提問総則：2015年10月30日 講義終了時

追加問題2.1 次に挙げる、有限集合 \(E = \{1,2,3\} \) 上の有限集合族 \(\mathcal{I} \) はマトロイドではない。なぜマトロイドではないのか説明せよ。

1. \(\mathcal{I} = \{\emptyset, \{1\}, \{3\}, \{1,3\}, \{2,3\}\} \).
2. \(\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}\} \).

追加問題2.2 非空な有限集合 \(E \) と自然数 \(r \geq 0 \) を考える。このとき、有限集合族

\[\mathcal{I} = \{ X \subseteq E \mid |X| \leq r \} \]

が \(E \) 上のマトロイドであることを証明せよ。

追加問題2.3 \(\mathbb{R}^m \) において線形独立であるベクトルの集合 \(X, Y \) を考える。任意の \(x \in X - Y \) に対して、\(Y \cup \{x\} \) が線形独立ではないと仮定する。このとき、任意のベクトル \(x \in X \) に対して、\(\langle Y \cup \{x\} \rangle = \langle Y \rangle \) が成り立つことを証明せよ。

追加問題2.4 自然数 \(m, n \geq 1 \) に対して、任意のベクトル \(a_1, a_2, \ldots, a_n \in \mathbb{R}^m \) を考え、集合 \(E = \{a_1, a_2, \ldots, a_n\} \) と定義する。このとき、有限集合族

\[\mathcal{I} = \{ X \subseteq E \mid X \text{は線形独立} \} \]

が \(E \) 上のマトロイドであることを証明せよ。(注：問題2.5を用いてもよい。)

追加問題2.5 \(\mathbb{R}^m \) において線形独立であるベクトルの集合 \(X, Y \) を考える。任意の \(x \in X - Y \) に対して、\(Y \cup \{x\} \) が線形独立ではないと仮定する。このとき、\(\langle Y \cup X \rangle = \langle Y \rangle \) が成り立つことを証明せよ。(注：問題2.3を用いてもよい。)

追加問題2.6 次に挙げる、有限集合 \(E = \{1,2,3,4\} \) 上の有限集合族 \(\mathcal{I} \) はマトロイドではない。なぜマトロイドではないのか説明せよ。

1. \(\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,3\}, \{2,4\}\} \).
2. \(\mathcal{I} = \emptyset \).

追加問題2.7 自然数 \(n \geq 1, r \geq 0 \) に対して一様マトロイド \(U_{r,n} \) の独立集合の数は何であるか？ \(n \) と \(r \) から簡単に計算できる公式を導け。(注：もちろん「簡単に」という判断は主観的である。)