グラフとネットワーク 第0回

ガイダンス

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2021年4月9日

最終更新: 2021年4月11日 23:02

主題

離散最適化の入門として,次を概説する

- ▶ グラフとネットワークを用いた数理モデル化
- アルゴリズム的解法の背後にある数理

キャッチフレーズ: 「本当の離散数学がここから始まる」

達成目標

以下の4項目をすべて達成すること

- 現実世界の諸問題をグラフやネットワークで表現し、 数理モデルを構築できる
- 3 アルゴリズム的解法の背後にある数理,特に,最小最大定理の 重要性を説明でき、それを用いて最適性の**証明**ができる
- 4 グラフとネットワークに関する簡単な数学的事実を**証明**できる

どんな問題を扱うのか:例1 — 優勝可能性の判定

MLB アメリカンリーグ 東地区 1996 年 8 月 30 日 金曜日

チーム名	勝	敗	残	NYY	BAL	BOS	TOR	DET	他地区
NYY	75	59	28	_	3	8	7	3	7
BAL	71	63	28	3	_	2	7	4	12
BOS	69	66	27	8	2	_	0	0	17
TOR	63	72	27	7	7	0	_	0	13
DET	49	86	27	3	4	0	0	_	20

NYY = ニューヨーク・ヤンキース, BAL = ボルティモア・オリオールズ,

BOS = #X \(\nu\)\(\n

 $\mathsf{DET} = \vec{r} \mathsf{P} \mathsf{D} \mathsf{T} \mathsf{F} \cdot \mathsf{P} \mathsf{T} \mathsf{T} \mathsf{F} \mathsf{T}$

優勝可能性判定問題

DET はまだ地区優勝が可能か?

(注:引き分けはない)

https://s2.smu.edu/~olinick/riot/detroit.html

どんな問題を扱うのか:例1 — 優勝可能性の判定

MLB アメリカンリーグ 東地区 1996 年 8 月 30 日 金曜日

チーム名	勝	敗	残	NYY	BAL	BOS	TOR	DET	他地区
NYY	75	59	28	_	3	8	7	3	7
BAL	71	63	28	3	_	2	7	4	12
BOS	69	66	27	8	2	_	0	0	17
TOR	63	72	27	7	7	0	_	0	13
DET	49	86	27	3	4	0	0	_	20

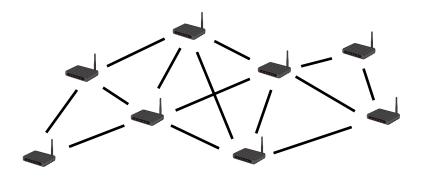
優勝可能性判定問題

DET はまだ地区優勝が可能か?

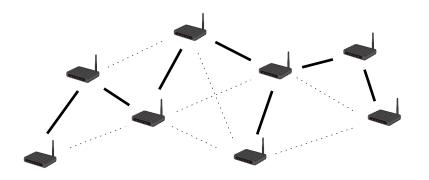
(注:引き分けはない)

→ 最大流

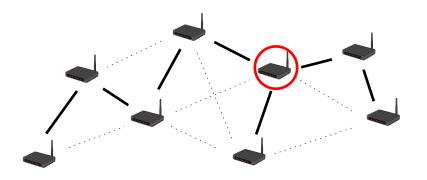
https://s2.smu.edu/~olinick/riot/detroit.html


センサネットワークにおける通信

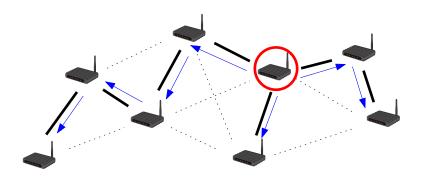
どのようにルーティング経路を設定すれば十分か?


センサネットワークにおける通信

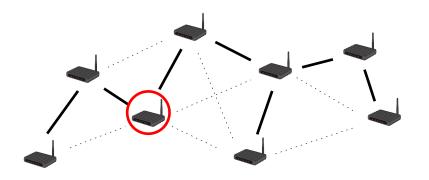
どのようにルーティング経路を設定すれば十分か?


センサネットワークにおける通信

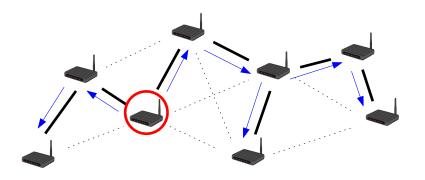
どのようにルーティング経路を設定すれば十分か?


センサネットワークにおける通信

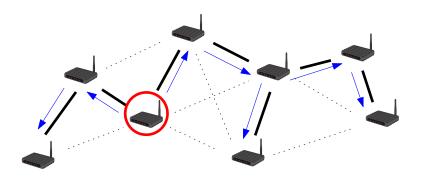
どのようにルーティング経路を設定すれば十分か?


センサネットワークにおける通信

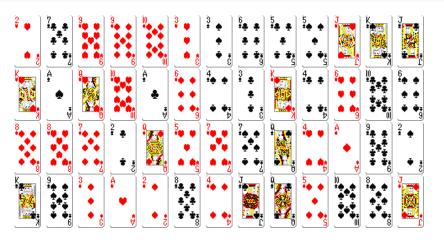
どのようにルーティング経路を設定すれば十分か?


センサネットワークにおける通信

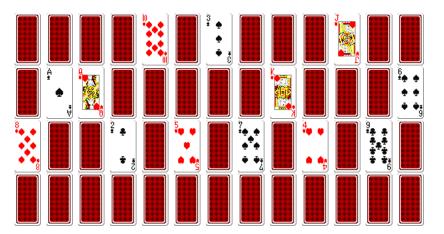
どのようにルーティング経路を設定すれば十分か?


センサネットワークにおける通信

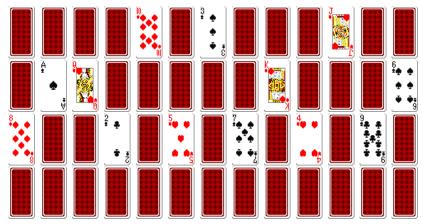
どのようにルーティング経路を設定すれば十分か?


センサネットワークにおける通信

どのようにルーティング経路を設定すれば十分か?



→ 全域木, 連結性


どんな問題を扱うのか:例3 — トランプ・マジック?

どんな問題を扱うのか:例3 — トランプ・マジック?

どんな問題を扱うのか:例3 — トランプ・マジック?

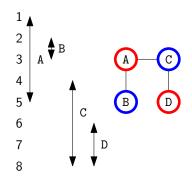
~→ マッチング

どんな問題を扱うのか:例4 — コンパイラにおけるレジスタ割当

$$1: A = 2$$

$$2: B = 3$$

$$3: B = B + 2$$


$$4: C = A + 1$$

$$5: A = C + 3$$

$$6: D = 4$$

$$7: D = C + 2$$

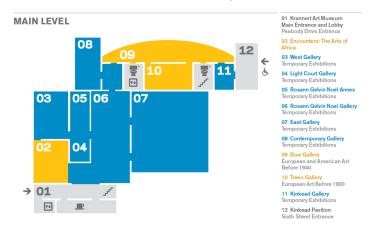
8: C = 3

$$1: R1 = 2$$

$$2: R2 = 3$$

$$3: R2 = R2 + 2$$

$$4: R2 = R1 + 1$$

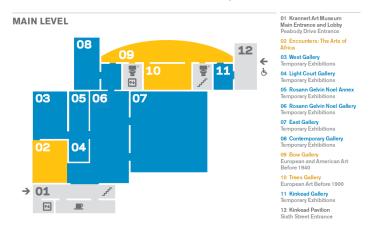

5:
$$R1 = R2 + 3$$

6: $R1 = 4$

$$7: R1 = R2 + 2$$

$$8: R2 = 3$$

どんな問題を扱うのか:例5 — 監視カメラの設置


360 度見渡せる監視カメラを何個設置すれば、隈なく監視できるのか?

https://kam.illinois.edu/files/Map-main-f2017.png

どんな問題を扱うのか:例5 — 監視カメラの設置

360 度見渡せる監視カメラを何個設置すれば、隈なく監視できるのか?

https://kam.illinois.edu/files/Map-main-f2017.png

スケジュール 前半 (予定)

0 ガイダンス	(4/9)
- バーコの今羊 いた粉・粉団	(4/10)

1 クラフの定義と次数: 数埋 (4/16) 2 道と閉路: 数理 (4/23)

2 道と閉路:数理(4/23)3 木:数理(4/30)

4 マッチング:数理 (5/7)

5 マッチング: モデル化 (5/14)

6 最大流:数理 (5/21)

7 最大流:モデル化(1)割当 (5/28)

注意:予定の変更もありうる

スケジュール 後半 (予定)

🛾 最大流:モデル化(2)二部グラフの最大マッチング	(6/4)
----------------------------	-------

9 最大流:モデル化(3)カットの視点 (6/11)

 ic 連結性:数理とモデル化
 (6/18)

11 彩色:数理 (6/25)

※色:モデル化 (7/2)

▼ 平面グラフ:数理 (7/9)▼ 平面グラフ:モデル化 (7/16)

* 予備 (8/13)

(0) 10

注意:予定の変更もありうる

情報

教員

- 岡本 吉央 (おかもと よしお)
- ▶ 居室: 西 4 号館 2 階 206 号室
- ► E-mail: okamotoy@uec.ac.jp
- Web: http://dopal.cs.uec.ac.jp/okamotoy/

ティーチング・アシスタント

- ▶ 鈴木 絢香 (すずき あやか)
- ▶ 居室:西4号館2階202号室(岡本研究室)

講義資料

- Web: http://dopal.cs.uec.ac.jp/okamotoy/lect/2021/gn/
- ▶ Google Classroom:内部シラバス参照

http://dopal.cs.uec.ac.jp/okamotoy/lect/2021/gn/

- ▶ スライド
- ▶ 印刷用スライド:8枚のスライドを1ページに収めたもの
- ▶ 演習問題
- ▶ 用語一覧
- Jupyter Notebook (Python 3)
- 講義動画 (オンデマンド授業)
- ▶ 復習動画 (リアルタイム授業の録画)

授業の受け方

授業時間まで

講義動画 (オンデマンド) を視聴する

- ▶ 質問・コメントを Classroom で投稿する
- ▶ 授業内演習問題の解答を準備しておく

(前日の 21:00 まで)

授業時間中

リアルタイム授業を受講する

- ▶ 授業内容について質問・討論を行う (←復習動画として公開される)
- ▶ グループワークで授業内演習問題に取り組む

授業時間の後

演習問題に取り組む

▶ 取り組み方については後述

いずれにおいても、出席は取らない (評価の対象とならない)

演習問題

演習問題の種類

授業内問題:リアルタイム授業で扱う

▶ 復習問題:講義で取り上げた内容を反復

補足問題:講義で省略した内容を補足

▶ 追加問題:講義の内容に追加

▶ 発展問題:少し難しい(かもしれない)

演習問題の進め方

- ▶ 授業内問題は、リアルタイム授業で扱う
- それ以外の問題は,自習用
- ▶ 注意:「模範解答」のようなものは存在しない

演習問題 (続)

答案の提出

- ▶ 演習問題の答案をレポートとして提出 してもよい
- ▶ レポートには提出締切がある (各回にて指定)
- レポートは採点されない (成績に勘案されない)
- レポートにはコメントがつけられて,返却される
 - ▶ 返却された内容については、再提出ができる (再提出締切は原則なし)

成績評価

評価方法: 2回のレポート提出 **のみ** による

- ▶ 出題形式
 - ▶ 演習問題と同じ形式の問題を5題出題する
 - ▶ その中の2題以上は演習問題として提示されたものと同一である (ただし、「発展」として提示された演習問題は出題されない)
 - ▶ 全問に解答する
- 配点:1 題 10 点満点

評価基準 : レポート1の素点 + レポート2の素点

▶ これ以外の要素は成績評価に考慮されない

格言

格言 (三省堂 大辞林)

短い言葉で、人生の真理や処世術などを述べ、教えや戒めとした言葉。 「石の上にも三年」「沈黙は金」など。金言。

格言(この講義における)

講義内容とは直接関係ないかもしれないが, 私 (岡本) が重要だと思うこと

格言 (の例)

単位取得への最短の道のりは,授業に出て,演習問題を解くこと

教科書・参考書

教科書

指定しない

参考書

- ▶ 藤重悟,「グラフ・ネットワーク・組合せ論」, 共立出版, 2002.
- ▶ 繁野麻衣子,「ネットワーク最適化とアルゴリズム」,朝倉書店,2010.
- ▶ R.J. ウィルソン (著), 西関隆夫, 西関裕子 (訳), 「グラフ理論入門 原書第4版」, 近代科学社, 2001.
- ▶ 茨木俊秀,永持仁,石井利昌,「グラフ理論」,朝倉書店,2010.
- ▶ など

目次

1 ネットワークの展覧会

今から紹介する例に共通すること

間違った認識

現実世界には たくさん ネットワークが 存在する

正しい認識

現実世界には たくさん ネットワークと見なせることが 存在する

- ▶ 「ネットワーク」としてモデル化している
- 「グラフ」はネットワークの数理モデルとして使われる

その他の例は 今後の講義や 他の講義の中で

https://www.kotsu.city.nagoya.jp/jp/pc/subway/images/subway_routemap.png

道路ネットワーク

https://en.wikipedia.org/wiki/File:International_E_Road_Network_green.png

輸送ネットワーク

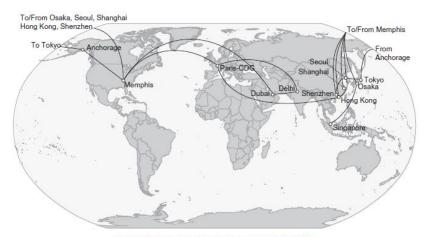
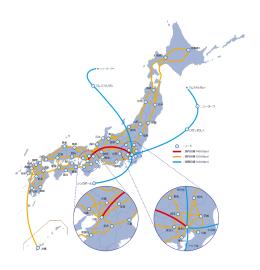
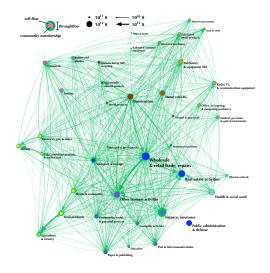
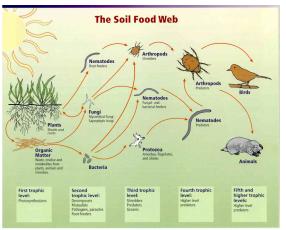



Fig. 8. FedEx Boeing 777-200LRF direct lanes. Source; FedEx (2011b).

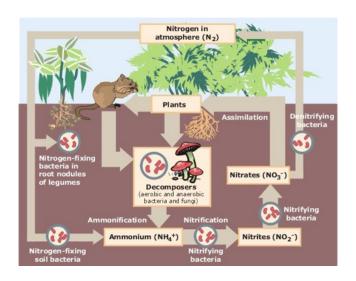

J. T. Bowen Jr. (2012), J. Trans. Geography, 24, pp. 419-431

情報通信ネットワーク

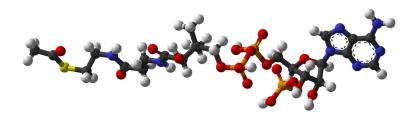

https://www.sinet.ad.jp/aboutsinet

産業連関ネットワーク

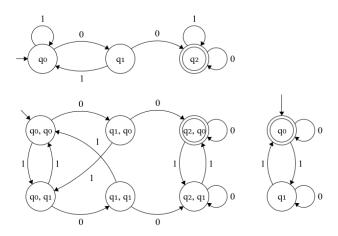
J. McNerney, et al. (2013), Physica A, 392, pp. 6427-6411


食物網

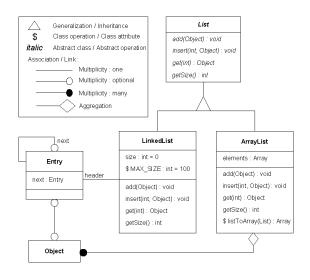
Relationships between soil food web, plants, organic matter, and birds and mammals Image courtesy of USDA Natural Resources Conservation Service http://soils.usda.gov/sgi/soil_uaulity/soil_biologv/soil_food_web.html.


https://en.wikipedia.org/wiki/File:Soil_food_webUSDA.jpg

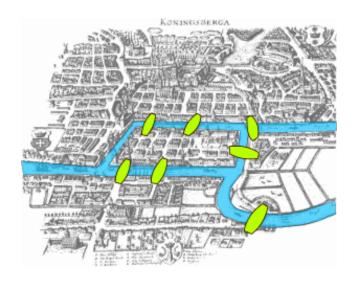
窒素循環


https://en.wikipedia.org/wiki/File:Nitrogen_Cycle.jpg

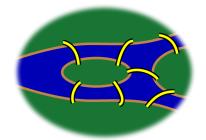
分子模型

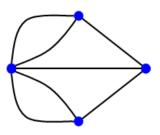

https://commons.wikimedia.org/wiki/File:Acetyl-CoA-3D-balls.png

状態遷移図


https://commons.wikimedia.org/wiki/File:Intersection1.png

オブジェクトモデル図


 $https://en.wikipedia.org/wiki/File:OMT_object_diagram.png$


ケーニヒスベルクの橋の問題 (オイラー, 1735年)

http://en.wikipedia.org/wiki/File:Konigsberg_bridges.png

ケーニヒスベルクの橋の問題:続き

 $https://en.wikipedia.org/wiki/Seven_Bridges_of_K\"{o}nigsberg$

紹介した例に共通すること (再掲)

間違った認識

現実世界には たくさん ネットワークが 存在する

正しい認識

現実世界には たくさん ネットワークと見なせることが 存在する

- 「ネットワーク」としてモデル化している
- 「グラフ」はネットワークの数理モデルとして使われる

その他の例は 今後の講義や 他の講義の中で