グラフとネットワーク 第 10回

彩色:数理

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2019年7月5日

最終更新: 2019年7月2日 15:25

スケジュール 前半

1 グラフの定義と次数:数理	(4/12)
2 道と閉路:数理	(4/19)
3 木:数理	(4/26)
* 休み	(5/3)
* 休講	(5/10)
4 マッチング:数理	(5/17)
5 マッチング:モデル化	(5/24)
6 最大流:数理	(5/31)

• 中間試験

(6/7)

スケジュール 後半 (予定)

7 最大流:モデル化 (1) — 割当	(6/14)
3 最大流:モデル化 (2) — カットの視点	(6/21)
🧿 連結性:数理とモデル化	(6/28)
10 彩色:数理	(7/5)
■ 彩色:モデル化	(7/12)
№ 平面グラフ:数理	(7/19)
№ 平面グラフ:モデル化	(7/26)
[4] (授業等調整日) ← 行わない	(8/2)
● 期末試験	(8/9?)

注意:予定の変更もありうる

概要

今日の目標

グラフの彩色に関する基礎概念を理解する

- ▶ 彩色と染色数
- ▶ 染色数とクリーク数の関係 (弱双対性)
- ▶ 貪欲彩色による上界

目次

- ① グラフの彩色と染色数
- 2 辺彩色
- 3 貪欲彩色
- 4 染色数とクリーク数の弱双対性
- 5 今日のまとめ

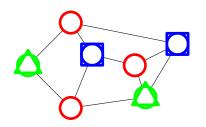
無向グラフの彩色

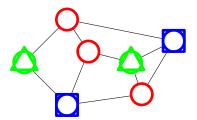
無向グラフ G = (V, E)

定義:彩色とは? (直感的な定義)

Gの彩色 (さいしょく) とは,

Gの頂点への色の割当で、各辺の両端点の色が異なるもの





彩色である

彩色ではない

彩色において、同じ色を持つ頂点の集合を彩色クラスとも呼ぶ

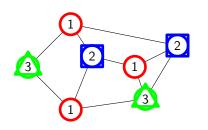
無向グラフの彩色:形式的な定義

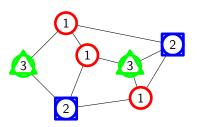
無向グラフ G = (V, E), 自然数 k

定義:彩色とは? (形式的な定義)

G O k 彩色とは、写像 $c: V \rightarrow \{1, \ldots, k\}$ で、

任意の辺 $\{u,v\} \in E$ に対して $c(u) \neq c(v)$ を満たすもの





3彩色である

3彩色ではない

c の終域 $\{1,\ldots,k\}$ をパレットと呼ぶことがある

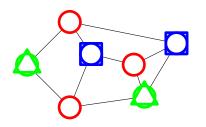
彩色可能性

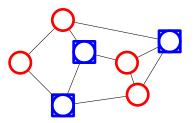
無向グラフ G = (V, E), 自然数 k

定義:彩色可能性とは?

G が k 彩色可能であるとは、G の k 彩色が存在すること

このグラフは3彩色可能である





3彩色である

2彩色は存在しない

注:G が k 彩色可能 \Rightarrow G は k+1 彩色可能

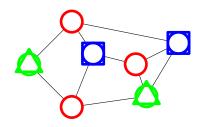
染色数

無向グラフ G = (V, E)

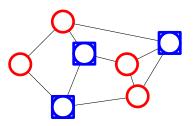
定義:染色数とは?

G の染色数とは、G の k 彩色が存在するような最小の k

G の染色数を $\chi(G)$ で表す



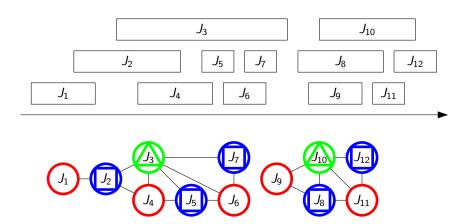
3彩色である



2彩色は存在しない

∴ このグラフの染色数は3

彩色が現れる場面 (1): ジョブスケジューリング



彩色が現れる場面(2):レジスタ割当

1:
$$A = 2$$

$$2: B = 3$$

$$3: B = B + 2$$

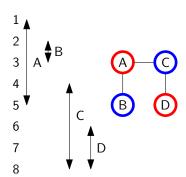
$$4: C = A + 1$$

$$5: A = C + 3$$

$$6: D = 4$$

$$7: D = C + 2$$

8: C = 3



$$1: R1 = 2$$

$$2: R2 = 3$$

$$3: R2 = R2 + 2$$

$$4: R2 = R1 + 1$$

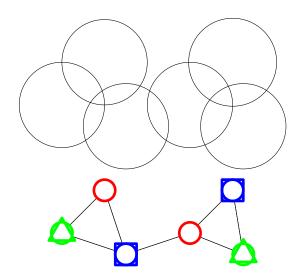
$$5: R1 = R2 + 3$$

$$6: R1 = 4$$

$$7: R1 = R2 + 2$$

$$8: R2 = 3$$

彩色が現れる場面(3):移動体通信における周波数割当



2 彩色可能性と二部グラフ

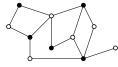
無向グラフ G = (V, E)

性質:2彩色可能性に対する必要十分条件

G は 2 彩色可能 ⇔ *G* は二部グラフ

「⇒」の証明: G は2彩色可能であるとする

- ▶ Gの2彩色を1つ考え、その彩色クラスを A, B とする
- ▶ Aの2頂点は辺で結ばれず、Bの2頂点も辺で結ばれない
- ▶ : G は A, B を部集合とする二部グラフである



2 彩色可能性と二部グラフ (続)

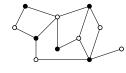
無向グラフ G = (V, E)

性質:2彩色可能性に対する必要十分条件

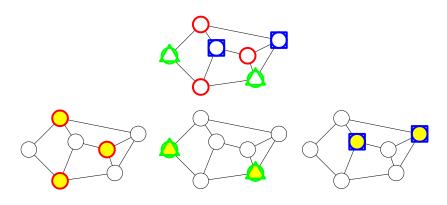
G は 2 彩色可能 ⇔ *G* は二部グラフ

「 \leftarrow 」の証明:G は二部グラフであるとする

- ▶ Gの部集合を A, B とする
- ▶ Aの2頂点は辺で結ばれず、Bの2頂点も辺で結ばれない
- ▶ ∴ G は A, B を彩色クラスとする 2 彩色を持つ



彩色クラスと独立集合



彩色の彩色クラスは独立集合

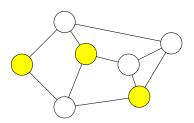
(互いに隣接していない頂点から成る部分集合)

独立集合

無向グラフ G = (V, E)

定義:独立集合とは?

G の独立集合とは,頂点部分集合 $I\subseteq V$ で,任意の異なる 2 頂点 $u,v\in I$ に対して $\{u,v\}\not\in E$



グラフの彩色と染色数

無向グラフの彩色:独立集合を用いた定義

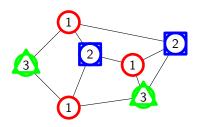
無向グラフ G = (V, E), 自然数 k

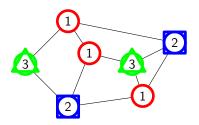
定義:彩色とは?(独立集合を用いた定義)

G O k 彩色とは,

k 個の独立集合 I_1, \ldots, I_k への頂点集合 V の分割

- $V = I_1 \cup \cdots \cup I_k$
- ▶ 任意の $i \neq j \in \{1, ..., k\}$ に対して, $I_i \cap I_j = \emptyset$





3彩色である

3彩色ではない

目次

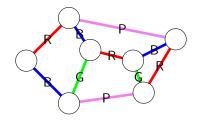
- ① グラフの彩色と染色数
- 2 辺彩色
- 3 貪欲彩色
- △ 染色数とクリーク数の弱双対性
- 5 今日のまとめ

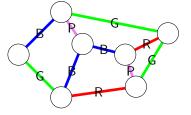
無向グラフの辺彩色

無向グラフ G = (V, E)

定義:辺彩色とは? (直感的な定義)

- G の辺彩色 (さいしょく) とは,
- G の辺への色の割当で、端点を共有する辺の色が異なるもの





辺彩色である

辺彩色ではない

辺彩色において、同じ色を持つ辺の集合を彩色クラスとも呼ぶ

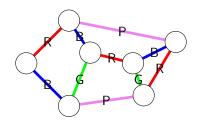
無向グラフの辺彩色:形式的な定義

無向グラフ G = (V, E), 自然数 k

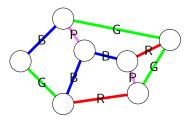
定義:辺彩色とは?(形式的な定義)

 $G \cap k$ 辺彩色とは、写像 $c: E \rightarrow \{1, \ldots, k\}$ で、

端点を共有する任意の辺 $e,f\in E$ に対して $c(e)\neq c(f)$ を満たすもの



4 辺彩色である



4辺彩色ではない

c の終域 $\{1,\ldots,k\}$ をパレットと呼ぶことがある

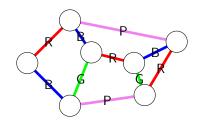
辺彩色可能性

無向グラフ G = (V, E), 自然数 k

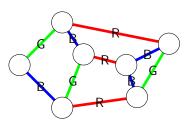
定義:辺彩色可能性とは?

G が k 辺彩色可能であるとは、G の k 辺彩色が存在すること

このグラフは4辺彩色可能である



4辺彩色である



3辺彩色は存在しない

注:G が k 辺彩色可能 ⇒ G は k + 1 辺彩色可能

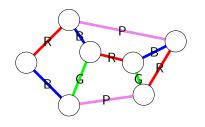
辺染色数

無向グラフ G = (V, E)

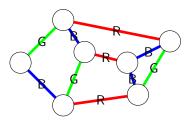
定義:辺染色数とは?

G の \overline{U} 染色数とは,G の k 辺彩色が存在するような最小の k

G の辺染色数を $\chi'(G)$ で表す



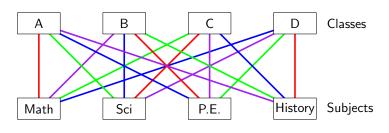
4辺彩色である



3辺彩色は存在しない

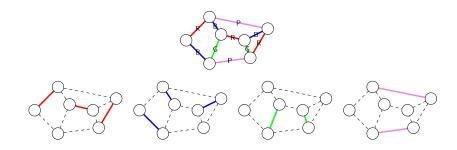
∴ このグラフの辺染色数は 4

辺彩色が現れる場面:時間割作成



	Α	В	C	D
1	Math	P.E.	Sci	History
2	Sci	History	Math	P.E.
3	P.E.	Sci	History	Math
4	History	Math	P.E.	Sci

彩色クラスとマッチング



辺彩色の各彩色クラスはマッチング

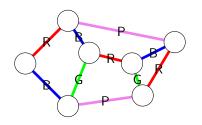
無向グラフの辺彩色:マッチングを用いた定義

無向グラフ G = (V, E), 自然数 k

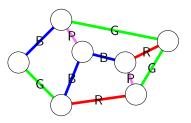
定義:辺彩色とは?(マッチングを用いた定義)

G O k 辺彩色とは、

k 個のマッチング M_1, \ldots, M_k への辺集合 E の分割



4 辺彩色である



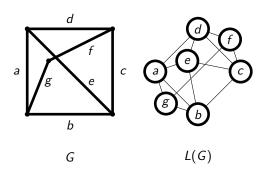
4 辺彩色ではない

辺彩色は彩色の特殊な場合

定義:線グラフ

無向グラフ G = (V, E) の線グラフ L(G) とは

- ▶ 頂点集合が E であり、
- ▶ 辺集合が {{e₁, e₂} | e₁ と e₂ が共通端点を持つ }

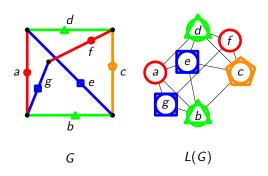


辺彩色は彩色の特殊な場合

定義:線グラフ

無向グラフ G = (V, E) の線グラフ L(G) とは

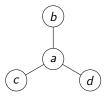
- ▶ 頂点集合が E であり、
- ▶ 辺集合が {{ e₁, e₂} | e₁ と e₂ が共通端点を持つ }



G の辺彩色 \leftrightarrow L(G) の彩色 つまり、 $\chi'(G) = \chi(L(G))$

すべてのグラフが線グラフであるわけではない

次のグラフは線グラフではない (対応する元のグラフがない)



つまり、 $K_{1,3} = L(G)$ を満たす無向グラフ G は存在しない

目次

- ① グラフの彩色と染色数
- 2 辺彩色
- 3 貪欲彩色
- △ 染色数とクリーク数の弱双対性
- 5 今日のまとめ

染色数の上界

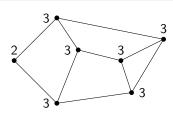
性質:染色数の上界

任意の無向グラフG = (V, E)に対して,

$$\chi(G) \leq \Delta(G) + 1$$

復習:最大次数とは?

無向グラフGの最大次数 $\Delta(G)$ とは、その頂点の次数の最大値

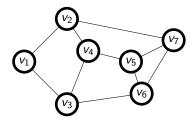


$$\Delta(G) = 3$$

証明:アルゴリズムによる証明 $(\Delta(G)+1$ 色しか使わない彩色を与える)

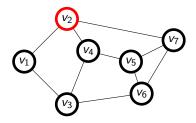
- ightharpoonup 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る

実行例



- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る

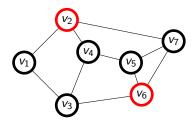
実行例



- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る

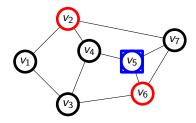
実行例

 $\sigma \colon \textit{v}_{\textit{2}} \; \textit{v}_{\textit{6}} \; \textit{v}_{\textit{5}} \; \textit{v}_{\textit{4}} \; \textit{v}_{\textit{3}} \; \textit{v}_{\textit{1}} \; \textit{v}_{\textit{7}}$



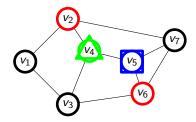
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る

実行例



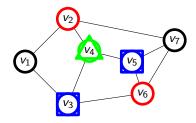
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る

実行例



- ightharpoonup 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る

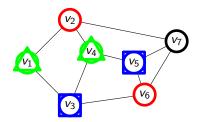
実行例



- ightharpoonup 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は、 既に使った色の中で最も小さな色で塗る

実行例

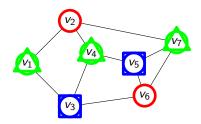
 σ : v_2 v_6 v_5 v_4 v_3 v_1 v_7



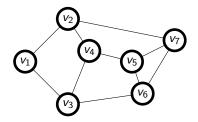
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る

実行例

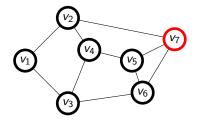
 σ : v_2 v_6 v_5 v_4 v_3 v_1 v_7



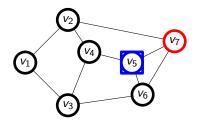
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る



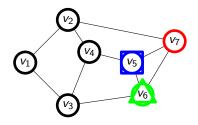
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - ② 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る



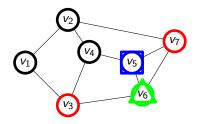
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- ▶ σ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る



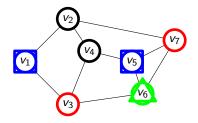
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る



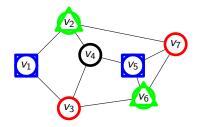
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - ② 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る



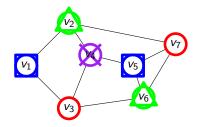
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る



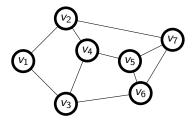
- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- ▶ σ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る



- ▶ 頂点集合上の全順序 σ を 1 つ固定,パレットは $\{1,2,\ldots,\Delta(G)+1\}$
- $ightharpoonup \sigma$ に沿って、頂点に1つずつ、色を割り当てる
- ▶ 頂点 v を塗るとき,
 - 1 既に使った色で塗れない場合は、新しい色で塗る
 - 2 既に使った色で塗れる場合は, 既に使った色の中で最も小さな色で塗る

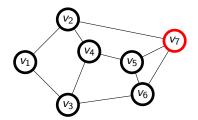


- ▶ 貪欲彩色で、任意の頂点 v に色を塗る瞬間を考える
- ▶ v の隣接頂点に使われる色の数 < deg_c(v) (次数)
- ▶ · v を塗るために必要な色は必ず余っている
- ▶ ∴ どの頂点も必ず塗れる
 - $(\cdot \cdot \cdot \deg_G(v) \leq \Delta(G))$
- ▶ よって、貪欲彩色は失敗せずにすべての頂点に色を塗る



- ▶ 貪欲彩色で、任意の頂点 v に色を塗る瞬間を考える
- ightharpoonup v の隣接頂点に使われる色の数 $\leq \deg_G(v)$ (次数)
- ▶ ∴ v を塗るために必要な色は必ず余っている
- ▶ ∴ どの頂点も必ず塗れる
- ▶ よって、貪欲彩色は失敗せずにすべての頂点に色を塗る

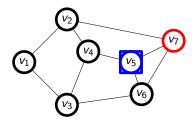
全順序 σ: V₇ V₅ V₆ V₃ V₁ V₂ V₄



 $(\cdot \cdot \cdot \deg_G(v) \leq \Delta(G))$

- ▶ 貪欲彩色で、任意の頂点 v に色を塗る瞬間を考える
- \triangleright v の隣接頂点に使われる色の数 $\leq \deg_G(v)$ (次数)
- ▶ ∴ v を塗るために必要な色は必ず余っている
- ▶ ・どの頂点も必ず塗れる

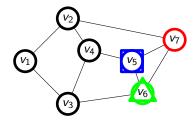
- $(\because \deg_G(v) \leq \Delta(G))$
- ▶ よって、貪欲彩色は失敗せずにすべての頂点に色を塗る



- ▶ 貪欲彩色で、任意の頂点 v に色を塗る瞬間を考える
- \triangleright v の隣接頂点に使われる色の数 $\leq \deg_G(v)$ (次数)
- ▶ ∴ v を塗るために必要な色は必ず余っている
- ▶ ・どの頂点も必ず塗れる

$$(\because \deg_G(v) \leq \Delta(G))$$

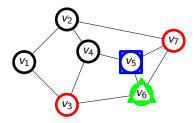
▶ よって、貪欲彩色は失敗せずにすべての頂点に色を塗る



- ▶ 貪欲彩色で、任意の頂点 v に色を塗る瞬間を考える
- \triangleright v の隣接頂点に使われる色の数 $\leq \deg_G(v)$ (次数)
- ▶ ∴ v を塗るために必要な色は必ず余っている
- ▶ ∴ どの頂点も必ず塗れる

$$(\because \deg_G(v) \leq \Delta(G))$$

▶ よって、貪欲彩色は失敗せずにすべての頂点に色を塗る



- ▶ 貪欲彩色で、任意の頂点 v に色を塗る瞬間を考える
- ▶ v の隣接頂点に使われる色の数 < deg_c(v) (次数)
- ▶ · v を塗るために必要な色は必ず余っている
- どの頂点も必ず塗れる

▶ よって、貪欲彩色は失敗せずにすべての頂点に色を塗る

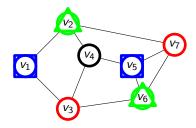
全順序 σ: v₇ v₅ v₆ v₃ v₁ v₂ v₄

 $(\cdot \cdot \cdot \deg_G(v) \leq \Delta(G))$

- ▶ 貪欲彩色で、任意の頂点 v に色を塗る瞬間を考える
- \triangleright v の隣接頂点に使われる色の数 $\leq \deg_G(v)$ (次数)
- ▶ ∴ v を塗るために必要な色は必ず余っている
- ▶ : どの頂点も必ず塗れる

$$(\because \deg_G(v) \leq \Delta(G))$$

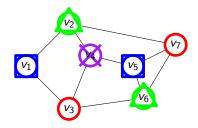
▶ よって、貪欲彩色は失敗せずにすべての頂点に色を塗る



- ▶ 貪欲彩色で、任意の頂点 v に色を塗る瞬間を考える
- \triangleright v の隣接頂点に使われる色の数 $\leq \deg_G(v)$ (次数)
- ▶ ∴ v を塗るために必要な色は必ず余っている
- ▶ ・どの頂点も必ず塗れる

$$(\because \deg_G(v) \leq \Delta(G))$$

▶ よって、貪欲彩色は失敗せずにすべての頂点に色を塗る



貪欲彩色の柔軟性

観察

貪欲彩色の出力は全順序 σ に依存する

つまり、 σ を変えると、異なる彩色が得られる (かもしれない)

事実 (演習問題)

うまく全順序を選べば、貪欲彩色の費やす色数が染色数になる

つまり、染色数を計算するためには、うまい全順序を見つければよい

今からやること

▶ そのようなうまい全順序をどう見つけるか?

(次回)

► その全順序が与える彩色が「最適」であることを確認するための 証拠は何か?

実は、いつもうまくいくとは限らないが、うまくいく場合を紹介する

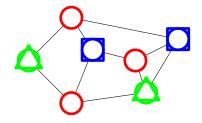
目次

- ① グラフの彩色と染色数
- 2 辺彩色
- 3 貪欲彩色
- 4 染色数とクリーク数の弱双対性
- 6 今日のまとめ

彩色の最適性

定義:染色数とは? (再掲)

無向グラフGの染色数とは、Gのk彩色が存在するような最小のk

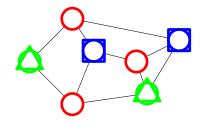


$$\chi(G) = 3$$

彩色の最適性

定義:染色数とは? (再掲)

無向グラフGの染色数とは、Gのk彩色が存在するような最小のk



疑問

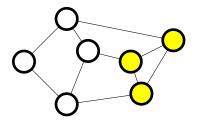
- ▶ 3 色未満で塗れないのか?
- ▶ 塗れないことをどう示すのか?
- ← \(\chi(G)\) ≤ 3 しか示してない

$$\chi(G) = 3 ???$$

クリーク

定義:グラフのクリークとは?

無向グラフGの<mark>クリーク</mark>とは,頂点部分集合Cで,その中のどの2頂点も辺で結ばれているもの

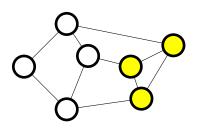


クリーク

定義:グラフのクリークとは?

無向グラフGの<mark>クリーク</mark>とは,頂点部分集合Cで,その中のどの2頂点も辺で結ばれているもの

クリークの頂点数の最大値を $\omega(G)$ で表す $(G \circ D)$ で表と呼ぶ)



観察 (弱双対性)

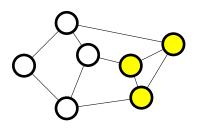
なぜか?

クリーク

定義:グラフのクリークとは?

無向グラフ G の O リークとは,頂点部分集合 C で,その中のどの O 頂点も辺で結ばれているもの

クリークの頂点数の最大値を $\omega(G)$ で表す $(G \circ D)$ で表と呼ぶ)



観察 (弱双対性)

► *C* が *G* のクリークである ⇒ $\chi(G) \ge |C|$ なぜか?

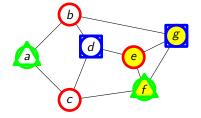
直感:C の部分だけで $\chi(G)$ 色は必要となる

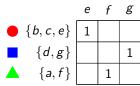
無向グラフ G = (V, E)

彩色とクリークの弱双対性

G の任意のクリーク C に対して, $\chi(G) \geq |C|$

証明の着想:数え上げ論法による



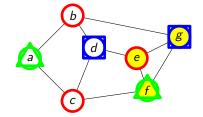


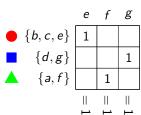
無向グラフ G = (V, E)

彩色とクリークの弱双対性

G の任意のクリーク C に対して, $\chi(G) \geq |C|$

証明の着想:数え上げ論法による



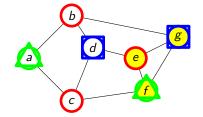


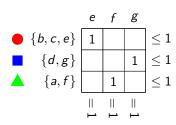
無向グラフ G = (V, E)

彩色とクリークの弱双対性

G の任意のクリーク C に対して, $\chi(G) \geq |C|$

証明の着想:数え上げ論法による





▶ 各 $i \in \{1, ..., \chi(G)\}, v \in C$ に対して,

$$M_{i,v} = \begin{cases} 1 & (v \in I_i), \\ 0 & (v \notin I_i) \end{cases}$$

として行列 $M \in \mathbb{R}^{\{1,...,\chi(G)\} \times C}$ を考える

▶ 各独立集合 I_i と C は頂点を 2 つ以上共有しないので、

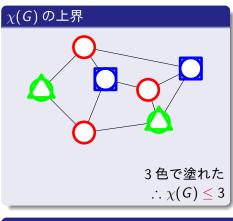
$$\sum_{i=1}^{\chi(G)} \left(\sum_{v \in C} M_{i,v} \right) \leq \sum_{i=1}^{\chi(G)} 1 = \chi(G)$$

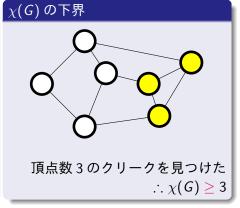
▶ 各 $v \in C$ は $I_1, \ldots, I_{v(G)}$ の中のちょうど 1 つの要素なので

$$\sum_{v \in C} \left(\sum_{i=1}^{\chi(G)} M_{i,v} \right) = \sum_{v \in C} 1 = |C|$$

▶ したがって, $\chi(G) \geq |C|$

彩色が最適であることの確認法





上界と下界が一致した

$$\therefore \chi(G) = 3$$

染色数とクリーク数の弱双対性

彩色が最適であることの確認法:まとめ

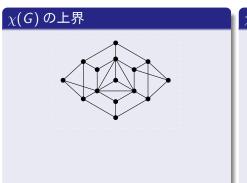
▶ k 色で塗る

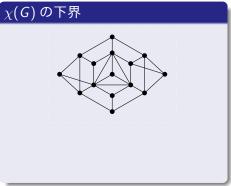
- ▶ 頂点数 k のクリークを見つける
- ▶ したがって, $\chi(G) = k$

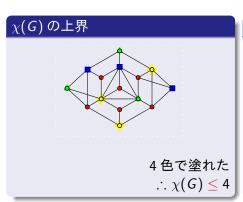
つまり,

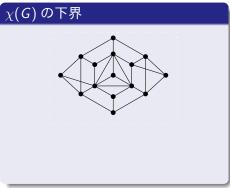
彩色問題では,色を塗ることだけではなくて, クリークを見つけることも重要になる

頂点数の大きなクリークが見つけられるとうれしい

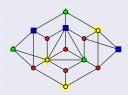








$\chi(G)$ の上界



4色で塗れた

$$\chi(G) \leq 4$$

$\chi(G)$ の下界

頂点数4のクリークを見つけた

$$\therefore \chi(G) \geq 4$$

$\chi(G)$ の上界



4色で塗れた $\therefore \chi(G) \leq 4$

$\chi(G)$ の下界

頂点数4のクリークを見つけた

$$\therefore \chi(G) \geq 4$$

上界と下界が一致した

$$\therefore \chi(G) = 4$$

染色数がうまく計算できそうな場合

任意の無向グラフ G に対して

- ▶ 任意のクリーク C に対して、 \(\chi(G) ≥ |C|\)
- ▶ 特に、C を頂点数最大のクリークとすると、 $\chi(G) \ge \omega(G)$

もし

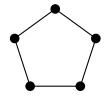
- ▶ k 色で塗れれば, $\chi(G) \leq k$
- ▶ 頂点数 k のクリークが見つかれば, $\omega(G) \geq k$
- ▶ $\therefore \chi(G) \le k \le \omega(G) \le \chi(G)$ となり、 $\chi(G) = k = \omega(G)$

つまり

▶ $\chi(G) = \omega(G)$ が成り立つかどうかは重要そう

$$\chi(G) > \omega(G)$$
 となる場合 (1)

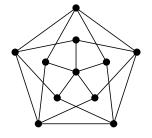
頂点数 5 の閉路 C₅



- $\chi(C_5) = 3$
- ▶ $\omega(C_5) = 2$

$$\chi(G) > \omega(G)$$
 となる場合 (2)

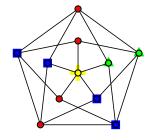
Grötzsch グラフ



- λ χ (Grötzsch) = 4
- $\omega(Gr\"{o}tzsch) = 2$

$$\chi(G) > \omega(G)$$
 となる場合 (2)

Grötzsch グラフ



- λ χ (Grötzsch) = 4
- $\omega(Gr\"{o}tzsch) = 2$

目次

- ① グラフの彩色と染色数
- 2 辺彩色
- ③ 貪欲彩色
- △ 染色数とクリーク数の弱双対性
- 5 今日のまとめ

今日のまとめ

今日の目標

グラフの彩色に関する基礎概念を理解する

- ▶ 彩色と染色数
- ▶ 染色数とクリーク数の関係 (弱双対性)
- ▶ 貪欲彩色による上界

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員と TA は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

目次

- ① グラフの彩色と染色数
- 2 辺彩色
- 3 貪欲彩色
- 4 染色数とクリーク数の弱双対性
- 5 今日のまとめ