2015年6月5日 岡本 吉央

提出締切: 2015年6月19日

復習問題 9.1 集合 $A = \{1,2,3,4\}, B = \{1,2,3\}$ に対して,次で定義される各写像が (a) 全射であるか, (b) 単射であるか, (c) 全単射であるか,理由も付けて答えよ.

- 1. $f_1: A \to B$ \mathfrak{C} , $f_1(1) = 1$, $f_1(2) = 3$, $f_1(3) = 1$, $f_1(4) = 3$.
- 2. $f_2: A \to B$ °C, $f_2(1) = 3$, $f_2(2) = 1$, $f_2(3) = 3$, $f_2(4) = 2$.
- 3. $f_3: B \to A$ \mathcal{C} , $f_3(1) = 2$, $f_3(2) = 4$, $f_3(3) = 2$.
- 4. $f_4: B \to A$ \mathfrak{C} , $f_4(1) = 2$, $f_4(2) = 1$, $f_4(3) = 3$.
- 5. $f_5: B \to B$ \mathfrak{C} , $f_5(1) = 2$, $f_5(2) = 2$, $f_5(3) = 1$.
- 6. $f_6: B \to B$ \mathfrak{C} , $f_6(1) = 3$, $f_6(2) = 1$, $f_6(3) = 2$.

復習問題 9.2 写像 $f: \mathbb{R} \to \mathbb{R}$ を、任意の $a \in \mathbb{R}$ に対して f(a) = 3a + 1 であるとして定義する.

- 1. 写像 f が全射であることを証明せよ.
- 2. 写像 f が単射であることを証明せよ.
- 3. 写像 f の逆写像 f^{-1} : $\mathbb{R} \to \mathbb{R}$ が何であるか, 答えよ.

復習問題 9.3 写像 $f: \mathbb{R} \to \mathbb{R}$ を任意の $a \in \mathbb{R}$ に対して $f(a) = a^2$ であるとして定義する.

- 1. 写像 f が全射ではないことを証明せよ.
- 2. 写像 f が単射ではないことを証明せよ.

補足問題 9.4 実数の集合 $A,B \subseteq \mathbb{R}$ に対して,写像 $f: A \to B$ を任意の $a \in A$ に対して $f(a) = a^2$ であるとして定義する.以下のように $A \succeq B$ を定めるとき,写像 f が (a) 全射であるか,(b) 単射であるか,(c) 全単射であるか,理由も付けて答えよ.そして,(d) 全単射である場合は,その逆写像が何であるか,理由も付けて答えよ.

- 1. $A = \mathbb{R}, B = [0, \infty).$
- 2. $A = [0, \infty), B = [0, \infty).$
- 3. $A = [0, 1], B = [0, \infty).$

補足問題 9.5 任意の集合 A, B と任意の写像 $f: A \to B$ を考える. このとき, f が全単射であるならば, f の逆写像が存在することを証明せよ.

補足問題 9.6 この演習問題の目標は、任意の集合 A, B と任意の写像 $f: A \rightarrow B$ に対して、f の逆写像 が存在するとき、f が全単射であることを証明する ことである。次の流れに沿って証明を行ってみよ.

- 1. 任意の集合 A, B, C と任意の写像 $f: A \rightarrow B$, $g: B \rightarrow C$ に対して、写像 $g \circ f$ が全射であるならば、g も全射であることを証明せよ.
- 2. 任意の集合 A, B, C と任意の写像 $f: A \rightarrow B$, $g: B \rightarrow C$ に対して,写像 $g \circ f$ が単射であるならば,f も単射であることを証明せよ.
- 3. 任意の集合 A, B と任意の写像 $f: A \to B$ に対して,f の逆写像が存在するならば,f が全単射であることを証明せよ.

補足問題 9.7 任意の集合 A,B と任意の写像 $f:A\to B$ を考える. 写像 f が全単射であるとき,その逆写像 f^{-1} も全単射であることを証明せよ.

追加問題 9.8 次のそれぞれの写像が (a) 全射であるか, (b) 単射であるか, (c) 全単射であるか, 理由も付けて答えよ. そして, (d) 全単射である場合は, その逆写像が何であるか, 理由も付けて答えよ.

- 1. $f_1: \mathbb{R} \to \mathbb{R}$ で、任意の $a \in \mathbb{R}$ に対して、 $f_1(a) = a^3$.
- 2. $f_2: \mathbb{R} \to \mathbb{R}$ で、任意の $a \in \mathbb{R}$ に対して、 $f_2(a) = 2^a$.
- 3. $f_3: \mathbb{Z} \to \mathbb{Z}$ で、任意の $a \in \mathbb{Z}$ に対して、 $f_3(a) = 2a + 1$.

 $f:A\to B,\ g:B\to C$ に対して、f と g が全射 「 $f\circ g=\mathrm{id}_B$ が成り立つとき、g が f の逆写像であ であるとき, $g \circ f$ も全射であることを証明せよ.

追加問題 9.10 任意の集合 A, B, C と任意の写像 $f: A \to B, g: B \to C$ に対して、 $f \geq g$ が単射であ るとき, $g \circ f$ も単射であることを証明せよ.

追加問題 (発展) 9.11 任意の集合 A, B と任意の 写像 $f: A \rightarrow B$ を考える. このとき, f が全射であ るとき、そのときに限り、任意の $Y \subseteq B$ に対して $Y = f(f^{-1}(Y))$ が成り立つことを証明せよ.

追加問題 (発展) 9.12 任意の集合 A, B と任意の 写像 $f: A \rightarrow B$ を考える. このとき、f が単射であ るとき、そのときに限り、任意の $X \subset A$ に対して $X = f^{-1}(f(X))$ が成り立つことを証明せよ.

追加問題 (発展) 9.13 1 つ以上の整数の集合 $X \subset \mathbb{Z}$ に対して、Xの要素である整数の中で最も小さいもの を $\min X$ と表すことにする. 例えば, $X = \{-3, 0, 2\}$ であるとき, $\min X = -3$ である.

写像 $f: 2^{\mathbb{Z}} \to 2^{\mathbb{Z}}$ を、任意の $X \in 2^{\mathbb{Z}}$ に対して

$$f(X) = \begin{cases} X - \{\min X\} & (X \neq \emptyset \text{ のとき}), \\ \emptyset & (X = \emptyset \text{ のとき}) \end{cases}$$

であると定義する. 以下の問いに答えよ.

- 1. 写像 *f* が全射であることを証明せよ.
- 2. 写像 f が単射ではないことを証明せよ.

(注意:発展問題であるが,何を問われているのか理 解することが難しいかもしれない. 何を問われてい るのか理解できれば、証明自体は難しくない.)

補足問題 9.14 任意の集合 A,B と任意の全単射 $f: A \to B$ と任意の写像 $q: B \to A$ を考える. この とき, g が f の逆写像であることと $g \circ f = id_A$ が成 り立つことが同値であることを証明せよ. (ヒント: $\lceil q \circ f = \mathrm{id}_A$ が成り立つとき, q が f の逆写像であ る」ことを証明するとき、f が全射であるという性 質を利用せよ.)

 $4. \ f_4 \colon \{-1,0,1\} \to \{-1,0,1\}$ で、任意の $a \in$ 補足問題 $\mathbf{9.15}$ 任意の集合 A,B と任意の全単射 $\{-1,0,1\}$ に対して、 $f_4(a)=a(a-1)(a+1)$. $f\colon A\to B$ と任意の写像 $g\colon B\to A$ を考える. この とき, q が f の逆写像であることと $f \circ q = id_B$ が成 追加問題 9.9 任意の集合 A,B,C と任意の写像 り立つことが同値であることを証明せよ. (ヒント: る」ことを証明するとき、fが単射であるという性 質を利用せよ.)