離散数学 第 10 回 関係 (1):関係

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2016年7月1日

最終更新: 2016年6月30日 14:48

スケジュール 前半

*	休講	(4月8日)
1	集合と論理 (1): 命題論理	(4月15日)
2	集合と論理 (2):集合と論理の対応	(4月22日)
*	昭和の日	(4月29日)
3	集合と論理 (3): 述語論理	(5月6日)
4	証明法 (1):∃と∀を含む命題の証明	(5月13日)
5	証明法 (2): 含意を含む命題の証明	(5月20日)
6	証明法 (3):集合に関する証明	(5月27日)

• 中間試験

7 集合と論理(4):直積と冪集合

(6月3日)

(6月10日)

スケジュール 後半 (予定)

🔞 写像 (1):像と逆像

9 写像 (2):全射と単射

10 関係 (1):関係

Ⅲ 関係 (2): 同値関係

12 関係 (3): 順序関係

Ⅲ 証明法 (4):数学的帰納法

☑ 集合と論理 (5):集合の再帰的定義

期末試験

注意:予定の変更もありうる

(6月17日)

(6月24日)

(7月1日)

(7月8日) (7月15日)

(7月22日)

(7 F 20 F)

(7月29日)

(8月5日?)

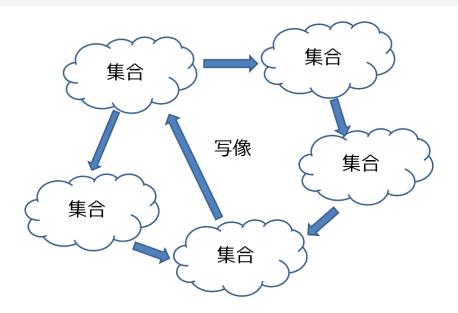
今日の概要

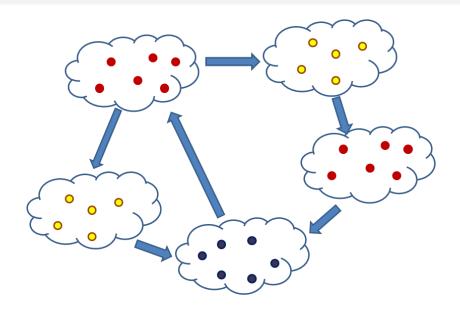
この講義の目標

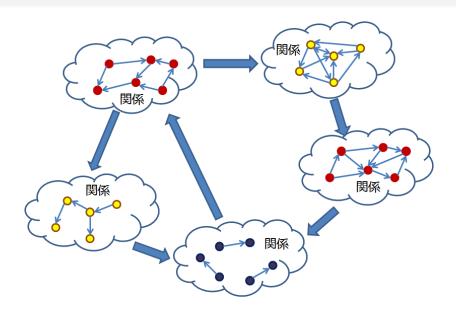
▶ 語学としての数学、コミュニケーションとしての数学

今日の目標

- ▶ 関係を理解する
- ▶ 関係の性質を理解し、それらを持つかどうか判定できる
 - ▶ 反射性,完全性,对称性,反对称性,推移性
- ▶ 特殊な関係を理解し、それらの例を挙げられる
 - ▶ 順序 (半順序), 全順序, 同値関係







目次

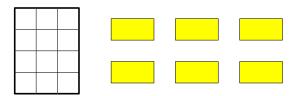
- ① 関係:集合の「構造」を見るための道具
- 2 関係
- 3 関係の性質
- 4 順序と同値関係
- 5 今日のまとめ

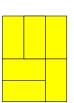
タイル張り

問題

 4×3 の長方形の中に 2×1 の長方形を 6 個敷き詰める方法は 全部で何通りあるか?

2×1の長方形は回転させてもよい



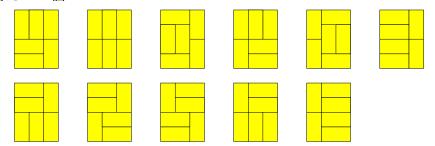


タイル張り

問題

 4×3 の長方形の中に 2×1 の長方形を 6 個敷き詰める方法は 全部で何通りあるか?

答え:11個

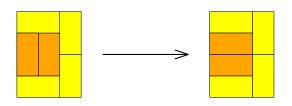


疑問

どうやって見つける? → 頑張って見つける?

タイル張り:局所変更

- ▶ タイル張りにおいて、 2×1 の長方形 2 個によって 2×2 の正方形が作られている部分があるとする
- ▶ その2つの長方形の向きを変えると、別のタイル張りが得られる

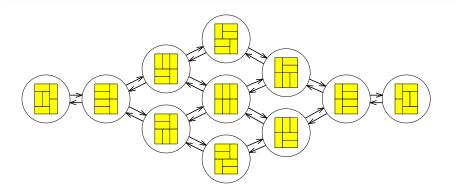


2 つのタイル張りは, この局所変更によって移りあう, という <mark>関係</mark> を持っている 関係:集合の「構造」を見るための道具

タイル張り:局所変更

知られていること (証明はしない)

この局所変更を繰り返していくと、全てのタイル張りが得られる



つまり,可能な局所変更をすべて考えれば,

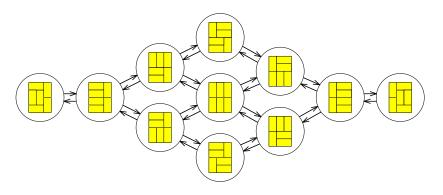
11 通りのタイル張りが得られ、他にはないことも分かる

関係:集合の「構造」を見るための道具

タイル張り:局所変更

知られていること (証明はしない)

この局所変更を繰り返していくと、全てのタイル張りが得られる



格言

集合の構造を調べて,集合の性質を深く理解する

目次

- ① 関係:集合の「構造」を見るための道具
- 2 関係
- ③ 関係の性質
- 4 順序と同値関係
- ⑤ 今日のまとめ

関係とは?

集合 *A*

関係とは? (常識に基づく定義)

A上の関係は次のように定められるもの

▶ 関係を表す記号「R」がある

- $(例えば、<math>\leq$ や=や $\subseteq)$
- ▶ 任意の $x, y \in A$ に対して $\lceil x \mathbf{R} y \rceil$ が成り立つか成り立たないか、のどちらか

注:x R y が成り立っても、y R x が成り立つとは限らない

例 1

- $A = \{1, 2, 3, 6\}$
- ▶ 任意の x, y ∈ A に対して

x | y であることを x は y の約数である

と定義する

集合A上の「|」という関係

- ▶ 1 | 1 O ▶ 2 | 1
 - 0 > 2 | 2
- × 3 | 1 O • 3 | 2
- × 6 | 1 × • 6 | 2

- 1 | 21 | 3
- O **>** 2 | 3
- × > 3 | 3
- ▶ 6 | 3

- **▶** 1 | 6
- O **>** 2 | 6
- ▶ 3 | 6
- ► 6 | 6

×

×

×

補足:整数の整除関係

 $\mathbb{Z}_+ = 1$ 以上の整数をすべて集めた集合

整数の整除関係

整数 $x, y \in \mathbb{Z}_+$ に対して,

▶ ある p ∈ Z₊ が存在して

$$y = xp$$

と書けるとき,xはyの約数であるという

関係の表現法 (1):写像

写像としての関係の表現

A 上の関係 R を写像 $A^2 \rightarrow \{ \bigcirc, \times \}$,

$$(x,y) \mapsto \begin{cases} \bigcirc & (x R y \ \mathcal{O} \succeq \delta) \\ \times & (x R y \ \mathcal{O} \succeq \delta) \end{cases}$$

で表現する

$$\triangleright$$
 (2,1) \mapsto ×

$$\blacktriangleright$$
 $(3,1) \mapsto \times$

$$\blacktriangleright$$
 (6,1) \mapsto ×

$$(1,2) \mapsto \bigcirc$$

$$(2,2) \mapsto O$$

$$\triangleright$$
 $(3,2) \mapsto \times$

$$\blacktriangleright$$
 (1,3) \mapsto O

$$\blacktriangleright$$
 (6,3) \mapsto ×

関係の表現法 (2): 直積の部分集合

集合としての関係の表現

A上の関係 R を直積の部分集合

$$\{(x,y) \mid x \in A \text{ tho } y \in A \text{ tho } x R y\} \subseteq A^2$$

で表現する

$$\{(1,1),(1,2),(1,3),(1,6),(2,2),(2,6),(3,3),(3,6),(6,6)\}$$

関係の表現法 (3): 行列

行列としての関係の表現

A上の関係 R を行列 $M \in \{0,1\}^{A \times A}$ で

$$M_{x,y} = \begin{cases} 1 & (x R y \text{ のとき}) \\ 0 & (x R y \text{ ではないとき}) \end{cases}$$

と定義されるもので表現する (「関係行列」と呼ばれることがある)

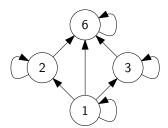
関係の表現法 (4): グラフ

グラフとしての関係の表現

A 上の関係 R を

- ▶ 頂点集合を A として、
- \triangleright x R y であるとき、そのときに限り $x \rightarrow y$ という矢印を引く

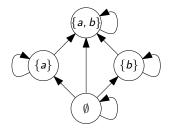
グラフで表現する



例 2

- $A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
- ▶ 任意の $X,Y \in A$ に対して $X \subseteq Y$ であることを X は Y の部分集合である と定義する

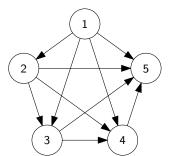
集合A上の「 \subseteq 」という関係



例3

- $A = \{1, 2, 3, 4, 5\}$
- ► 任意の x, y ∈ A に対して x < y であることを x は y より小さい と定義する

集合A上の「<」という関係



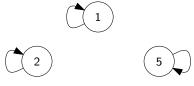
例 4

- $A = \{1, 2, 3, 4, 5\}$
- ▶ 任意の x, y ∈ A に対して

x = y であることを x は y と等しい

と定義する

集合A上の「=」という関係



22 / 61

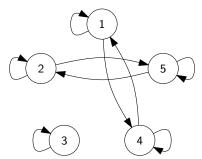
例 5

- $A = \{1, 2, 3, 4, 5\}$
- ▶ 任意の x, y ∈ A に対して

$$x \equiv_3 y$$
 であることを $x \equiv y \pmod{3}$

と定義する

集合A上の「 \equiv_3 」という関係



補足:合同な整数

合同な整数

- 0以上の整数 m, n と 1以上の整数 p を考える
 - m-n が p で割り切れるとき、すなわち、 ある整数 q が存在して

$$m-n=pq$$

と書けるとき, $m \equiv n \pmod{p}$ と表記する

▶ m ≡ n (mod p) であるとき
「m と n は p を法として合同である」という

例:

- ▶ 5 と 11 は 3 を法として合同である
 - $\rightarrow : 5 11 = -6 = 3 \cdot (-2)$
- ▶ 15869 と 6832 は 1291 を法として合同である
 - ightharpoonup :: $15869 6832 = 9037 = 1291 \cdot 7$

目次

- ① 関係:集合の「構造」を見るための道具
- 2 関係
- 3 関係の性質
- 4 順序と同値関係
- 5 今日のまとめ

関係の性質

関係を考えると何がよいのか?

- ▶ 関係を使って、集合の持つ構造を捉えることができる
- ▶ 2つの集合の上のある関係が同じ性質を持つと、 関係を使って、集合どうしを比較できるようになる
- → 関係の性質を考えたい

関係の性質

関係を考えると何がよいのか?

- ▶ 関係を使って、集合の持つ構造を捉えることができる
- ▶ 2つの集合の上のある関係が同じ性質を持つと、 関係を使って、集合どうしを比較できるようになる
- → 関係の性質を考えたい

よく出てくる性質

- ▶ 反射性
- ▶ 完全性
- ▶ 対称性
- ▶ 反対称性
- ▶ 推移性

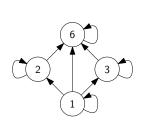
反射性

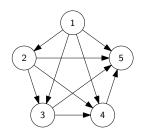
集合 A と A 上の関係 R

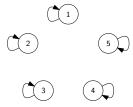
反射性とは?

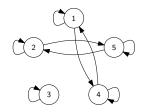
R が反射性を持つとは、次を満たすこと 任意の $x \in A$ に対して $x \mathbf{R} x$

反射性を持つのはどれ?

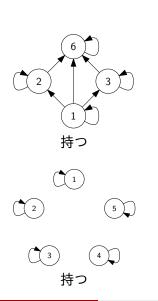


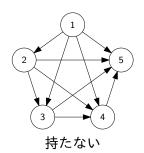


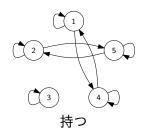




反射性を持つのはどれ?





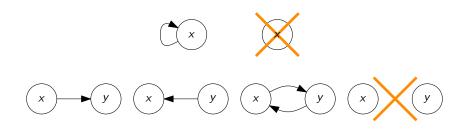


完全性

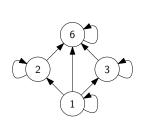
集合 A と A 上の関係 R

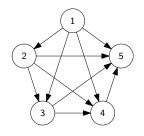
完全性とは?

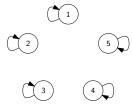
R が完全性を持つとは、次を満たすこと 任意の $x,y \in A$ に対して x R y または y R x

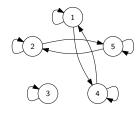


完全性を持つのはどれ?

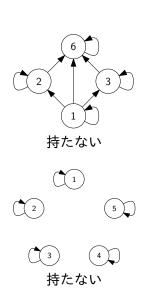


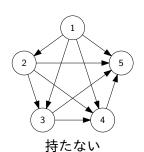


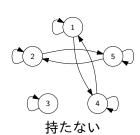




完全性を持つのはどれ?





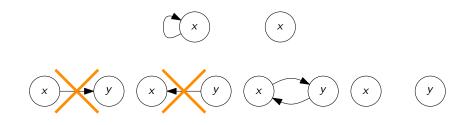


対称性

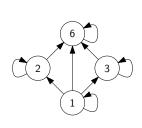
集合 A と A 上の関係 R

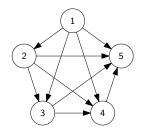
対称性とは?

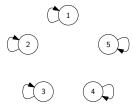
R が<mark>対称性</mark>を持つとは、次を満たすこと 任意の $x,y \in A$ に対して x R y ならば y R x

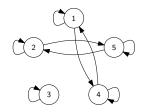


対称性を持つのはどれ?

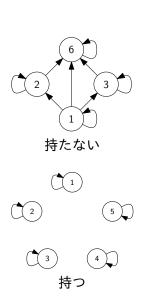


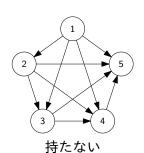


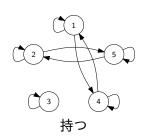




対称性を持つのはどれ?





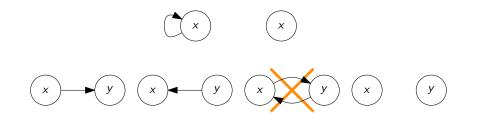


反対称性

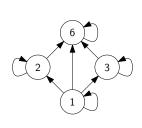
集合 A と A 上の関係 R

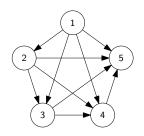
反対称性とは?

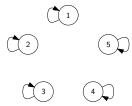
R が反対称性を持つとは、次を満たすこと 任意の $x, y \in A$ に対して x R y かつ y R x ならば x = y

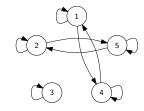


反対称性を持つのはどれ?

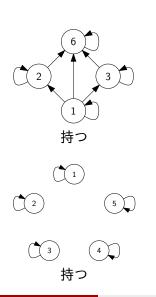


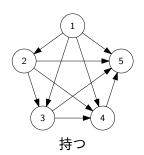


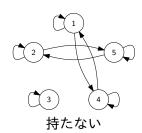




反対称性を持つのはどれ?





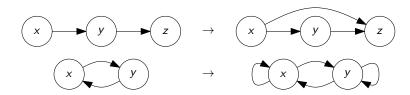


推移性

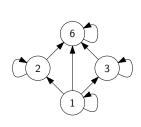
集合 A と A 上の関係 R

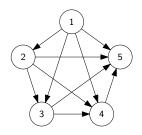
推移性とは?

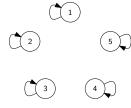
R が推移性を持つとは、次を満たすこと 任意の $x, y, z \in A$ に対して x R y かつ y R z ならば x R z

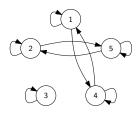


推移性を持つのはどれ?

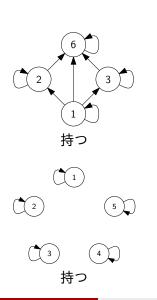


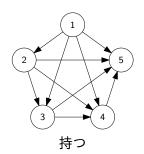


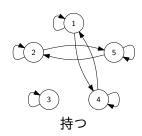




推移性を持つのはどれ?







目次

- ① 関係:集合の「構造」を見るための道具
- 2 関係
- ③ 関係の性質
- 4 順序と同値関係
- 5 今日のまとめ

半順序

集合AとA上の関係R

半順序とは?

Rが半順序であるとは、次を満たすこと

- ▶ R は反射性を持つ
- ▶ R は反対称性を持つ
- ▶ R は推移性を持つ

例 1~5 の中で,例 1,2 は半順序

代表的な半順序 (1)

代表的な半順序 (1): 実数の大小関係

 \mathbb{R} 上の関係 \leq を,任意の $x,y \in \mathbb{R}$ に対して

 $x \le y$ であることは x が y 以下であること

として定義する

代表的な半順序 (1)

代表的な半順序 (1): 実数の大小関係

 \mathbb{R} 上の関係 \leq を、任意の $x,y \in \mathbb{R}$ に対して $x \leq y$ であることは x が y 以下であること

として定義する

今からやること

この関係 < が半順序であることを証明する

次の3つが成り立つことを確認すればよい

- ▶ 反射性
- ▶ 反対称性
- ▶ 推移性

代表的な半順序 (1) 続き

代表的な半順序 (1): 実数の大小関係

 \mathbb{R} 上の関係 \leq を,任意の $x,y \in \mathbb{R}$ に対して

 $x \le y$ であることは x が y 以下であること

として定義する

反射性:定義に立ち戻って書き換えた

任意の $x \in \mathbb{R}$ に対して, $x \le x$

反対称性:定義に立ち戻って書き換えた

任意の $x, y \in \mathbb{R}$ に対して、 $x \leq y$ かつ $y \leq x$ ならば x = y

推移性:定義に立ち戻って書き換えた

任意の $x, y, z \in \mathbb{R}$ に対して、 $x \le y$ かつ $y \le z$ ならば $x \le z$

代表的な半順序 (1) 続き

代表的な半順序 (1): 実数の大小関係

 \mathbb{R} 上の関係 \leq を,任意の $x,y \in \mathbb{R}$ に対して

 $x \le y$ であることは x が y 以下であること

として定義する

反射性:定義に立ち戻って書き換えた

任意の $x \in \mathbb{R}$ に対して, $x \le x$

反対称性:定義に立ち戻って書き換えた

任意の $x, y \in \mathbb{R}$ に対して、 $x \le y$ かつ $y \le x$ ならば x = y

推移性:定義に立ち戻って書き換えた

任意の $x, y, z \in \mathbb{R}$ に対して, $x \leq y$ かつ $y \leq z$ ならば $x \leq z$

どれも当然成り立つ

代表的な半順序 (2)

代表的な半順序 (2):集合の包含関係

任意の集合 A の冪集合 2^A 上の関係 \subseteq を、任意の $X,Y \in 2^A$ に対して $X \subseteq Y$ であることは X が Y の部分集合であること として定義する

代表的な半順序 (2)

代表的な半順序 (2):集合の包含関係

任意の集合 A の冪集合 2^A 上の関係 \subseteq を、任意の $X,Y \in 2^A$ に対して $X \subseteq Y$ であることは X が Y の部分集合であること として定義する

今からやること

この関係 ⊂ が半順序であることを証明する

次の3つが成り立つことを確認すればよい

- 反射性
- ▶ 反対称性
- ▶ 推移性

代表的な半順序 (2) 続き

代表的な半順序 (2):集合の包含関係

任意の集合 A の冪集合 2^A 上の関係 \subseteq を、任意の $X,Y \in 2^A$ に対して $X \subseteq Y$ であることは X が Y の部分集合であること として定義する

反射性:定義に立ち戻って書き換えた

任意の $X \in 2^A$ に対して, $X \subseteq X$

反対称性:定義に立ち戻って書き換えた

任意の $X, Y \in 2^A$ に対して, $X \subseteq Y$ かつ $Y \subseteq X$ ならば X = Y

推移性:定義に立ち戻って書き換えた

任意の $X, Y, Z \in 2^A$ に対して、 $X \subseteq Y$ かつ $Y \subseteq Z$ ならば $X \subseteq Z$

代表的な半順序 (2) 続き

代表的な半順序 (2):集合の包含関係

任意の集合 A の冪集合 2^A 上の関係 \subseteq を、任意の $X,Y \in 2^A$ に対して $X \subseteq Y$ であることは X が Y の部分集合であること として定義する

反射性:定義に立ち戻って書き換えた

任意の $X \in 2^A$ に対して, $X \subseteq X$

反対称性:定義に立ち戻って書き換えた (第6回講義スライド9ページ)

任意の $X, Y \in 2^A$ に対して, $X \subseteq Y$ かつ $Y \subseteq X$ ならば X = Y

推移性:定義に立ち戻って書き換えた (第6回講義スライド25ページ)

任意の $X, Y, Z \in 2^A$ に対して、 $X \subseteq Y$ かつ $Y \subseteq Z$ ならば $X \subseteq Z$

どれも成り立つことを既に確認した

代表的な半順序 (3)

代表的な半順序 (3):整数の整除関係

1 以上の整数全体の集合 \mathbb{Z}_+ 上の関係 | を,任意の $a,b\in\mathbb{Z}_+$ に対して a | b であることは a が b の約数であること として定義する

代表的な半順序 (3)

代表的な半順序 (3):整数の整除関係

1 以上の整数全体の集合 \mathbb{Z}_+ 上の関係 | を,任意の $a,b\in\mathbb{Z}_+$ に対して a | b であることは a が b の約数であること として定義する

今からやること

この関係 | が半順序であることを証明する

次の3つが成り立つことを確認すればよい

- ▶ 反射性
- ▶ 反対称性
- ▶ 推移性

代表的な半順序 (3) 続き

代表的な半順序 (3):整数の整除関係

1 以上の整数全体の集合 \mathbb{Z}_+ 上の関係 | を,任意の $a,b\in\mathbb{Z}_+$ に対して a|b であることは a が b の約数であること として定義する

反射性:定義に立ち戻って書き換えた これが正しいことはすぐ分かる

任意の $a \in \mathbb{Z}_+$ に対して, $a \mid a$

反対称性:定義に立ち戻って書き換えた

次のページで証明

任意の $a, b \in \mathbb{Z}_+$ に対して、 $a \mid b$ かつ $b \mid a$ ならば a = b

推移性:定義に立ち戻って書き換えた

後のページで確認

任意の $a, b, c \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

証明すること

任意の $a,b \in \mathbb{Z}_+$ に対して、 $a \mid b$ かつ $b \mid a$ ならば a = b

- ▶ $a, b \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *a* を仮定する.

a = b

- 「~ならば…である」という命題の証明法 (第5回講義より)
- 「~であると仮定する」で始め、「したがって、…である」で終わる
- 2 「~である」という性質を用いて、「…である」を証明する

証明すること

任意の $a, b \in \mathbb{Z}_+$ に対して、 $a \mid b$ かつ $b \mid a$ ならば a = b

- ▶ $a, b \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ a | b と b | a を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)

$$a = b$$

- 「~であると仮定する」で始め、「したがって、…である」で終わる
- 2 「~である」という性質を用いて、「…である」を証明する

証明すること

任意の $a,b \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid a$ ならば a = b

- ▶ $a, b \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *a* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- ullet $b \mid a$ から,ある $q \in \mathbb{Z}_+$ が存在して,a = bq(2)

→ a = b

- 「~であると仮定する」で始め、「したがって、…である」で終わる
- 2 「~である」という性質を用いて、「…である」を証明する

証明すること

任意の $a, b \in \mathbb{Z}_+$ に対して、 $a \mid b$ かつ $b \mid a$ ならば a = b

- ▶ $a, b \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *a* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- $ightharpoonup b \mid a$ から,ある $q \in \mathbb{Z}_+$ が存在して,a = bq(2)
- ト したがって、 $b\stackrel{(1)}{=}ap\stackrel{(2)}{=}(bq)p=bqp$

a=b

- 「~であると仮定する」で始め、「したがって、…である」で終わる
- 2 「~である」という性質を用いて、「…である」を証明する

証明すること

任意の $a,b \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid a$ ならば a = b

- ▶ $a, b \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *a* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- lackbox $b \mid a$ から,ある $q \in \mathbb{Z}_+$ が存在して,a = bq(2)
- ト したがって, $b \stackrel{(1)}{=} ap \stackrel{(2)}{=} (bq)p = bqp$
- ullet $p,q\in\mathbb{Z}_+$ なので,p=1,q=1
- ▶ a = b

- 「~であると仮定する」で始め、「したがって、…である」で終わる
- 2 「~である」という性質を用いて、「…である」を証明する

証明すること

任意の $a,b \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid a$ ならば a = b

- ▶ $a, b \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *a* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- $ightharpoonup b \mid a$ から,ある $q \in \mathbb{Z}_+$ が存在して,a = bq(2)
- ト したがって, $b \stackrel{(1)}{=} ap \stackrel{(2)}{=} (bq)p = bqp$
- $m{\triangleright}$ $p,q\in\mathbb{Z}_+$ なので,p=1,q=1
- ightharpoonup a = bq かつ q = 1 なので、a = b

- ■「~であると仮定する」で始め、「したがって、…である」で終わる
- 2 「~である」という性質を用いて、「…である」を証明する

証明すること

任意の $a,b,c \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

- ▶ $a, b, c \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *c* を仮定する.

▶ したがって, a | c.

証明すること

任意の $a,b,c \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

- ▶ $a, b, c \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *c* を仮定する.
- ▶ $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- $lackbox{lackbox{\it b}}\mid c$ から,ある $q\in\mathbb{Z}_+$ が存在して,c=bq(2)

- ▶ したがって,ある $r \in \mathbb{Z}_+$ が存在して,c = ar
- ▶ したがって, a | c.

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる (証明する).

証明すること

任意の $a,b,c \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

- ▶ $a, b, c \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *c* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- ▶ $b \mid c$ から,ある $q \in \mathbb{Z}_+$ が存在して,c = bq(2)
- ▶ r = pq とする.(3)

- ▶ したがって,ある $r \in \mathbb{Z}_+$ が存在して,c = ar
- ightharpoonup したがって, $a \mid c$.

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる(証明する).

証明すること

任意の $a,b,c \in \mathbb{Z}_+$ に対して、 $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

- ▶ $a, b, c \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *c* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- lackbox $b \mid c$ から,ある $q \in \mathbb{Z}_+$ が存在して,c = bq(2)
- ▶ *r* = *pq* とする.(3)
- ▶ $p,q \in \mathbb{Z}_+$ なので、 $r = pq \in \mathbb{Z}_+$
- ▶ したがって,ある $r \in \mathbb{Z}_+$ が存在して,c = ar
- ▶ したがって, a | c.

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる(証明する).

証明すること

任意の $a,b,c \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

- ▶ $a, b, c \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *c* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- ▶ $b \mid c$ から,ある $q \in \mathbb{Z}_+$ が存在して,c = bq(2)
- ▶ *r* = *pq* とする.(3)
- ▶ $p,q \in \mathbb{Z}_+$ なので、 $r = pq \in \mathbb{Z}_+$
- ightharpoonup $ext{$\downarrow$}$ $ext{$t$}$, $c \stackrel{(2)}{=} bq$
- ▶ したがって,ある $r \in \mathbb{Z}_+$ が存在して,c = ar
- ▶ したがって, a | c.

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる(証明する).

証明すること

任意の $a,b,c \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

- ▶ $a, b, c \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *c* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- ▶ $b \mid c$ から,ある $q \in \mathbb{Z}_+$ が存在して,c = bq(2)
- ▶ *r* = *pq* とする.(3)
- ▶ $p,q \in \mathbb{Z}_+$ なので、 $r = pq \in \mathbb{Z}_+$
- $\sharp \, t$, $c \stackrel{(2)}{=} bq \stackrel{(1)}{=} (ap)q$
- ▶ したがって,ある $r \in \mathbb{Z}_+$ が存在して,c = ar
- ▶ したがって, a | c.

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる(証明する).

証明すること

任意の $a,b,c \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

- $ightharpoonup a, b, c \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *c* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- ▶ $b \mid c$ から,ある $q \in \mathbb{Z}_+$ が存在して,c = bq(2)
- ▶ r = pq とする.(3)
- ▶ $p,q \in \mathbb{Z}_+$ なので、 $r = pq \in \mathbb{Z}_+$
- ▶ また, $c \stackrel{(2)}{=} bq \stackrel{(1)}{=} (ap)q = a(pq)$
- ▶ したがって,ある $r \in \mathbb{Z}_+$ が存在して,c = ar
- ▶ したがって, a | c.

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる(証明する).

証明すること

任意の $a,b,c \in \mathbb{Z}_+$ に対して, $a \mid b$ かつ $b \mid c$ ならば $a \mid c$

- ▶ $a, b, c \in \mathbb{Z}_+$ を任意に選ぶ.
- ▶ *a* | *b* と *b* | *c* を仮定する.
- ightharpoonup $a \mid b$ から,ある $p \in \mathbb{Z}_+$ が存在して,b = ap(1)
- ▶ $b \mid c$ から,ある $q \in \mathbb{Z}_+$ が存在して,c = bq(2)
- ▶ *r* = *pq* とする.(3)
- ▶ $p,q \in \mathbb{Z}_+$ なので、 $r = pq \in \mathbb{Z}_+$
- ▶ $\sharp \, t$, $c \stackrel{(2)}{=} bq \stackrel{(1)}{=} (ap)q = a(pq) \stackrel{(3)}{=} ar$.
- ▶ したがって,ある $r \in \mathbb{Z}_+$ が存在して,c = ar
- ▶ したがって、a | c.

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる(証明する).

全順序

集合 A と A 上の関係 R

全順序とは?

Rが全順序であるとは、次を満たすこと

- ▶ R は反射性を持つ
- ▶ R は反対称性を持つ
- ▶ R は推移性を持つ
- ▶ R は完全性を持つ

例 1~5 の中に,全順序はない

- ▶ 注:単に「順序」と言ったら、普通は「半順序」のことを指す
- ▶ 注:全順序のことを線形順序と呼ぶこともある

代表的な全順序

代表的な全順序:実数の大小関係

 \mathbb{R} 上の関係 \leq を,任意の $x,y \in \mathbb{R}$ に対して

 $x \le y$ であることは x が y 以下であること

として定義する

代表的な全順序

代表的な全順序:実数の大小関係

 \mathbb{R} 上の関係 \leq を,任意の $x,y\in\mathbb{R}$ に対して

 $x \le y$ であることは x が y 以下であること

として定義する

今からやること

この関係 < が全順序であることを証明する

次の4つが成り立つことを確認すればよい

▶ 反射性,反対称性,推移性,完全性

反射性、反対称性、推移性は既に確認した

完全性:定義に立ち戻って書き換えた

任意の $x, y \in \mathbb{R}$ に対して、 $x \leq y$ か $y \leq x$

これも当然成り立つ

同值関係

集合 A と A 上の関係 R

同値関係とは?

Rが同値関係であるとは、次を満たすこと

- ▶ R は反射性を持つ
- ▶ R は対称性を持つ
- ▶ R は推移性を持つ

例 1~5 の中で, 同値関係は例 4, 5

代表的な同値関係 (1)

代表的な同値関係 (1): 実数の相等関係

 \mathbb{R} 上の関係 = を、任意の $x, y \in \mathbb{R}$ に対して

x = y であることは x が y と等しいこと

として定義する

代表的な同値関係 (1)

代表的な同値関係 (1): 実数の相等関係

 \mathbb{R} 上の関係 = を、任意の $x, y \in \mathbb{R}$ に対して

x = y であることは x が y と等しいこと

として定義する

今からやること

この関係 = が同値関係であることを証明する

次の3つが成り立つことを確認すればよい

- 反射性
- ▶ 対称性
- 推移性

代表的な同値関係 (1) 続き

代表的な同値関係 (1): 実数の相等関係

 \mathbb{R} 上の関係 = を、任意の $x, y \in \mathbb{R}$ に対して

x = y であることは x が y と等しいこと

として定義する

反射性:定義に基づいて書き換えた

任意の $x \in \mathbb{R}$ に対して, x = x

対称性:定義に基づいて書き換えた

任意の $x, y \in \mathbb{R}$ に対して, x = y ならば y = x

推移性:定義に基づいて書き換えた

任意の $x, y, z \in \mathbb{R}$ に対して, x = y かつy = z ならばx = z

これらは当然成り立つ

代表的な同値関係 (2)

代表的な同値関係 (2):整数の合同関係

- 1以上の任意の整数 p に対して,
- 0 以上の整数全体の集合 \mathbb{N} 上の関係 \equiv_p を、任意の $m, n \in \mathbb{N}$ に対して $m \equiv_p n$ であることは $m \equiv n \pmod{p}$ が成り立つこと

として定義する

代表的な同値関係 (2)

代表的な同値関係 (2):整数の合同関係

- 1以上の任意の整数 p に対して,
- 0 以上の整数全体の集合 \mathbb{N} 上の関係 \equiv_p を、任意の $m,n\in\mathbb{N}$ に対して $m\equiv_p n$ であることは $m\equiv n\pmod p$ が成り立つこと として定義する

今からやること

この関係 ≡ が同値関係であることを証明する

次の3つが成り立つことを確認すればよい

- ▶ 反射性
- ▶ 対称性
- ▶ 推移性

代表的な同値関係 (2) 続き

代表的な同値関係 (2):整数の合同関係

- 1以上の任意の整数 p に対して,
- 0 以上の整数全体の集合 \mathbb{N} 上の関係 \equiv_p を、任意の $m, n \in \mathbb{N}$ に対して $m \equiv_p n$ であることは $m \equiv n \pmod{p}$ が成り立つこと として定義する

反射性:次のページで証明

任意の $n \in \mathbb{N}$ に対して、 $n \equiv_{p} n$

対称性:後のページで証明

任意の $m, n \in \mathbb{N}$ に対して、 $m \equiv_p n$ ならば $n \equiv_p m$

推移性:後のページで証明

任意の ℓ , m, $n \in \mathbb{N}$ に対して、 $\ell \equiv_p m$ かつ $m \equiv_p n$ ならば $\ell \equiv_p n$

代表的な同値関係 (2): 反射性の証明

- ▶ 任意に n ∈ N を選ぶ.
- ▶ このとき、整数0を考えると、n-n=0=p·0.
- ▶ したがって, $n \equiv n \pmod{p}$.

$m \equiv n \pmod{p}$ の定義 (再掲)

ある $q \in \mathbb{Z}$ が存在して,m-n=pq

- 1 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる (証明する).

代表的な同値関係 (2): 対称性の証明

- ▶ 任意に m, n ∈ N を選ぶ
- m ≡ n (mod p) と仮定する

ト したがって, $n \equiv m \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

ある $q \in \mathbb{Z}$ が存在して,m-n=pq

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる (証明する).

代表的な同値関係 (2):対称性の証明

- ▶ 任意に m, n ∈ N を選ぶ
- m ≡ n (mod p) と仮定する
- ▶ このとき,ある $q \in \mathbb{Z}$ が存在して,m-n=pq
- ▶ したがって, $n \equiv m \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

ある $q\in\mathbb{Z}$ が存在して,m-n=pq

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる (証明する).

代表的な同値関係 (2): 対称性の証明

- ▶ 任意に m, n ∈ N を選ぶ
- ▶ *m* ≡ *n* (mod *p*) と仮定する
- ▶ このとき,ある $q \in \mathbb{Z}$ が存在して,m-n=pq
- ▶ 整数 $-q \in \mathbb{Z}$ を考えると、 $n-m=p\cdot (-q)$
- ▶ したがって, $n \equiv m \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

ある $q \in \mathbb{Z}$ が存在して,m-n=pq

- 存在する、といっているものを1つ見つけ、「それを考える」と書く.
- 2 それが要求されている性質を満たすことを論じる (証明する).

- ▶ 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する

- ▶ したがって,ある $q \in \mathbb{Z}$ が存在して, $\ell n = pq$ となる
- ト したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

- ▶ 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する
- ullet $\ell \equiv m \pmod p$ から,ある $q_1 \in \mathbb{Z}$ が存在して, $\ell-m=pq_1$ (1)

- ▶ したがって,ある $q \in \mathbb{Z}$ が存在して, $\ell n = pq$ となる
- ト したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

- ▶ 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する
- ullet $\ell \equiv m \pmod p$ から,ある $q_1 \in \mathbb{Z}$ が存在して, $\ell m = pq_1 \ldots (1)$
- ▶ $m \equiv n \pmod{p}$ から,ある $q_2 \in \mathbb{Z}$ が存在して, $m-n=pq_2 \ldots (2)$

- ▶ したがって,ある $q \in \mathbb{Z}$ が存在して, $\ell n = pq$ となる
- ト したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

- ▶ 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する
- ullet $\ell \equiv m \pmod{p}$ から,ある $q_1 \in \mathbb{Z}$ が存在して, $\ell m = pq_1 \dots (1)$
- ▶ $m \equiv n \pmod{p}$ から,ある $q_2 \in \mathbb{Z}$ が存在して, $m-n=pq_2 \ldots (2)$
- ▶ $q = q_1 + q_2$ とする(3)

- ▶ したがって,ある $q \in \mathbb{Z}$ が存在して, $\ell n = pq$ となる
- ト したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

- ▶ 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する
- ullet $\ell \equiv m \pmod{p}$ から,ある $q_1 \in \mathbb{Z}$ が存在して, $\ell m = pq_1 \dots (1)$
- ▶ $m \equiv n \pmod{p}$ から,ある $q_2 \in \mathbb{Z}$ が存在して, $m-n=pq_2 \ldots (2)$
- ▶ このとき, $q_1,q_2 \in \mathbb{Z}$ より, $q_1+q_2 \in \mathbb{Z}$
- ▶ したがって,ある $q \in \mathbb{Z}$ が存在して, $\ell n = pq$ となる
- ト したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

- ▶ 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する
- ullet $\ell \equiv m \pmod p$ から,ある $q_1 \in \mathbb{Z}$ が存在して, $\ell-m = pq_1 \ldots (1)$
- ▶ $m \equiv n \pmod{p}$ から,ある $q_2 \in \mathbb{Z}$ が存在して, $m-n=pq_2 \ldots (2)$
- ▶ このとき、 $q_1,q_2 \in \mathbb{Z}$ より、 $q_1+q_2 \in \mathbb{Z}$
- ▶ $t, \ell n = (\ell m) + (m n)$
- ▶ したがって、ある $q \in \mathbb{Z}$ が存在して、 $\ell n = pq$ となる
- ▶ したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

- ▶ 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する
- ullet $\ell \equiv m \pmod p$ から,ある $q_1 \in \mathbb{Z}$ が存在して, $\ell-m = pq_1 \ \ldots \ (1)$
- ▶ $m \equiv n \pmod{p}$ から,ある $q_2 \in \mathbb{Z}$ が存在して, $m-n=pq_2 \ldots (2)$
- ▶ このとき、 $q_1,q_2 \in \mathbb{Z}$ より、 $q_1+q_2 \in \mathbb{Z}$
- ▶ $\sharp \mathcal{L}$, $\ell n = (\ell m) + (m n) \stackrel{(1), (2)}{=} pq_1 + pq_2$
- ▶ したがって、ある $q \in \mathbb{Z}$ が存在して、 $\ell n = pq$ となる
- ▶ したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

- ► 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する
- $lacksymbol{\ell} \equiv m \pmod{p}$ から,ある $q_1 \in \mathbb{Z}$ が存在して, $\ell-m=pq_1$ (1)
- ▶ $m \equiv n \pmod{p}$ から,ある $q_2 \in \mathbb{Z}$ が存在して, $m-n=pq_2 \dots (2)$
- ▶ *q* = *q*₁ + *q*₂ とする(3)
- lacktriangle このとき、 $q_1,q_2\in\mathbb{Z}$ より、 $q_1+q_2\in\mathbb{Z}$
- ▶ \sharp t, $\ell n = (\ell m) + (m n) \stackrel{(1), (2)}{=} pq_1 + pq_2 = p(q_1 + q_2)$
- ▶ したがって、ある $q \in \mathbb{Z}$ が存在して、 $\ell n = pq$ となる
- ト したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

- ▶ 任意に ℓ, m, n ∈ N を選ぶ
- ▶ $\ell \equiv m \pmod{p}$ および $m \equiv n \pmod{p}$ と仮定する
- $m{\ell} \equiv m \pmod{p}$ から,ある $q_1 \in \mathbb{Z}$ が存在して, $\ell-m = pq_1 \ldots (1)$
- ▶ $m \equiv n \pmod{p}$ から,ある $q_2 \in \mathbb{Z}$ が存在して, $m-n=pq_2 \dots (2)$
- ▶ $q = q_1 + q_2$ とする(3)
- lacktriangle このとき、 $q_1,q_2\in\mathbb{Z}$ より、 $q_1+q_2\in\mathbb{Z}$
- ▶ $\sharp \, t$, $\ell n = (\ell m) + (m n) \stackrel{(1), (2)}{=} pq_1 + pq_2 = p(q_1 + q_2) \stackrel{(3)}{=} pq$.
- ▶ したがって、ある $q \in \mathbb{Z}$ が存在して、 $\ell n = pq$ となる
- ト したがって、 $\ell \equiv n \pmod{p}$

$m \equiv n \pmod{p}$ の定義 (再掲)

目次

- ① 関係:集合の「構造」を見るための道具
- 2 関係
- ③ 関係の性質
- 4 順序と同値関係
- 5 今日のまとめ

今日のまとめ

この講義の目標

▶ 語学としての数学、コミュニケーションとしての数学

関係とそれにまつわる概念

- ▶ 関係を理解する
- ▶ 関係の性質を理解する
 - ▶ 反射性, 完全性, 対称性, 反対称性, 推移性
- ▶ 特殊な関係を理解する
 - ▶ 順序 (半順序), 全順序, 同値関係
- ▶ 登場した「関係」は「2つのものの間の関係」だけだった
- ▶ 3つのものの間の関係は?
- それ以上のものの間の関係は?

n項関係とは?

n項関係とは? (常識に基づく定義)

A上のn項関係は次のように定められるもの

- ▶ 関係を表す写像「 $A^n \to \{ \bigcirc, \times \}$ 」がある
- ▶ 任意の $(x_1,...,x_n) \in A^n$ に対して その関数の値が「○」か「×」のどちらかに決まる

この一般化の下で、講義で扱った「関係」は「二項関係」と呼ばれる.

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員とティーチング・アシスタントは巡回
- ▶ 退室時,小さな紙に感想など書いて提出する ←重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

目次

- ① 関係:集合の「構造」を見るための道具
- 2 関係
- 3 関係の性質
- 4 順序と同値関係
- 5 今日のまとめ