今日の概要

今日の目標

・最大流問題の定義と解法を理解する
・最大流問題を線形計画問題として定式化できるようになる
・最大流問題を増加道法によって解けるようになる

2つの重要な定理：最大流最小カット定理、整数流定理

最大流問題とは？

入力

- 有向グラフ \(G = (V, E) \)，各辺 \(e \in E \) の容量，2頂点 \(s, t \in V \)
- 辺の容量は非負実数

流れとは？: 直感 (1)

流れとは？: 直感 (2)

流れとは？: 直感 (3)
流れとは？

s から t への流れ (flow) とは？

- s から付与される総量 = t へ流れ込む総量 (流れの流量 とよぶ)
- s, t 以外の頂点 v において、
 v から流れ出る総量 = v へ流れ入る総量
- 各辺 e において、
 0 ≤ e を流れる量 ≤ e の容量

流れではない

これは流れか？ (1)

s から t への流れ (flow) とは？

- s から付与される総量 = t へ流れ込む総量
- s, t 以外の頂点 v において、
 v から流れ出る総量 = v へ流れ入る総量
- 各辺 e において、
 0 ≤ e を流れる量 ≤ e の容量

流れではない

これは流れか？ (2)

s から t への流れ (flow) とは？

- s から付与される総量 = t へ流れ込む総量
- s, t 以外の頂点 v において、
 v から流れ出る総量 = v へ流れ入る総量
- 各辺 e において、
 0 ≤ e を流れる量 ≤ e の容量

流れではない

これは流れか？ (3)

s から t への流れ (flow) とは？

- s から付与される総量 = t へ流れ込む総量
- s, t 以外の頂点 v において、
 v から流れ出る総量 = v へ流れ入る総量
- 各辺 e において、
 0 ≤ e を流れる量 ≤ e の容量

流れではない

これは流れか？ (4)

s から t への流れ (flow) とは？

- s から付与される総量 = t へ流れ込む総量
- s, t 以外の頂点 v において、
 v から流れ出る総量 = v へ流れ入る総量
- 各辺 e において、
 0 ≤ e を流れる量 ≤ e の容量

流れである

最大流問題の解き方

解き方 1：線形計画問題として定式化
例えば、単体法を用いて解く

解き方 2：最大流問題独自のアルゴリズムを利用
例えば、増加還元法を用いて解く

最大流問題の出題例

問題 1

有向グラフ G として以下の条件を満たす二つの部品を組み立て工房に連するが、どの材質で作られているかの情報は与えられていない。

- 部品 A と B は、工房の下工業機械に組み立てられる。
- 部品 A と B は、工房の上工業機械に組み立てられる。
- 部品 A と B は、工房の中工業機械に組み立てられる。

工房の下工業機械、中工業機械、上工業機械、組み立て工房のそれぞれで組み立てられる部品の総数を求めてください。

問題 2

以下の有向グラフ G について、以下の条件を満たす二つの部品を組み立て工房に連するが、どの材質で作られているかの情報は与えられていない。

- 部品 A と B は、工房の下工業機械に組み立てられる。
- 部品 A と B は、工房の上工業機械に組み立てられる。
- 部品 A と B は、工房の中工業機械に組み立てられる。

工房の下工業機械、中工業機械、上工業機械、組み立て工房のそれぞれで組み立てられる部品の総数を求めてください。

目次

1. 最大流問題とは？
2. 最大流問題と線形計画法
3. カット容量による上界
4. 増加還元法
5. 今日のまとめと今後の予告
最大流問題に対する線形計画問題としての定式化 (再掲)

最大化

条件:

\[x_1 + x_2 + x_3 = x_5 + x_6 + x_7 = x_8, \]
\[x_9 = x_4 + x_5 + x_6 = x_7 + x_8 = x_9 + x_{10} \]

\(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \in \mathbb{R} \)

\((x_1, ..., x_9)\) がこの問題の許容解であるとき,

\[x_1 + x_2 + x_3 = x_5 + x_6 + x_7 = x_8 + x_9 = x_4 + x_5 + x_6 = x_7 + x_8 = x_9 + x_{10} \]

\(x_1\) から流入する総量

\(x_2\) から流入する総量

\(x_3\) へ流れ込む総量

\(x_4\) へ流れ込む総量

\(x_5\) へ流れ込む総量

\(x_6\) へ流れ込む総量

\(x_7\) へ流れ込む総量

\(x_8\) へ流れ込む総量

\(x_9\) へ流れ込む総量

\(x_{10}\) へ流れ込む総量

設定のデータ

<table>
<thead>
<tr>
<th>項目</th>
<th>値</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(x_2)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(x_3)</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

サンプル

カット容量による上界

カット容量による上界: 例

\[(s, a, b, c, d) \text{ はカットであり、その容量は 8} \]

\(s\) から \(t\) への流量は \(e_s, e_t\) の容量和以下である

\[\text{流れる総量} \leq 4 + 1 + 3 = 8 \]

\[\text{optimal value somewhere in this region} \]

サンプル

カット容量による上界: もう少し形式的に (2)

\[(s, a, b) \text{ はカットであり、その容量は 10} \]

\(s\) から \(t\) の流量は \(e_s\) の容量に含まれない

サンプル

カット容量による上界: もう少し形式的に (3)

\[(s, a, b, c, d) \text{ はカットであり、その容量は 6} \]

\(s\) から \(t\) の流量は \(e_s\) の容量に含まれない
s から t への流量はこのカットの容量以下である
つまり，最大流量 \(\leq 6 \)

流れによる下界の更新（1）

流れによる下界の更新（2）

最大流と最小カット

最大流最小カット定理

最大流最小カット定理

最大流問題において，必ず
最大流量 = 最小カット容量
が成立する

つまり，この例のような「幸運」は必ず起こる！

目次

・最大流問題とは？
・最大流問題と線形計画法
・カット容量による上界
・増加通路
最大流問題の解き方

解き方 2：最大流問題独自のアルゴリズムを利用

例えば、増加法を用いて解く

今からやること

増加法を説明する

・重間概念：補助ネットワーク、増加道
・最大流最小カットの定理も用いる

任意の流れから始める (例えば、どの辺の上にも 0 だけ流れるもの)

補助ネットワークにおいて、s を始点、t を終点とする道を見つける

このような道を増加道 (そうかどう) と呼ぶ

現在得られている流れ

先ほどの手順を繰り返す

・補助ネットワークの作成
・増加道の発見
・流れの増加

増加法：基本アイディア

・事例：流れる「道に沿った流れ」に分けるできる
・方針：「道に沿った流れ」を次々と見つけていく

増加法の動き (1)

補助ネットワークを作る

道に沿って、できる限り流れる増加させる

増加法の動き (1)：補助ネットワークの作成

補助ネットワークを作成する

増加法の動き (1)

増加法の動き (2)

現在得られている流れ

先ほどの手順を繰り返す

・補助ネットワークの作成
・増加道の発見
・流れの増加

・頂点集合はもとの有向グラフと同じ
・2 頂点間に辺がある ⇔ 那辺を通じて流せる (逆向き辺に注意)
・辺の容量 = 流せる最大量
増加法の動き (2)：増加法の発見
補助ネットワークにおいて，sを始点，tを終点とする道を見つける

道に沿って，できる限り流れを増加させる

増加法の動き (3)
現在得られている流れ

先ほどの手順を繰り返す
- 補助ネットワークの作成
- 増加法の発見
- 流れの增加

増加法の動き (3)：補助ネットワークの作成
補助ネットワークを作る

増加法の動き (4)
現在得られている流れ

先ほどの手順を繰り返す
- 補助ネットワークの作成
- 増加法の発見
- 流れの増加

増加法の動き (4)：流れの増加
道に沿って，できる限り流れを増加させる

補助ネットワークを作ると
增加法の動き (4): 増加道の発見
補助ネットワークにおいて、xを始点、tを終点とする道を見つける

しかし、見つからない！（存在しない）→ アルゴリズムは次の段階へ

増加法の動き (4): 到達可能頂点の探索
補助ネットワークにおいて、xから到達可能な頂点をすべて見つける
→ これはカットである

増加法の動き (4): 最小カットの発見
元の有向グラフにおいて、このカットの容量を見る

→ この容量は得られた流れの流量に等しい
　つまり、最大流と最小カットが得られた！（アルゴリズム停止）

整数流定理
増加法で、流れを増加させるとき、その増加分は必ず整数だった
なぜか？
　→ はじめの容量がすべて整数
　↓ はじめの増加分は必ず整数
　↓ 補助ネットワークの容量もすべて整数
　↓ 毎回、増加分は必ず整数

増加法に対する注意

注意1
辺の容量に無理数が出てくるとき、
　増加法が有限ステップで終了しないこともある
　増加法の収束先が最大流ではないこともある
　その2つが同時に起こることもある

注意2
増加法における、増加道の選び方は工夫できる
　→ 工夫しない（Ford-Fulkerson のアルゴリズム）
　→ 異常先探索を用いる（Edmonds-Karp のアルゴリズム）
Edmonds-Karp のアルゴリズムは多重辺時間アルゴリズムである
（Ford-Fulkerson のアルゴリズムはそうではない）

目次

1 最大流問題とは？
2 最大流問題と線形計画法
3 カット容量による上界
4 増加法
5 今日のまとめと今後の予告
今日のまとめと今後の予告

今日の目標

▶ 最大流問題の定義と解法を理解する
▶ 最大流問題を線形計画問題として定式化できるようになる
▶ 最大流問題を増加道法によって解けるようになる

2つの重要な定理：最大流最小カット定理，整数流定理

今後の予告：ネットワークに関する3つの最適化問題

演 最短路問題
演 最大流問題
▶ 最大流問題の応用
▶ 最小費用流問題

注：ネットワークに関する最適化問題は他にもたくさんある

複習テスト2は6月28日，場所は5533教室
（出題範囲は「分枝限界法」と「切片平滑法」の講義と演習の内容）