グラフとネットワーク 第 13 回 平面グラフ:モデル化

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2019年7月26日

最終更新: 2019 年 7 月 26 日 14:03

スケジュール 前半

1 グラフの定義と次数:数理	(4/12)
2 道と閉路:数理	(4/19)
3 木:数理	(4/26)
* 休み	(5/3)
* 休講	(5/10)
4 マッチング:数理	(5/17)
5 マッチング:モデル化	(5/24)
6 最大流:数理	(5/31)

• 中間試験

(6/7)

スケジュール 後半

7 最大流:モデル化 (1) — 割当	(6/14)
🖪 最大流:モデル化 (2) — カットの視点	(6/21)
g 連結性:数理とモデル化	(6/28)
10 彩色:数理	(7/5)
■ 彩色:モデル化	(7/12)
№ 平面グラフ:数理	(7/19)
№ 平面グラフ:モデル化	(7/26)
☑ (授業等調整日) ← 行わない	(8/2)

• 期末試験

(8/9)

期末試験

- ▶ 日時, 教室:8月9日(金)13:00-14:30 @ 西2号館101教室
- ▶ 出題範囲
 - ▶ 第6回講義スライドの最初から第13回講義スライドの最後まで
- ▶ 出題形式
 - ▶ 演習問題と同じ形式の問題を 4 題出題する
 - ▶ その中の2題以上は演習問題として提示されたものと同一である (ただし、「発展」として提示された演習問題は出題されない)
 - ▶ 全問に解答する
- ▶ 配点:1題15点満点,計60点満点
- ▶ 時間:90分
- ▶ 持ち込み: A4 用紙 1 枚分 (裏表自筆書き込み) のみ可

概要

今日の目標

平面グラフの彩色を用いて次の問題を解決する

- ▶ 地図の彩色
- ▶ 美術館の監視

目次

① 平面的グラフと平面グラフ (復習)

2 地図の彩色

3 美術館の監視

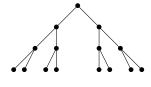
4 今日のまとめ と 講義全体のまとめ

グラフの平面描画

無向グラフ G = (V, E)

定義:グラフの平面描画とは?

グラフGの平面描画とは、Gの描画で、 辺を表す曲線どうしが端点以外に共有点を持たないこと



平面描画のことを平面グラフとも呼ぶ

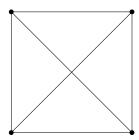
平面的グラフ

無向グラフ G = (V, E)

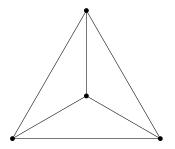
定義:平面的グラフとは?

G が平面的グラフであるとは、G が平面描画を持つこと

例: K_4 は平面的グラフである



K₄ の非平面描画



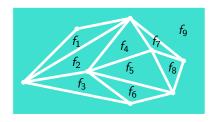
K4 の平面描画

平面グラフの面

平面グラフ G = (V, E) (平面描画を想定)

定義:平面グラフの面とは? (常識に基づく定義)

Gの面とは、Gの辺 (を表す曲線) で囲まれた平面上の領域のこと



Gの面で非有界であるものを Gの外面と呼ぶ

オイラーの公式

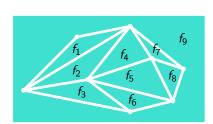
平面グラフ G = (V, E) (平面描画を想定)

性質:オイラーの公式

G の頂点数がn, 辺数がm, 面数がf, 連結成分数がk のとき,

$$n - m + f = 1 + k$$

特に、G が連結ならば、k=1 なので、n-m+f=2



- ▶ n = 8
- m = 15
- ▶ f = 9
- k=1
- ▶ n m + f = 2

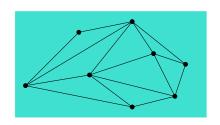
平面的グラフの辺数

連結無向グラフ G = (V, E)

性質:平面的グラフの辺数は小さい

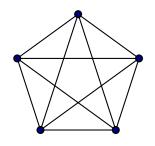
G が平面的で、 $|V| \ge 3$ ならば、

$$|E| \le 3|V| - 6$$



▶
$$3|V| - 6 = 18$$

このグラフは平面的グラフか?: 証明



平面的ではない

- ▶ 頂点数 |V| は 5, 辺数 |E| は 10
- ▶ $3|V| 6 = 3 \cdot 5 6 = 9 < 10 = |E|$
- ▶ $\therefore |E| \le 3|V| 6$ を満たさないので、平面的グラフではない

目次

① 平面的グラフと平面グラフ (復習)

2 地図の彩色

③ 美術館の監視

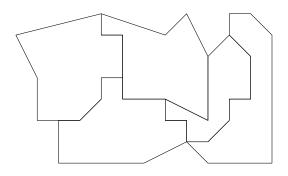
△ 今日のまとめ と 講義全体のまとめ

地図の彩色

地図からグラフへ

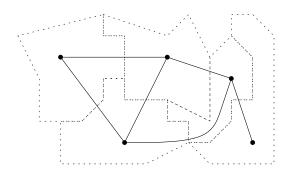
地図の数学的モデル化

地図は、平面上の領域を複数の部分領域へ分割したものとみなす



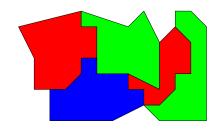
双対グラフ

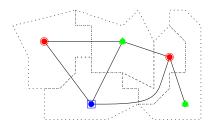
領域分割の双対グラフとは、無向グラフで 各頂点が分割された部分領域に対応し、 各辺が境界を (1 次元的に) 共有する 2 つの部分領域に対応するもの



地図の彩色

地図の彩色 = その双対グラフの彩色

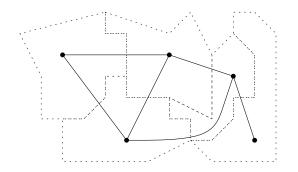




双対グラフの平面性

重要な性質 (証明は略)

地図の双対グラフは平面的グラフである

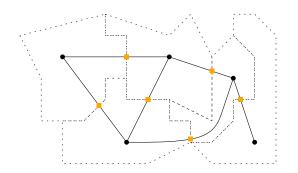


つまり、平面的グラフの彩色ができれば、地図の彩色もできる

双対グラフの平面性

重要な性質 (証明は略)

地図の双対グラフは平面的グラフである

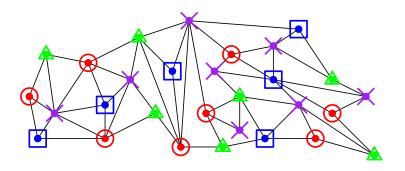


つまり, 平面的グラフの彩色ができれば, 地図の彩色もできる

平面的グラフの彩色

目標

平面的グラフをできるだけ少ない色で彩色する

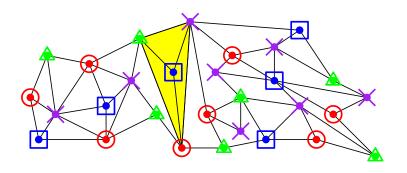


4色必要とする平面的グラフは存在

平面的グラフの彩色

目標

平面的グラフをできるだけ少ない色で彩色する

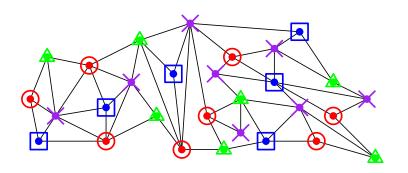


4色必要とする平面的グラフは存在

四色定理

四色定理 (Appel, Haken '77)

任意の平面的グラフは4彩色可能

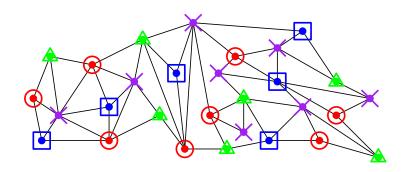


証明はコンピュータを使った膨大な場合分けによる

四色定理はこの講義で証明できないので…

今から証明すること: 六色定理

任意の平面的グラフは6彩色可能



使用する道具は, オイラーの公式と帰納法のみ

六色定理:証明(1)

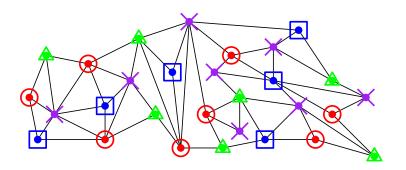
証明:頂点数 n に関する帰納法

- ▶ 頂点数が6以下のとき、頂点の数だけ色を使えば彩色可能なので グラフは6彩色可能である
- ▶ 頂点数 n ≥ 6 の任意の平面的グラフが 6 彩色可能であると仮定する
- ▶ このとき,頂点数 n+1 の任意の平面的グラフが 6 彩色可能である ことを証明する

六色定理:証明(2)—補題

補題

平面的グラフには,必ず次数が5以下の頂点が存在する



六色定理:証明(3)—補題

補題

平面的グラフには、必ず次数が5以下の頂点が存在する

補題の証明:

- ▶ 頂点数が3未満のとき、すべての頂点の次数は2以下なので、正しい
- ▶ 頂点数が3以上である任意の平面的グラフ G = (V, E) を考える
- ▶ $|E| \le 3 \cdot |V| 6$

(オイラーの公式の帰結)

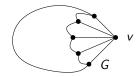
ightharpoonup G の平均次数 $= \frac{2|E|}{|V|}$

(握手補題の帰結)

- ightharpoonup ∴ G の平均次数 $\leq rac{2\cdot(3\cdot|V|-6)}{|V|}=6-rac{12}{|V|}<6$
- ▶ : ある頂点の次数 < 6
- ▶ : ある頂点の次数 < 5</p>

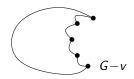
頂点数 n+1 の任意の平面的グラフを G=(V,E) とする

▶ 補題より,次数5以下の頂点がGに存在する



頂点数 n+1 の任意の平面的グラフを G=(V,E) とする

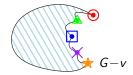
- ▶ 補題より、次数5以下の頂点が G に存在する
- ▶ そのような頂点を $v \in V$ として,G-v を考える



頂点数 n+1 の任意の平面的グラフを G=(V,E) とする

- ▶ 補題より,次数5以下の頂点がGに存在する
- ► そのような頂点を v ∈ V として、G-v を考える
- ▶ *G*-*v* は頂点数 *n* の平面的グラフなので, 6 彩色可能

(∵帰納法の仮定)

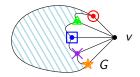


頂点数 n+1 の任意の平面的グラフを G=(V,E) とする

- ▶ 補題より、次数5以下の頂点が G に存在する
- ▶ そのような頂点を v ∈ V として、G-v を考える
- ▶ G-v は頂点数 n の平面的グラフなので、6 彩色可能

(∵ 帰納法の仮定)

 G-vの6彩色において、vの(Gにおける)隣接頂点を見ると 高々5色しか使われてない (∵vの次数 ≤ 5)

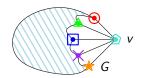


頂点数 n+1 の任意の平面的グラフを G=(V,E) とする

- ▶ 補題より、次数5以下の頂点がGに存在する
- ► そのような頂点を v ∈ V として、G-v を考える
- ightharpoonup G-v は頂点数 n の平面的グラフなので、6 彩色可能

(∵ 帰納法の仮定) §点を見ると

- ▶ G-v の 6 彩色において、v の (G における) 隣接頂点を見ると 高 ϕ 5 色しか使われてない (∵v の次数 ≤ 5)
- ▶ すなわち、G-vの6彩色に、vを付け加えて、 vの隣接頂点で使われていない色を G-vの6彩色で使ったパレットから選び その色でvを塗ることにより、Gの6彩色が得られる



目次

① 平面的グラフと平面グラフ (復習)

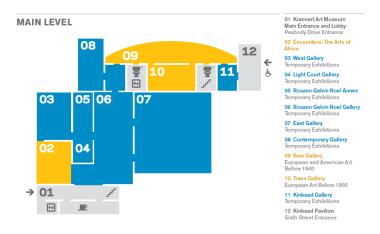
② 地図の彩色

3 美術館の監視

4 今日のまとめ と 講義全体のまとめ

監視カメラの設置

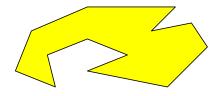
360 度見渡せる監視カメラを何個設置すれば、隈なく監視できるのか?



https://kam.illinois.edu/files/Map-main-f2017.png

単純多角形

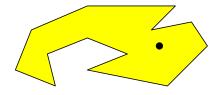
単純多角形:自己交差を持たず,穴も持たない多角形



これが美術館の1つのフロアを表していると思う

単純多角形における監視員

監視員は点

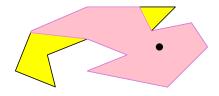


監視員gが点pを見ることができるとは?

線分 \overline{gp} が多角形Pに含まれている

単純多角形における監視員

監視員は点

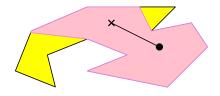


監視員gが点pを見ることができるとは?

線分 \overline{gp} が多角形Pに含まれている

単純多角形における監視員

監視員は点



監視員gが点pを見ることができるとは?

線分 \overline{gp} が多角形Pに含まれている

単純多角形の監視

監視員の集合 $\{g_1,g_2,\ldots,g_k\}$ が多角形 P を監視する とは?

任意の点 $x \in P$ に対して,ある監視員 g_i が存在して g_i がx を見ることができる



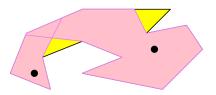
目標

できるだけ少ない数の監視員で、与えられた単純多角形を監視したい

単純多角形の監視

監視員の集合 $\{g_1,g_2,\ldots,g_k\}$ が多角形 P を監視する とは?

任意の点 $x \in P$ に対して,ある監視員 g_i が存在して g_i がx を見ることができる



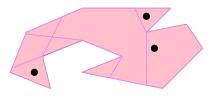
目標

できるだけ少ない数の監視員で、与えられた単純多角形を監視したい

単純多角形の監視

監視員の集合 $\{g_1,g_2,\ldots,g_k\}$ が多角形 P を監視する とは?

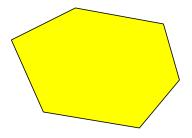
任意の点 $x \in P$ に対して,ある監視員 g_i が存在して g_i が x を見ることができる



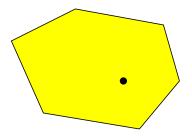
目標

できるだけ少ない数の監視員で、与えられた単純多角形を監視したい

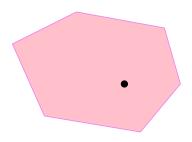
凸多角形は1人で監視できる



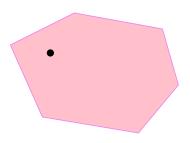
凸多角形は1人で監視できる



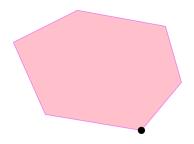
凸多角形は1人で監視できる



凸多角形は1人で監視できる



凸多角形は1人で監視できる

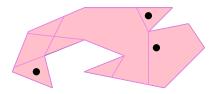


単純多角形の監視:定理

美術館定理 (Chvátal '75)

頂点数 n の任意の単純多角形は、高々 | n/3 | 人の監視員で監視可能

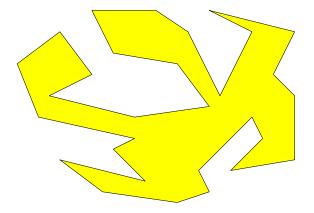
例:
$$n = 13$$
, $\lfloor n/3 \rfloor = \lfloor 13/3 \rfloor = 4$



今から行う証明は Fisk ('78) による

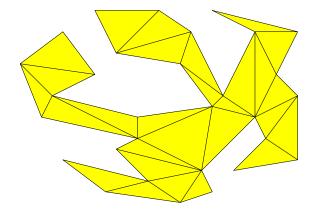
単純多角形の監視:証明

基本的なアイディア:単純多角形の三角形分割



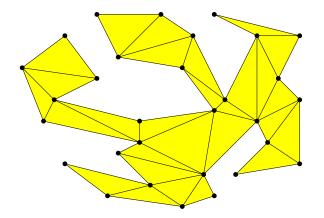
単純多角形の監視:証明

基本的なアイディア:単純多角形の三角形分割



単純多角形の監視:証明

三角形分割をグラフであると見なす



これは外平面グラフ (すべての頂点が外面の境界上にある)

グラフの外平面描画

無向グラフ G = (V, E)

グラフの外平面描画とは?

グラフGの外平面描画とは、Gの平面描画で、 すべての頂点が外面に現れているもの

外平面描画のことを外平面グラフとも呼ぶ

外平面的グラフ

無向グラフ G = (V, E)

外平面的グラフとは?

G が外平面的グラフであるとは、G が外平面描画を持つこと

例:次のグラフは外平面的グラフである

平面描画だが 外平面描画ではない

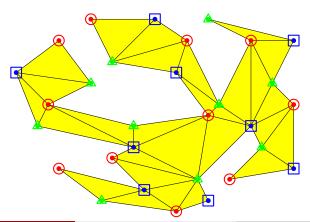
外平面描画

外平面的グラフの彩色

補題 (演習問題)

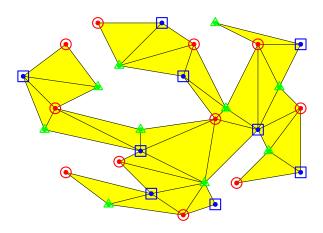
頂点数 n の任意の外平面的グラフは3彩色可能

ヒント:四色定理を使ってもよい (四色定理を使わなくても証明可)



三角形分割の彩色

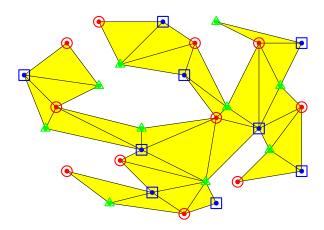
三角形分割における各三角形には3色すべて現れている



総頂点数=30,

最も使われていない色の頂点を見てみる

最も使われていない色の頂点数 $\leq |n/3|$



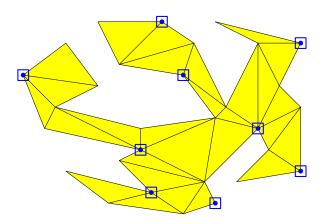
総頂点数=30,

●赤頂点数 = 11, ■青頂点数 = 9,

▲緑頂点数 = 10

最も使われていない色の頂点を見てみる

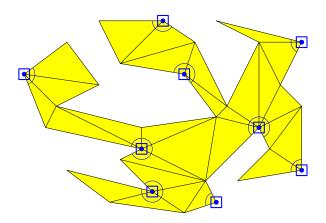
最も使われていない色の頂点数 $\leq |n/3|$



総頂点数=30,

最も使われていない色の頂点を見てみる

その色で塗られた頂点に監視員を置けばよい



- ▶ 三角形分割におけるすべての三角形が監視できる
- ▶ すなわち、多角形全体が監視できる

目次

① 平面的グラフと平面グラフ (復習)

② 地図の彩色

③ 美術館の監視

4 今日のまとめ と 講義全体のまとめ

今日のまとめ

平面グラフの彩色を用いて次の問題を解決する

- ▶ 地図の彩色
- ▶ 美術館の監視

概要

主題

離散最適化の入門として,次を概説する

- ▶ グラフとネットワークを用いた数理モデル化
- ▶ アルゴリズム的解法の背後にある数理

キャッチフレーズ:「本当の離散数学がここから始まる」

達成目標

以下の4項目をすべて達成すること

- 1 グラフやネットワークに関する用語を正しく使うことができる
- 3 現実世界の諸問題をグラフやネットワークで表現し、 数理モデルを構築できる
- 3 アルゴリズム的解法の背後にある数理,特に,最小最大定理の 重要性を説明でき,それを用いて最適性の証明ができる
- 4 グラフとネットワークに関する簡単な数学的事実を証明できる

残った時間の使い方

- ▶ 授業評価アンケート
 - ▶ 科目番号:1120
 - ▶ 科目名:グラフとネットワーク,教員名:岡本
- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員と TA は巡回
- ▶ 退室時,小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

目次

① 平面的グラフと平面グラフ (復習)

2 地図の彩色

3 美術館の監視

4 今日のまとめ と 講義全体のまとめ