ
- 5 応用:正多面体の分類
- 6 今日のまとめ

平面グラフの双対グラフ

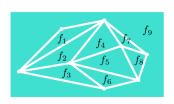
切断辺を持たない平面グラフ G=(V,E) (平面描画を想定), G の面集合 F

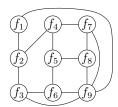
定義:平面グラフの双対グラフ

G の双対グラフ G^* とは,次のようにして作られるグラフ

- ▶ G* の頂点集合 = F

G は切断辺を持たないので, G^* は確かにグラフとして定義される





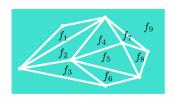
[]: これはいろいろな書籍にある定義と異なる (かもしれない)

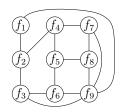
平面グラフの双対グラフは平面的

切断辺を持たない平面グラフG = (V, E) (平面描画を想定), G の面集合 F

性質: 平面グラフの双対グラフは平面的

G の双対グラフ G^* は平面的グラフ

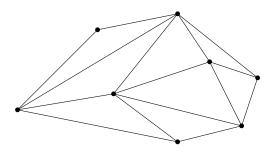




証明:実際に、 G^* の平面描画を構成すればよい

平面グラフの双対グラフは平面的:証明

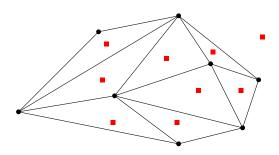
G* の平面描画を次のように構成できる



平面グラフの双対グラフは平面的:証明

G* の平面描画を次のように構成できる

▶ G* の頂点は,対応する G の面の内部に置く

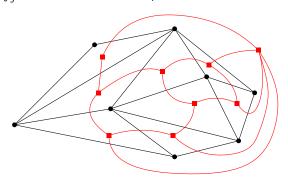


平面グラフの双対グラフは平面的:証明

G* の平面描画を次のように構成できる

- ▶ G* の頂点は,対応する G の面の内部に置く
- $ightharpoonup G^*$ の辺 $\{f_i, f_j\}$ は次のように描く

 - ▶ f_i 内に置かれた頂点と f_j 内に置かれた頂点を結ぶ曲線を $f_i \cup f_i \cup e$ の中を通るように, 交差なく描く



- 1 平面的グラフと平面グラフ
- 2 オイラーの公式
- 3 グラフのマイナーと平面性
- 4 平面グラフの双対グラフ
- 5 応用:正多面体の分類
- 6 今日のまとめ

正多面体 (3次元)

正多面体とは、各面が合同な正多角形であり、 各頂点に集まる面の数が同じであるような多面体のこと

止凹面体 止六面体

正八面体

正十二面体

/ :I:/DL : : !:

http://en.wikipedia.org/wiki/Platonic_solid

疑問

この5つの他に,正多面体はあるのか?

正多面体 (3次元)

正多面体とは,各面が合同な正多角形であり, 各頂点に集まる面の数が同じであるような多面体のこと

止四面体 止六面体

(ш/म

止丁—Щ1

http://en.wikipedia.org/wiki/Platonic_solid

疑問

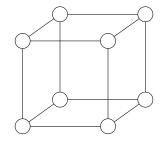
この5つの他に,正多面体はあるのか?

解答

この5つの他に,正多面体は存在しない

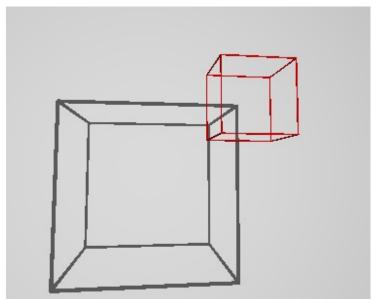
凸多面体のグラフ

凸多面体から無向グラフが作れる

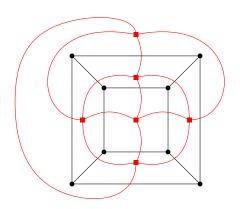


- ▶ グラフの頂点 = 多面体の頂点
- ▶ グラフの辺 = 多面体の辺

凸多面体のグラフは平面的グラフ



凸多面体のグラフとその双対グラフ



設定

- ▶ 頂点数 n, 辺数 m, 面数 f とする
- 各面が正 p 角形であるとする
- 各頂点の次数が q であるとする

設定

- ▶ 頂点数 n, 辺数 m, 面数 f とする
- ▶ 各面が正 p 角形であるとする
- ▶ 各頂点の次数が *q* であるとする
- ▶ n m + f = 2

(オイラーの公式)

設定

- ▶ 頂点数 n, 辺数 m, 面数 f とする
- 各面が正 p 角形であるとする
- 各頂点の次数が q であるとする

$$n - m + f = 2$$

$$ightharpoonup qn = 2m$$

(握手補題)

設定

- ▶ 頂点数 n, 辺数 m, 面数 f とする
- ▶ 各面が正 p 角形であるとする
- ▶ 各頂点の次数が q であるとする

$$n - m + f = 2$$

$$ightharpoonup qn = 2m$$

$$ightharpoonup pf = 2m$$

(オイラーの公式)

(握手補題)

(双対に対する握手補題)

設定

- ▶ 頂点数 n, 辺数 m, 面数 f とする
- 各面が正 p 角形であるとする
- ▶ 各頂点の次数が q であるとする

$$n - m + f = 2$$

$$ightharpoonup qn = 2m$$

$$ightharpoonup pf = 2m$$

(オイラーの公式)

(握手補題)

(双対に対する握手補題)

設定

- ▶ 頂点数 n, 辺数 m, 面数 f とする
- 各面が正 p 角形であるとする
- ▶ 各頂点の次数が q であるとする

$$n - m + f = 2$$

$$ightharpoonup qn = 2m$$

$$ightharpoonup pf = 2m$$

$$\therefore \frac{1}{q} + \frac{1}{p} = \frac{1}{2} + \frac{1}{m}$$

(オイラーの公式)

(握手補題)

(双対に対する握手補題)

設定

- ▶ 頂点数 n, 辺数 m, 面数 f とする
- ▶ 各面が正 p 角形であるとする
- ▶ 各頂点の次数が q であるとする

▶
$$n - m + f = 2$$

$$ightharpoonup qn = 2m$$

$$ightharpoonup pf = 2m$$

$$\therefore \frac{2m}{q} - m + \frac{2m}{p} = 2$$

$$\therefore \frac{1}{q} + \frac{1}{p} = \frac{1}{2} + \frac{1}{m}$$

$$lacktriangleright m \geq 1$$
なので、 $rac{1}{q} + rac{1}{p} > rac{1}{2}$

(オイラーの公式)

(握手補題)

、 (双対に対する握手補題)

▶ この式 $\frac{1}{q}+\frac{1}{p}>\frac{1}{2}$ を満たす $p\geq 3$ と $q\geq 3$ は次の表の通り

p	q	
3	3	
3	4	
3	5	
4	3	
5	3	

▶ この式 $\frac{1}{q}+\frac{1}{p}>\frac{1}{2}$ を満たす $p\geq 3$ と $q\geq 3$ は次の表の通り

p	q	n	m	f
3	3	4	6	4
3	4	6	12	8
3	5	12	30	20
4	3	8	12	6
5	3	20	6 12 30 12 30	12

ト この式 $\frac{1}{q}+\frac{1}{p}>\frac{1}{2}$ を満たす $p\geq 3$ と $q\geq 3$ は次の表の通り

p	q	n	m	f	
3	3	4	6	4	正四面体
3	4	6	12	8	正八面体
3	5	12	30	20	正二十面体
4	3	8	12	6	正六面体
5	3	20	30	12	正十二面体

▶ この式 $\frac{1}{q} + \frac{1}{p} > \frac{1}{2}$ を満たす $p \geq 3$ と $q \geq 3$ は次の表の通り

p	q	n	m	f	
3	3	4	6	4	正四面体
3	4	6	12	8	正八面体
3	5	12	30	20	正二十面体
4	3	8	12	6	正六面体
5	3	20	30	12	正十二面体

▶ つまり,正四面体,正六面体,正八面体,正十二面体,正二十面体以外に正多面体は存在しない

目次

- ① 平面的グラフと平面グラフ
- ② オイラーの公式
- ③ グラフのマイナーと平面性
- 4 平面グラフの双対グラフ
- ⑤ 応用:正多面体の分類
- 6 今日のまとめ

今日のまとめ

今日の目標

平面グラフに関する基礎を理解し,次ができるようになる

- ▶ 平面グラフの構造 (頂点, 辺, 面) を記述できる
- ▶ オイラーの公式を用いて平面的グラフではないことの証明ができる
- ▶ グラフのマイナーを用いて平面的グラフではないことの証明ができる

注意:「平面グラフ」と「平面的グラフ」の違い

- 1 平面的グラフと平面グラフ
- 2 オイラーの公式
- 3 グラフのマイナーと平面性
- 4 平面グラフの双対グラフ
- 5 応用:正多面体の分類
- 6 今日のまとめ