グラフとネットワーク 第9回
全域木：数理とモデル化

岡本 吉央
okamotoy@uec.ac.jp

電気通信大学

2015年6月22日

最終更新：2015年6月19日 07:39
スケジュール 前半

1. グラフの定義と次数：数理 (4/13)
2. 道と閉路：数理 (4/20)
3. 木：数理 (4/27)
4. マッチング：数理 (5/11)
5. マッチング：モデル化 (5/16)
6. 最大流：数理 (5/25)
7. 最大流：モデル化 (1) (6/1)
 ● 中間試験 (6/8)

注意：予定の変更もありうる
スケジュール 後半 (予定)

8 最大流：モデル化 (2) (6/15)
9 全域木：数理とモデル化 (6/22)
10 彩色：数理 (6/29)
11 彩色：モデル化 (7/6)
12 平面グラフ：数理 (7/13)
※ 海の日で休み (7/20)
13 平面グラフ：モデル化 (7/27)
14 予備日 (講義は行う) (8/3)
● 期末試験 (8/10？)

注意：予定の変更もありうる
センサネットワークにおける通信

http://www.ipros.jp/product/detail/153568008/
今日の目標

「全域木」を理解する

► 全域木の定義を理解する

► 全域木の基本的な性質を理解し、証明できるようになる

全域木を用いたモデル化と問題解決 (David Gale の Bridg-It)
無向グラフ $G = (V, E)$

木とは？

G が木であるとは、次の 2 つの条件を満たすこと

- G は連結である
- G は閉路を部分グラフとして含まない
目次

1 全域木
2 全域木の交換可能性
3 全域木の交換可能性：補足
4 David Gale の Bridg-It
5 今日のまとめ
部分グラフ (復習)

無向グラフ \(G_1 = (V_1, E_1) \), \(G_2 = (V_2, E_2) \)

部分グラフとは？

\(G_1 \) が \(G_2 \) の部分グラフであるとは，次を満たすこと

- \(V_1 \subseteq V_2 \)
- \(E_1 \subseteq E_2 \)

有向グラフの部分グラフも同様に定義

\[\begin{align*}
\text{G}_1 & \quad \text{G}_2 \\
1 & \quad 1 \\
6 & \quad 6 \\
5 & \quad 5 \\
3 & \quad 3
\end{align*} \]
全域部分グラフ

無向グラフ $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$

全域部分グラフとは？

G_1 が G_2 の全域部分グラフであるとは、次を満たすこと

- $V_1 = V_2$
- $E_1 \subseteq E_2$

有向グラフの全域部分グラフも同様に定義
グラフの全域木

無向グラフ $G = (V, E)$

全域木とは？

G の全域木とは、G の全域部分グラフで木であるものの

全張木，生成木とも呼ぶことがある

G が非連結であるとき，G の全域木は存在しない
連結グラフは全域木を含む

無向グラフ $G = (V, E)$

連結グラフは全域木を含む

G が連結 \Rightarrow G の全域木が存在

証明の着想：G から辺をどんどん削除していく

- G に閉路があれば，閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に，閉路のない連結グラフが得られる
連結グラフは全域木を含む

無向グラフ $G = (V, E)$

連結グラフは全域木を含む

G が連結 $\implies G$ の全域木が存在

証明の着想：G から辺をどんどん削除していく

- G に閉路があれば、閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に、閉路のない連結グラフが得られる
連結グラフは全域木を含む

無向グラフ \(G = (V, E) \)

連結グラフは全域木を含む

\(G \) が連結 ⇒ \(G \) の全域木が存在

証明の着想：\(G \) から辺をどんどん削除していく

▷ \(G \) に閉路があれば，閉路から辺を削除する

▷ これを閉路がなくなるまで繰り返す

▷ 最終的に，閉路のない連結グラフが得られる
連結グラフは全域木を含む

無向グラフ \(G = (V, E) \)

連結グラフは全域木を含む

\(G \) が連結 \(\Rightarrow \) \(G \) の全域木が存在

証明の着想：\(G \) から辺をどんどん削除していく

- \(G \) に閉路があれば，閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に，閉路のない連結グラフが得られる
連結グラフは全域木を含む

無向グラフ $G = (V, E)$

連結グラフは全域木を含む

G が連結 \Rightarrow G の全域木が存在

証明の着想：G から辺をどんどん削除していく

- G に閉路があれば，閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に，閉路のない連結グラフが得られる
連結グラフは全域木を含む

無向グラフ $G = (V, E)$

連結グラフは全域木を含む

G が連結 \Rightarrow G の全域木が存在

証明の着想：G から辺をどんどん削除していく

- G に閉路があれば，閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に，閉路のない連結グラフが得られる
連結グラフは全域木を含む

無向グラフ $G = (V, E)$

連結グラフは全域木を含む

G が連結 \Rightarrow G の全域木が存在

証明の着想：G から辺をどんどん削除していく

- G に閉路があれば，閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に，閉路のない連結グラフが得られる
連結グラフは全域木を含む

無向グラフ $G = (V, E)$

連結グラフは全域木を含む

G が連結 \Rightarrow G の全域木が存在

証明の着想：G から辺をどんどん削除していく

- G に閉路があれば，閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に，閉路のない連結グラフが得られる
連結グラフは全域木を含む

無向グラフ \(G = (V, E) \)

連結グラフは全域木を含む

\(G \) が連結 \(\Rightarrow \) \(G \) の全域木が存在

証明の着想：\(G \) から辺をどんどん削除していく

- \(G \) に閉路があれば，閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に，閉路のない連結グラフが得られる (?)
連結無向グラフ $G = (V, E)$, 辺 $e \in E$

補題 (閉路から辺を除去しても連結)

e が G の閉路に含まれる $\Rightarrow G - e$ も連結

証明の着想：定義に戻る

- $G - e$ において, 任意の 2 頂点 u, v の間に道が存在すればよい
- G は連結なので, G において u, v の間に道は存在
- それが e を通るときが問題

注: 補題とは, 定理の証明に用いる補助的な命題
閉路から辺を除去しても連結

連結無向グラフ $G = (V, E)$，辺 $e \in E$

補題 (閉路から辺を除去しても連結)

e が G の閉路に含まれる $\Rightarrow G - e$ も連結

証明の着想：定義に戻る

$G - e$ において，任意の 2 頂点 u, v の間に道が存在すればよい

G は連結なので，G において u, v の間に道は存在

それが e を通るときが問題

注：補題とは，定理の証明に用いる補助的な命題
閉路から辺を除去しても連結：証明

証明：任意の 2 頂点 u, v を考える。

- G は連結なので，G において u, v の間に道は存在する。
- それを P とする。
- P が e を通らないとき，P は $G - e$ における道である。
証明：任意の 2 頂点 u, v を考える。

- G は連結なので，G において u, v の間に道は存在する。
- それを P とする。
- P が e を通らないとき，P は $G - e$ における道である。
- 閉路 C が e を通るとする。
- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。

![グラフの図](image-url)
閉路から辺を除去しても連結：証明

証明：任意の2頂点 u, v を考える。

- G は連結なので，G において u, v の間に道は存在する。
- それを P とする。
- P が e を通らないとき，P は $G - e$ における道である。
- 閉路 C が e を通るとする。
- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
- これは，e を通らないので，$G - e$ における道である。
- したがって，$G - e$ において u, v 間に道が存在する。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u，v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる．
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる．
閉路から辺を除去しても連結：注意

- P が辺を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。

```
\begin{center}
\begin{tikzpicture}[scale=0.8]
\begin{scope}[every node/.style={circle,fill=black,minimum size=5pt}]
  \node (u) at (0,0) {};
  \node (v) at (5,0) {};
  \node (C) at (2.5,2.5) {};

  \draw (u) -- (1,1);
  \draw (u) -- (2,0);
  \draw (u) -- (0,-1);
  \draw (v) -- (4,1);
  \draw (v) -- (3,0);
  \draw (v) -- (2,-1);
  \draw (C) -- (1.5,1.5);
  \draw (C) -- (2,2);

  \node at (u) {$u$};
  \node at (v) {$v$};
  \node at (C) {$C$};
\end{scope}
\end{tikzpicture}
\end{center}
```
閉路から辺を除去しても連結：注意

- \(P \) が \(e \) を通るとき，\(C - e \) が \(e \) の端点間の道を作るので，それを使って，\(u, v \) 間の別の道を作れる。
P が e を通るとき，C − e が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

° P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- \(P \) が \(e \) を通るとき，\(C - e \) が \(e \) の端点間の道を作るので，それを使って，\(u, v \) 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。

![Graph Image]
閉路から辺を除去しても連結：注意

- P が e を通るとき、$C - e$ が e の端点間の道を作るので、それを使って、u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

▶ P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作る。
閉路から辺を除去しても連結：注意

- Pがeを通るととき，$C - e$がeの端点間の道を作るので，それを使って，u, v間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき、$C - e$ が e の端点間の道を作るので、それを使って、u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- Pがeを通るととき，$C-e$がeの端点間の道を作るので，それを使って，u,v間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作る．
閉路から辺を除去しても連結：注意

▶ P が e を通るとき、$C - e$ が e の端点間の道を作るので、それを使って、u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- \(P \) が \(e \) を通るとき、\(C - e \) が \(e \) の端点間の道を作るので、それを使って、\(u, v \) 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結: 注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

P が e を通るととき，C – e が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
P が e を通るとき、C − e が e の端点間の道を作るので、それを使って、u, v 間の別の道を作れる。
閉路から辺を除去しても連結：注意

- P が e を通るとき，$C - e$ が e の端点間の道を作るので，それを使って，u, v 間の別の道を作れる。
証明したかったこと：連結グラフは全域木を含む
無向グラフ \(G = (V, E) \) が連結 \(\Rightarrow \) \(G \) の全域木が存在

証明の着想：\(G \) から辺をどんどん削除していく

- \(G \) に閉路があれば，閉路から辺を削除する
- これを閉路がなくなるまで繰り返す
- 最終的に，閉路のない連結グラフが得られる！！！
連結グラフは全域木を含む：証明 (1)

証明：$|E|$ に関する帰納法。

証明することの言い換え
辺数 m の任意の無向グラフ $G = (V, E)$ に対して，

G が連結 $\Rightarrow G$ の全域木が存在

まず，$m = 0$ のときを考える。

► G は連結であると仮定する。
► $m = 0$ なので，G の頂点数は 1.
► したがって，G そのものが G の全域木である．
連結グラフは全域木を含む：証明 (2)

帰納段階に進む。

帰納法の仮定
辺数 $k \geq 0$ の任意の無向グラフ $G' = (V', E')$ に対して，

G' が連結 $\Rightarrow G'$ の全域木が存在

証明すること
辺数 $k + 1 \geq 1$ の任意の無向グラフ $G = (V, E)$ に対して，

G が連結 $\Rightarrow G$ の全域木が存在
連結グラフは全域木を含む：証明 (3)

証明すること
辺数 $k + 1 \geq 1$ の任意の無向グラフ $G = (V, E)$ に対して，

$$G が連結 ⇒ G の全域木が存在$$

- G を辺数 $k + 1$ の連結無向グラフであると仮定する。
連結グラフは全域木を含む：証明 (3)

証明すること
辺数 $k + 1 \geq 1$ の任意の無向グラフ $G = (V, E)$ に対して，

G が連結 $\Rightarrow G$ の全域木が存在

- G を辺数 $k + 1$ の連結無向グラフであると仮定する．
- G は連結であるので，G が閉路を含まなければ，
 G 自身が G の全域木である．
連結グラフは全域木を含む：証明 (3)

<table>
<thead>
<tr>
<th>証明すること</th>
</tr>
</thead>
<tbody>
<tr>
<td>辺数 (k + 1 \geq 1) の任意の無向グラフ (G = (V, E)) に対して，</td>
</tr>
</tbody>
</table>

\[
G \text{ が連結 } \Rightarrow G \text{ の全域木が存在}
\]

- \(G \) を辺数 \(k + 1 \) の連結無向グラフであると仮定する．
- \(G \) は連結であるので，\(G \) が閉路を含まなければ，
 \(G \) 自身が \(G \) の全域木である．
- \(G \) が閉路 \(C \) を含むと仮定する．
連結グラフは全域木を含む：証明 (3)

証明すること
辺数 $k + 1 \geq 1$ の任意の無向グラフ $G = (V, E)$ に対して，

$$G \text{ が連結 } \Rightarrow G \text{ の全域木が存在}$$

- G を辺数 $k + 1$ の連結無向グラフであると仮定する．
- G は連結であるので，G が閉路を含まなければならない，
 G 自身が G の全域木である．
- G が閉路 C を含むと仮定する．
- C の辺 e を任意に選ぶ．
- 補題より，$G - e$ も連結である．
連結グラフは全域木を含む：証明 (3)

証明すること
辺数 $k + 1 \geq 1$ の任意の無向グラフ $G = (V, E)$ に対して、

G が連結 \Rightarrow G の全域木が存在

1. G を辺数 $k + 1$ の連結無向グラフであると仮定する．
2. G は連結であるので，G が閉路を含まなければ，
 G 自身が G の全域木である．
3. G が閉路 C を含むと仮定する．
4. C の辺 e を任意に選ぶ．
5. 補題より，$G - e$ も連結である．
6. $G - e$ の辺数は k なので，帰納法の仮定より，$G - e$ は全域木を含む．
連結グラフは全域木を含む：証明 (3)

証明すること
辺数 $k + 1 \geq 1$ の任意の無向グラフ $G = (V, E)$ に対して，

G が連結 \Rightarrow G の全域木が存在

- G を辺数 $k + 1$ の連結無向グラフであると仮定する.
- G は連結であるので，G が閉路を含まなければ，
 G 自身が G の全域木である.
- G が閉路 C を含むと仮定する.
- C の辺 e を任意に選ぶ.
- 補題より，$G - e$ も連結である.
- $G - e$ の辺数は k なので，帰納法の仮定より，$G - e$ は全域木を含む.
- $G - e$ は G の部分グラフなので，この全域木は G の全域木でもある．
補足：帰納法とアルゴリズム

- 「証明の着想」では、順に辺を取り除くというアルゴリズムを考えた。
- 実際の「証明」では、帰納法を使った。

格言

- 帰納法はアルゴリズム的な着想を証明に書き直すための技法
- 帰納法の証明を素直にたどるとアルゴリズムが得られる

有限の世界において「帰納法はアルゴリズムそのもの」という視点が大事
補足：全域木を見つけるアルゴリズム

- この証明から得られるアルゴリズムはあまり効率的ではない
- 全域木を見つけるアルゴリズムとして、
 深さ優先探索や幅優先探索がよく用いられる

注意
これらのアルゴリズムが正しく全域木を見つけることを証明するのは
そんなに簡単ではない

アルゴリズムの効率性と、その正当性の証明の簡単さは全く別もの
目录

1. 全域木

2. 全域木の交換可能性

3. 全域木の交換可能性：補足

4. David Gale の Bridg-It

5. 今日のまとめ
センサネットワークにおける通信：故障に対する耐性

http://www.ipros.jp/product/detail/153568008/
センサネットワークにおける通信：故障に対する耐性

http://www.ipros.jp/product/detail/153568008/
センサネットワークにおける通信：故障に対する耐性

http://www.ipros.jp/product/detail/153568008/
センサネットワークにおける通信：故障に対する耐性

http://www.ipros.jp/product/detail/153568008/
センサネットワークにおける通信：故障に対する耐性

http://www.ipros.jp/product/detail/153568008/
センサネットワークにおける通信：故障に対する耐性

http://www.ipros.jp/product/detail/153568008/
全域木の交換可能性（−＋版）

連結無向グラフ \(G = (V, E) \)，\(G \) の全域木 \(T_1 = (V, E_1) \)，\(T_2 = (V, E_2) \)

全域木の交換可能性（−＋版）

任意の \(e_1 \in E_1 - E_2 \) に対して，ある \(e_2 \in E_2 - E_1 \) が存在して，
\((T_1 - e_1) + e_2\) も \(G \) の全域木
全域木の交換可能性 (-+ 版)：証明で使う木の性質 (1)

木 $G = (V, E)$, 辺 $e \in E$

木においてどの辺も切断辺である

e は G の切断辺である

![グラフの図](image_url)
全域木の交換可能性 (→+ 版)：証明 (1)

任意の $e_1 \in E_1 - E_2$ に対して，ある $e_2 \in E_2 - E_1$ が存在して，
$(T_1 - e_1) + e_2$ も G の全域木

- e_1 は T_1 の切断辺なので，$T_1 - e_1$ は非連結
- $T_1 - e_1$ の連結成分の頂点集合を A, B とする
全域木の交換可能性 (−+ 版): 証明 (1)

任意の $e_1 \in E_1 - E_2$ に対して、ある $e_2 \in E_2 - E_1$ が存在して、
$(T_1 - e_1) + e_2$ も G の全域木

- e_1 は T_1 の切断辺なので、$T_1 - e_1$ は非連結
- $T_1 - e_1$ の連結成分の頂点集合を A, B とする
全域木の交換可能性（－＋版）：証明（2）

全域木の交換可能性（－＋版）
任意の $e_1 \in E_1 - E_2$ に対して，ある $e_2 \in E_2 - E_1$ が存在して，
$(T_1 - e_1) + e_2$ も G の全域木

▶ T_2 は連結なので，ある辺 $e_2 \in E_2$ が存在して，
e_2 の 1 端点は A あり，もう 1 つの端点は B にある
全域木の交換可能性 (−+ 版): 証明 (2)

任意の $e_1 \in E_1 - E_2$ に対して，ある $e_2 \in E_2 - E_1$ が存在して，
$(T_1 - e_1) + e_2$ も G の全域木

$\triangleright T_2$ は連結なので，ある辺 $e_2 \in E_2$ が存在して，
e_2 の1端点は A にあり，もう1つの端点は B にある

\begin{itemize}
 \item T_1
 \item T_2
 \item $(T_1 - e_1) + e_2$
\end{itemize}
全域木の交換可能性 (−+ 版)：証明 (2)

任意の $e_1 \in E_1 - E_2$ に対して、ある $e_2 \in E_2 - E_1$ が存在して、
$(T_1 - e_1) + e_2$ も G の全域木

- T_2 は連結なので、ある辺 $e_2 \in E_2$ が存在して、
 e_2 の1端点は A にあり、もう1つの端点は B にある
全域木の交換可能性（－＋版）：証明 (3)

任意の \(e_1 \in E_1 - E_2 \) に対して，ある \(e_2 \in E_2 - E_1 \) が存在して，
\((T_1 - e_1) + e_2 \) も \(G \) の全域木

\[T_1 - e_1 \] は非連結なので，\(e_2 \not\in E_1 \). （つまり，\(e_2 \in E_2 - E_1 \)）
全域木の交換可能性 (−+ 版)：証明 (3)

任意の \(e_1 \in E_1 - E_2 \) に対して、ある \(e_2 \in E_2 - E_1 \) が存在して、
\((T_1 - e_1) + e_2 \) も \(G \) の全域木

\[T_1 - e_1 \] は非連結なので、\(e_2 \not\in E_1 \). (つまり、\(e_2 \in E_2 - E_1 \))

今から確認すること：\((T_1 - e_1) + e_2 \) が \(G \) の全域木となること
全域木の交換可能性 (−+ 版)：証明で使う木の性質 (2)

無向グラフ $G = (V, E)$

演習問題 3.9

G が連結，かつ，$|E| = |V| - 1 \Rightarrow G$ は木
全域木の交換可能性 (−+ 版)：証明 (4)

任意の $e_1 \in E_1 - E_2$ に対して，ある $e_2 \in E_2 - E_1$ が存在して，
$(T_1 - e_1) + e_2$ も G の全域木

すなわち，次の 2 つを確認すればよい

1. $(T_1 - e_1) + e_2$ は連結である
2. $(T_1 - e_1) + e_2$ の辺数は $|V| - 1$ である
2. \((T_1 - e_1) + e_2\) の辺数は \(|V| - 1\) である

- \((T_1 - e_1) + e_2\) の辺集合は \((E_1 - \{e_1\}) \cup \{e_2\}\)
- \(T_1\) は \(G\) の全域木なので，\(|E_1| = |V| - 1\)
- \(e_1 \in E_1\) なので，\(|(E_1 - \{e_1\})| = |V| - 2\)
- \(e_2 \not\in E_2\) なので，\(|(E_1 - \{e_1\}) \cup \{e_2\}| = |V| - 1\)
(1) \((T_1 - e_1) + e_2\) は連結である
全域木の交換可能性 (−+ 版)：証明 (5)

1. \((T_1 - e_1) + e_2\) は連結である

 \((T_1 - e_1) + e_2\) における任意の 2 頂点 \(u, v\) を考える
全域木の交換可能性 (−+ 版)：証明 (5)

1. \((T_1 - e_1) + e_2\) は連結である
 - \((T_1 - e_1) + e_2\) における任意の 2 頂点 \(u, v\) を考える
 - \(u, v \in A\) または \(u, v \in B\) のとき，
 \(u\) と \(v\) を結ぶ道が \(T_1 - e_1\) に存在する
全域木の交換可能性 (−+ 版)：証明 (5)

1. \((T_1 - e_1) + e_2\) は連結である
 ▶ \((T_1 - e_1) + e_2\) における任意の 2 頂点 \(u, v\) を考える
 ▶ \(u, v \in A\) または \(u, v \in B\) のとき，
 \(u\) と \(v\) を結ぶ道が \(T_1 - e_1\) に存在する
 ▶ よって，その道は \((T_1 - e_1) + e_2\) にも存在する
全域木の交換可能性（−+ 版）：証明 (6)

1. \((T_1 - e_1) + e_2\) は連結である
 ▶ \(u \in A\) かつ \(v \in B\) のときを考える
全域木の交換可能性（−+ 版）：証明 (6)

1. \((T_1 - e_1) + e_2\) は連結である
 - \(u \in A\) かつ \(v \in B\) のときを考える
 - \(e_2\) の端点を \(a \in A\), \(b \in B\) とすると,
 \(A\) と \(B\) は \(T_1 - e_1\) の連結成分の頂点集合なので,
 \(T_1 - e_1\) には \(u\) と \(a\) を結ぶ道, および, \(b\) と \(v\) を結ぶ道が存在する
全域木の交換可能性 (−+ 版)：証明 (6)

1.

(\(T_1 - e_1 \) + \(e_2 \) は連結である

- \(u \in A \) かつ \(v \in B \) のときを考える
- \(e_2 \) の端点を \(a \in A \), \(b \in B \) とすると,
 \(A \) と \(B \) は \(T_1 - e_1 \) の連結成分の頂点集合なので,
 \(T_1 - e_1 \) には \(u \) と \(a \) を結ぶ道, および, \(b \) と \(v \) を結ぶ道が存在する
全域木の交換可能性 (－＋版): 証明 (6)

1. \((T_1 - e_1) + e_2\) は連結である
 ▶️ \(u \in A\) かつ \(v \in B\) のときを考える
 ▶️ \(e_2\) の端点を \(a \in A\), \(b \in B\) とすると,
 \(A\) と \(B\) は \(T_1 - e_1\) の連結成分の頂点集合なので,
 \(T_1 - e_1\) には \(u\) と \(a\) を結ぶ道、および, \(b\) と \(v\) を結ぶ道が存在する
1. $(T_1 - e_1) + e_2$ は連結である

- $u \in A$ かつ $v \in B$ のときを考える
- e_2 の端点を $a \in A$, $b \in B$ とすると, A と B は $T_1 - e_1$ の連結成分の頂点集合なので, $T_1 - e_1$ に u と a を結ぶ道, および, b と v を結ぶ道が存在する
全域木の交換可能性 (−+ 版)：証明 (6)

1. \((T_1 - e_1) + e_2\) は連結である

 ▶ \(u \in A\) かつ \(v \in B\) のときを考える

 ▶ \(e_2\) の端点を \(a \in A, b \in B\) とすると、

 \(A\) と \(B\) は \(T_1 - e_1\) の連結成分の頂点集合なので、

 \(T_1 - e_1\) には \(u\) と \(a\) を結ぶ道、および、\(b\) と \(v\) を結ぶ道が存在する

 ▶ それらを \(e_2\) をつなげると、\((T_1 - e_1) + e_2\) において \(u\) と \(v\) を結ぶ道
 が存在すると分かる
全域木の交換可能性 (+− 版)

連結無向グラフ $G = (V, E)$，G の全域木 $T_1 = (V, E_1)$，$T_2 = (V, E_2)$

全域木の交換可能性 (+− 版)

任意の $e_2 \in E_2 - E_1$ に対して，ある $e_1 \in E_1 - E_2$ が存在して，
$(T_1 + e_2) - e_1$ も G の全域木

「−+ 版」との違いに注意
木の性質 (3)

木 $G = (V, E)$ で、$u, v \in V$

木の2点間を結ぶ道はただ1つ

G において u と v を結ぶ道はただ1つ存在する
全域木の交換可能性（＋－版）：証明のための補題

連結無向グラフ \(G = (V, E) \)，\(G \) の全域木 \(T = (V, F) \)

補題

任意の辺 \(e \in E - F \) に対して，\(T + e \) にはただ 1 つ閉路が存在して，それは \(e \) を含む

証明：演習問題（直前のページにある「木の性質（3）」を使う）
全域木の交換可能性 (+− 版)：証明のための補題

連結無向グラフ $G = (V, E)$，G の全域木 $T = (V, F)$

補題

任意の辺 $e \in E - F$ に対して，
$T + e$ にはただ 1 つ閉路が存在して，それは e を含む

証明：演習問題 (直前のページにある「木の性質 (3)」を使う
全域木の交換可能性 (+− 版)：証明のための補題

連結無向グラフ $G = (V, E)$，G の全域木 $T = (V, F)$

補題

任意の辺 $e \in E - F$ に対して，
$T + e$ にはただ 1 つ閉路が存在して，それは e を含む

証明：演習問題（直前のページにある「木の性質 (3)」を使う
全域木の交換可能性 (＋－ 版)：証明のアイディア

任意の $e_2 \in E_2 - E_1$ に対して，ある $e_1 \in E_1 - E_2$ が存在して，
$(T_1 + e_2) - e_1$ も G の全域木

- $T_1 + e_2$ にはただ 1 つ閉路が存在して，それは e_2 を含む
全域木の交換可能性 (＋－ 版)：証明のアイディア

任意の $e_2 \in E_2 - E_1$ に対して，ある $e_1 \in E_1 - E_2$ が存在して，
$(T_1 + e_2) - e_1$ も G の全域木

$T_1 + e_2$ にはただ 1 つ閉路が存在して，それは e_2 を含む
全域木の交換可能性 (＋− 版)：証明のアイディア

全域木の交換可能性 (＋− 版)
任意の $e_2 \in E_2 - E_1$ に対して，ある $e_1 \in E_1 - E_2$ が存在して，
$(T_1 + e_2) - e_1$ も G の全域木

- $T_1 + e_2$ にはただ 1 つ閉路が存在して，それは e_2 を含む
- その閉路を C とすると，C には T_2 に含まれない辺が存在（なぜ？）
全域木の交換可能性（＋−版）：証明のアイディア

任意の $e_2 \in E_2 - E_1$ に対して，ある $e_1 \in E_1 - E_2$ が存在して，
$(T_1 + e_2) - e_1$ も G の全域木

- $T_1 + e_2$ にはただ 1 つ閉路が存在して，それは e_2 を含む
- その閉路を C とすると，C には T_2 に含まれない辺が存在（なぜ？）
- その辺を e_1 とする……
全域木の交換可能性 (+− 版)：証明のアイディア

任意の $e_2 \in E_2 - E_1$ に対して，ある $e_1 \in E_1 - E_2$ が存在して，
$(T_1 + e_2) - e_1$ も G の全域木

- $T_1 + e_2$ にはただ 1 つ閉路が存在して，それは e_2 を含む
- その閉路を C とすると，C には T_2 に含まれない辺が存在（なぜ？）
- その辺を e_1 とする......
- 詳細は演習問題
目次

① 全域木

② 全域木の交換可能性

③ 全域木の交換可能性：補足

④ David Gale の Bridg-It

⑤ 今日のまとめ
この補足の目的: 次の3つの違いを確認する

連結無向グラフ \(G = (V, E) \), \(G \) の全域木 \(T_1 = (V, E_1) \), \(T_2 = (V, E_2) \)

全域木の交換可能性 (-+ 版)
任意の \(e_1 \in E_1 - E_2 \) に対して，ある \(e_2 \in E_2 - E_1 \) が存在して，
\((T_1 - e_1) + e_2\) も \(G \) の全域木

全域木の交換可能性 (+- 版)
任意の \(e_1 \in E_1 - E_2 \) に対して，ある \(e_2 \in E_2 - E_1 \) が存在して，
\((T_2 + e_1) - e_2\) も \(G \) の全域木

全域木の同時交換可能性
任意の \(e_1 \in E_1 - E_2 \) に対して，ある \(e_2 \in E_2 - E_1 \) が存在して，
\((T_1 - e_1) + e_2\) と \((T_2 + e_1) - e_2\) のどちらも \(G \) の全域木
全域木の交換可能性 (→+ 版)

連結無向グラフ \(G = (V, E) \), \(G \) の全域木 \(T_1 = (V, E_1) \), \(T_2 = (V, E_2) \)

全域木の交換可能性 (→+ 版)

任意の \(e_1 \in E_1 - E_2 \) に対して, ある \(e_2 \in E_2 - E_1 \) が存在して, \((T_1 - e_1) + e_2 \) も \(G \) の全域木

格言 (「離散数学」の講義より)

「∀」「∃」が連なるときは, ゲームだと思うと分かりやすい

- ∀: 相手の手番 (任意の〜に対して)
- ∃: 自分の手番 (ある〜が存在して)

手番を繰り返して, 残った命題を成り立たせることが自分の目標

全域木の交換可能性 (→+ 版): ゲームとしての解釈

相手がどんな \(e_1 \in E_1 - E_2 \) を選んでも, 自分がうまく \(e_2 \in E_2 - E_1 \) を選ぶことで, \((T_1 - e_1) + e_2 \) が \(G \) の全域木となるようにできる
全域木の交換可能性 (←→ 版)：ゲームとしての解釈

相手がどんな $e_1 \in E_1 - E_2$ を選んでも，
自分がうまく $e_2 \in E_2 - E_1$ を選ぶことで，
$(T_1 - e_1) + e_2$ が G の全域木となるようにできる

相手が取りうる手の全体を考える必要がある

この例では

- $E_1 - E_2 = \{a, b, c, d\} \leftarrow$ 相手の取りうる手全体の集合
- $E_2 - E_1 = \{e, f, g, h\} \leftarrow$ 自分が取れる手全体の集合
全域木の交換可能性 (−+ 版)

相手が取りうる手の全体を考える必要がある

<table>
<thead>
<tr>
<th>相手の手</th>
<th>自分の応手</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>f か g</td>
</tr>
<tr>
<td>c</td>
<td>f か h</td>
</tr>
<tr>
<td>d</td>
<td>h</td>
</tr>
</tbody>
</table>

► これが自分にとっての必勝戦略

► 注意：相手の手が b か c であるとき，自分の応手が複数ある
全域木の交換可能性（＋－版）

連結無向グラフ \(G = (V, E) \), \(G \) の全域木 \(T_1 = (V, E_1) \), \(T_2 = (V, E_2) \)

全域木の交換可能性（＋－版）

任意の \(e_1 \in E_1 - E_2 \) に対して、ある \(e_2 \in E_2 - E_1 \) が存在して、
\((T_2 + e_1) - e_2 \) も \(G \) の全域木

格言（「離散数学」の講義より）

「∀」「∃」が連なるときは、ゲームだと思うと分かりやすい

► ∀：相手の手番（任意の～に対して）
► ∃：自分の手番（ある～が存在して）

手番を繰り返して、残った命題を成り立たせることが自分の目標

全域木の交換可能性（＋－版）：ゲームとしての解釈

相手がどんな \(e_1 \in E_1 - E_2 \) を選んでも、
自分がうまく \(e_2 \in E_2 - E_1 \) を選ぶことで、
\((T_2 + e_1) - e_2 \) が \(G \) の全域木となるようにできる
相手が取りうる手の全体を考える必要がある

<table>
<thead>
<tr>
<th>相手の手</th>
<th>自分の応手</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>g</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>d</td>
<td>f か g か h</td>
</tr>
</tbody>
</table>

► これが自分にとっての必勝戦略

► 注意：相手の手が d であるとき，自分の応手が複数ある
全域木の同時交換可能性

連結無向グラフ $G = (V, E)$, G の全域木 $T_1 = (V, E_1)$, $T_2 = (V, E_2)$

全域木の交換可能性 (+− 版)

任意の $e_1 \in E_1 - E_2$ に対して, ある $e_2 \in E_2 - E_1$ が存在して,
$(T_1 - e_1) + e_2$ と $(T_2 + e_1) - e_2$ のどちらも G の全域木

格言 (「離散数学」の講義より)

「∀」「∃」が連なるときは, ゲームだと思うと分かりやすい

- ∀: 相手の手番 (任意の〜に対して)
- ∃: 自分の手番 (ある〜が存在して)

手番を繰り返して, 残った命題を成り立たせることが自分の目標

全域木の交換可能性 (+− 版): ゲームとしての解釈

相手がどんな $e_1 \in E_1 - E_2$ を選んでも, 自分がうまく $e_2 \in E_2 - E_1$ を選ぶことで,
$(T_1 - e_1) + e_2$ と $(T_2 + e_1) - e_2$ が G の全域木となるようにできる
相手が取る手の全体を考える必要がある

<table>
<thead>
<tr>
<th>相手の手</th>
<th>自分の応手</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>g</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>d</td>
<td>h</td>
</tr>
</tbody>
</table>

▶ これが自分にとっての必勝戦略
比較

<table>
<thead>
<tr>
<th>相手の手</th>
<th>自分の応手</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>交換可能性 （-+版）</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>fかg</td>
</tr>
<tr>
<td>c</td>
<td>fかh</td>
</tr>
<tr>
<td>d</td>
<td>h</td>
</tr>
</tbody>
</table>

例えば、相手が $e_1 = b$ を選んだとき、

- 自分が $e_2 = f$ を選ぶと, $(T_1 - e_1) + e_2$ は G の全域木であるが, $(T_2 + e_1) - e_2$ は G の全域木ではない

- つまり、同時交換可能性の証明において, e_2 の選び方を単に「−+版のときと同じ」とすることはできない
目次

1 全域木

2 全域木の交換可能性

3 全域木の交換可能性：補足

4 David Gale の Bridg-It

5 今日のまとめ
アメリカの数学者、経済学者

2 人で競うゲーム

先手と後手が交互に点を結ぶ線を引く
先手は隣り合う黒点を結び、後手は隣り合う白点を結ぶ
2人で競うゲーム

- 結んだ線が交差してはいけない
- 先に両岸を結ぶ経路を作った方が勝ち
実際にやってみる
実際にやってみる

箇所に実際の橋の線を引き、以下のようにした。
実際にやってみる

Diagram: A grid with some connections highlighted.
実際にやってみる
実際にやってみる
実際にやってみる
実際にやってみる
実際にやってみる
実際にやってみる
実際にやってみる

![グラフ](attachment:graph.png)
実際にやってみる

![橋接図](image)

David Gale の Bridg-It：実際にやってみる
実際にやってみる
実際にやってみる
実際にやってみる
実際にやってみる
実際にやってみる

先手の勝ち
先手と後手がともに経路を作ることはできない
一方が経路を作らないとき，もう一方が経路を作る
Bridg-It は引き分けて終わらない (2)

一方が経路を作らないとき、もう一方が経路を作る
一方が経路を作らないとき，もう一方が経路を作る
Bridg-It は先手必勝

Bridg-It において、先手と後手が最善を尽くすとき、先手は必ず勝てる

全域木の交換可能性 (—+ 版) を使って、先手の必勝戦略を作れる
Bridg-It は先手必勝：基本的なアイディア (1)

先手は，右側にあるグラフを考えて，その全域木を作ろうとする

![グラフ図](image)
Bridg-It は先手必勝：基本的なアイディア (1)

先手は、右側にあるグラフを考えて、それの全域木を作ろうとする

![グラフ](image.png)
Bridg-It は先手必勝：基本的なアイディア (2)

後手は、グラフの辺を削除していく

※図はグラフの辺を削除した例を示しています。
Bridg-It は先手必勝：基本的なアイディア (2)

後手は、グラフの辺を削除していく

![グラフの図](image.png)
Bridg-It は先手必勝：基本的なアイディア (2)

後手は、グラフの辺を削除していく

```
  0   0   0   0   0
  0   0   0   0   0
  0   0   0   0   0
  0   0   0   0   0
  0   0   0   0   0
```
Bridg-It は先手必勝：基本的なアイディア (2)

後手は、グラフの辺を削除していく

\begin{center}
\begin{tikzpicture}
 \foreach \i in {0,...,6} {
 \foreach \j in {0,...,4} {
 \node[shape=circle,draw,inner sep=1pt] (n\i\j) at (\i,\j) {};
 }
 }
 \draw (n00) -- (n10) -- (n20) -- (n30) -- (n40) -- (n50) -- (n60);
 \draw (n01) -- (n11) -- (n21) -- (n31) -- (n41) -- (n51) -- (n61);
 \draw (n02) -- (n12) -- (n22) -- (n32) -- (n42) -- (n52) -- (n62);
 \draw (n03) -- (n13) -- (n23) -- (n33) -- (n43) -- (n53) -- (n63);
 \draw (n04) -- (n14) -- (n24) -- (n34) -- (n44) -- (n54) -- (n64);
\end{tikzpicture}
\end{center}
Bridg-It は先手必勝：基本的なアイディア (2)

後手は、グラフの辺を削除していく

\[\text{全域木を「修理」する方法が先手には必要} \implies \text{交換可能性} \]
Bridg-It は先手必勝：例

全域木の交換可能性 (−+) 版を使って、先手の必勝戦略を作れる

グラフの全域木 T_1, T_2 で次を満たすものを作る

- グラフのどの辺も T_1 か T_2 に含まれる
- T_1 と T_2 が共有する辺の数は 1
Bridg-It は先手必勝：例

全域木の交換可能性 (－＋ 版) を使って，先手の必勝戦略を作れる

グラフの全域木 T_1, T_2 で次を満たすものを作る

- グラフのどの辺も T_1 か T_2 に含まれる
- T_1 と T_2 が共有する辺の数は 1
Bridg-It は先手必勝：例

全域木の交換可能性 (¬+ 版) を使って、先手の必勝戦略を作れる

先手の戦略：T_1 と T_2 が共有する辺に対応する線を引く
Bridg-It は先手必勝：例

全域木の交換可能性 (—+ 版) を使って，先手の必勝戦略を作れる

後手はグラフの辺を切る

- 後手は T_1 と T_2 が共有する辺を切ることはできない
- T_1 と T_2 の一方にしか含まれない
Bridg-It は先手必勝：例

全域木の交換可能性 (−+ 版) を使って、先手の必勝戦略を作れる

先手の戦略

- 後手が T_1 の辺を切ったとすると
- ある T_2 の辺を T_1 に付け加えて、全域木に戻せる (交換可能性)
Bridg-It は先手必勝：例

全域木の交換可能性 (−＋版) を使って，先手の必勝戦略を作れる

これを続ける ⇔ 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (−+ 版) を使って，先手の必勝戦略を作れる

これを続ける ≃ 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (→ + 版) を使って，先手の必勝戦略を作れる

これを続ける ⇔ 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (−+ 版) を使って、先手の必勝戦略を作れる

これを続ける ⇔ 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (−+ 版) を使って，先手の必勝戦略を作れる

これを続ける ⇒ 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (−+ 版) を使って，先手の必勝戦略を作れる

これを続ける ⇔ 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必ず勝：例

全域木の交換可能性 (−+ 版) を使って，先手の必勝戦略を作れる

これを続ける ↩ 先手は (修理した後の) \(T_1 \) に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (ー十版) を使って，先手の必勝戦略を作れる

これを続ける 〜 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (ー＋版) を使って、先手の必勝戦略を作れる

これを続ける 〜 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (¬+ 版) を使って，先手の必勝戦略を作れる

これを続ける ⟷ 先手は (修理した後の) \(T_1 \) に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (—+ 版) を使って、先手の必勝戦略を作れる

これを続ける \(\leadsto \) 先手は (修理した後の) \(T_1 \) に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (正 + 版) を使って、先手の必勝戦略を作れる

これを続ける ⇒ 先手は (修理した後の) T_1 に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (→ + 版) を使って，先手の必勝戦略を作れる

これを続ける \(\leadsto\) 先手は (修理した後の) \(T_1\) に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (一+ 版) を使って，先手の必勝戦略を作れる

これを続ける ～ 先手は (修理した後の) \(T_1 \) に沿って辺を必ず選べる
Bridg-It は先手必勝：例

全域木の交換可能性 (→+ 版) を使って，先手の必勝戦略を作れる

これを続ける ⇔ 先手は (修理した後の) T_1 に沿って辺を必ず選べる
目次

1. 全域木
2. 全域木の交換可能性
3. 全域木の交換可能性：補足
4. David Gale の Bridg-It
5. 今日のまとめ
今日のまとめ

今日の目標

「全域木」を理解する

- 全域木の定義を理解する
- 全域木の基本的な性質を理解し、証明できるようになる

全域木を用いたモデル化と問題解決 (David Gale の Bridg-It)
残った時間の使い方

- 演習問題をやる
 - 相談推奨（ひとりでやらない）
- 質問をする
 - 教員とティーチング・アシスタントは巡回
- 退室時、小さな紙に感想など書いて提出する ← 重要
 - 内容は何でも OK
 - 匿名で OK
目次

① 全域木
② 全域木の交換可能性
③ 全域木の交換可能性：補足
④ David Gale の Bridg-It
⑤ 今日のまとめ