離散数学第5回

集合と論理(5):集合の演算など

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2013年5月21日

最終更新: 2013年5月20日 16:26

今日の目標

- ▶ 部分集合について理解を深める
- ▶ 集合の直積と冪集合 (べき集合) を理解する

目次

- ① 論理を用いた証明 (続1)
- ② 論理を用いた証明 (続2):空集合を扱う
- 3 集合の直積
- 4 冪集合
- ⑤ 証明の例題
- 6 今日のまとめ

例題1

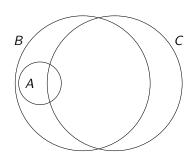
例題1:次を証明せよ

任意の集合 A, B, C に対して

$$A \subseteq B$$
 $abla b \subset C - A$

が成立する.

オイラー図による直観



例題1

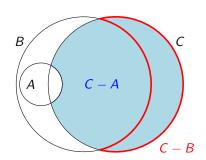
例題1:次を証明せよ

任意の集合 A, B, C に対して

$$A \subset B$$
 ならば $C - B \subset C - A$

が成立する.

オイラー図による直観



例題1:構造を把握する

証明したいこと

$$A \subseteq B$$
 ならば $C - B \subseteq C - A$

論理構造



証明する目標が「 → 」の場合(復習)

- ▶ 文章構造:「 を仮定する」として, を証明する
- ▶ 論理操作: であることを仮定して, を証明する

 $A \subseteq B$ であると仮定する.

したがって, $A \subseteq B$ ならば $C - B \subseteq C - A$ となる.

離散数学 (5)

使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$C-B\subseteq C-A$

部分集合の定義に基づいて目標を書き直してみる

使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$C-B\subseteq C-A$
	$\forall x (x \in C - B \rightarrow x \in C - A)$

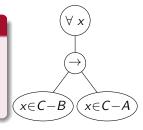
部分集合の定義に基づいて目標を書き直してみる

使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$C-B\subseteq C-A$
	$\forall x (x \in C - B \rightarrow x \in C - A)$

部分集合の定義に基づいて目標を書き直してみる

証明する目標が「 $\forall x \in D$ ()」の場合 (復習)

- ▶ 文章構造:「x ∈ D を任意に選ぶ」として, を証明する
- 論理操作:「x ∈ D」であることを仮定して,
 を証明する



使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$C-B\subseteq C-A$
	$ \begin{array}{c} - \\ \forall x \ (x \in C - B \to x \in C - A) \\ x \in C - B \to x \in C - A \end{array} $
	$x \in C - B \rightarrow x \in C - A$

x は任意

使える性質 (仮定) 導く性質 (目標)
$$C - B \subseteq C - A$$

$$\forall x (x \in C - B \rightarrow x \in C - A)$$

$$x \in C - B \rightarrow x \in C - A$$

x は任意

証明する目標が「 → 」の場合(復習)

- ▶ 文章構造:「 を仮定する」として, を証明する
- ▶ 論理操作: であることを仮定して, を証明する

使える性質 (仮定) 導く性質 (目標)
$$A \subseteq B$$

$$x \in C - B$$

$$\forall x (x \in C - B \rightarrow x \in C - A)$$

$$x \in C - A$$

$$x \in C - A$$

x は任意

証明する目標が「 → 」の場合(復習)

- ▶ 文章構造:「 を仮定する」として, を証明する
- ▶ 論理操作: であることを仮定して, を証明する

 $A \subseteq B$ であると仮定する.

部分集合の定義より,任意のx に対して, $x \in C - B$ ならば $x \in C - A$ であることを証明すればよい.

xを任意に選び, $x \in C - B$ と仮定する.

 $\langle ccc (x \in C - A)$ を結論として導く. \rangle

したがって, $x \in C - B$ ならば $x \in C - A$ となる.

したがって, $C-B\subseteq C-A$ となる.

したがって, $A \subseteq B$ ならば $C - B \subseteq C - A$ となる.

例題1:論理操作(整理)

使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$x \in C - A$
$x \in C - B$	

x は任意

例題1:論理操作(続1)

使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$x \in C - A$
$x \in C - B$	
$x \in C$	
$x \notin B$	

x は任意

差集合の定義に基づいて,書き直す

例題1:論理操作(続2)

使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$x \in C - A$
$x \in C - B$	
$x \in C$	
$x \not\in B$	
$\forall y \ (y \in A \to y \in B)$	

x は任意

部分集合の定義に基づいて,書き直す (変数として,x とは違う y を使うと,紛らわしくない)

例題1:論理操作(続3)

導く性質 (目標)
$x \in C - A$

x は任意

推論 (全称例化)

任意の $a \in D$ に対して

$$\forall x \in D (P(x)) \Rightarrow P(a)$$

例題1:論理操作(続4)

使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$x \in C - A$
$x \in C - B$	
$x \in C$	
$x \notin B$	
$\forall y \ (y \in A \to y \in B)$	
$x \in A \rightarrow x \in B$	
$x \not\in A$	

x は任意

「推論 (モードゥス・トレンス)

(演習問題)

$$((P \rightarrow Q) \land \neg Q) \Rightarrow \neg P$$

例題1:論理操作(続5)

使える性質 (仮定)	導く性質 (目標)
$A \subseteq B$	$x \in C - A$
$x \in C - B$	
$x \in C$	
$x \not\in B$	
$\forall y \ (y \in A \to y \in B)$	
$x \in A \rightarrow x \in B$	
$x \not\in A$	
$x \in C - A$	

x は任意

差集合の定義に基づいて書き直した

···	
$\langle \; ここで「 x \in C - A 」$ を結論として導く $. \; \rangle$	

差集合の定義より , x ∈ C かつ x ∉ B となる .	
,	

• • •

差集合の定義より, $x \in C$ かつ $x \notin B$ となる.

部分集合の定義より,任意のyに対して $y \in A$ ならば $y \in B$ となる.

. . . .

• • •

差集合の定義より, $x \in C$ かつ $x \notin B$ となる. 部分集合の定義より,任意のyに対して $y \in A$ ならば $y \in B$ となる. 特に, $x \in A$ ならば $x \in B$ となる.

. . .

• • •

差集合の定義より, $x \in C$ かつ $x \notin B$ となる. 部分集合の定義より,任意のyに対して $y \in A$ ならば $y \in B$ となる. 特に, $x \in A$ ならば $x \in B$ となる.

しかし, $x \notin B$ なので, $x \notin A$ となる.

...

• • •

差集合の定義より, $x \in C$ かつ $x \notin B$ となる. 部分集合の定義より,任意のyに対して $y \in A$ ならば $y \in B$ となる. 特に, $x \in A$ ならば $x \in B$ となる.

しかし, x ∉ B なので, x ∉ A となる. x ∈ C と x ∉ A より, x ∈ C − A となる.

...

例題1:証明の清書

- A⊆Bであると仮定する.
- ▶ 部分集合の定義より、任意のxに対して、 $x \in C B$ ならば $x \in C A$ であることを証明すればよい.
- ▶ x を任意に選び, x ∈ C B と仮定する.
- ▶ 差集合の定義より, $x \in C$ かつ $x \notin B$ となる.
- ▶ 部分集合の定義より,任意のyに対して $y \in A$ ならば $y \in B$ となる.
- ▶ 特に, $x \in A$ ならば $x \in B$ となる.
- ▶ しかし, $x \notin B$ なので, $x \notin A$ となる.
- x ∈ C と x ∉ A より , x ∈ C − A となる .
- したがって, C B ⊆ C A となる.

目次

- 論理を用いた証明 (続1)
- ② 論理を用いた証明 (続2):空集合を扱う
- ③ 集合の直積
- 4 冪集合
- ⑤ 証明の例題
- ⑥ 今日のまとめ

空集合とは

空集合とは? (復習)

要素を持たない集合を空集合と呼び「∅」または「∅」と表記する

空集合とは?: 論理を用いて書くと

- $\neg \exists x (x \in \emptyset)$
- $\rightarrow \forall x (x \notin \emptyset)$

例題 2:空集合は任意の集合の部分集合

任意の集合 A に対して

 $\emptyset \subseteq A$

部分集合の定義に基づいて書き直すと

任意の x に対して , $x \in \emptyset$ ならば $x \in A$

導く性質 (目標)
$x \in A$

使える性質 (仮定)	導く性質 (目標)
$x \in \emptyset$	$x \in A$
$\forall \ y \ (y \not\in \emptyset)$	

空集合の定義

使える性質 (仮定)	導く性質 (目標)
$x \in \emptyset$	$x \in A$
$\forall \ y \ (y \not\in \emptyset)$	
$x \not\in \emptyset$	

存在例化

使える性質 (仮定)	導く性質 (目標)
$x \in \emptyset$	$x \in A$
$\forall y (y \notin \emptyset)$	
$x ot\in \emptyset$	
矛盾 (F)	

同値変形 (矛盾法則)

 $P \land \neg P \Leftrightarrow \mathsf{F}$

使える性質 (仮定)	導く性質 (目標)
$x \in \emptyset$	$x \in A$
$\forall \ y \ (y \not\in \emptyset)$	
$x ot\in \emptyset$	
矛盾 (F)	
$x \in A$	

推論 (空ゆえに真)

 $\mathsf{F}\Rightarrow P$

例題2:文章構造

部分集合の定義から「 $x \in \emptyset$ ならば $x \in A$ 」を証明すればよい.

xを任意に選び, $x \in \emptyset$ と仮定する.

空集合の定義より,任意のyに対して $y \notin \emptyset$ である.

特に , *x* ∉ ∅ である .

これと $x \in \emptyset$ は矛盾する.

したがって, $x \in A$ となる.

したがって, $x \in \emptyset$ ならば $x \in A$ となる.

したがって, $\emptyset \subseteq A$ となる.

例題2:証明の清書

- ▶ 部分集合の定義から「 $x \in \emptyset$ ならば $x \in A$ 」を証明すればよい.
- x を任意に選び,x∈∅と仮定する.
- ▶ 空集合の定義より,任意の y に対して y ∉ ∅ である.
- 特に,x ∉ ∅ である.
- これと x ∈ ∅ は矛盾する.
- したがって, x ∈ A となる.
- したがって,∅⊆Aとなる.

例題3

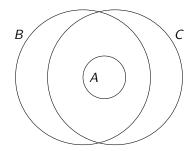
例題3:次を証明せよ

任意の集合 A, B, C に対して

$$A \subseteq B \cap C \Leftrightarrow A \subseteq B \text{ to } A \subseteq C$$

が成立する.

図による直観



 $A \subseteq B \cap C$

$$A \subseteq B \cap C$$

$$\Leftrightarrow \forall x (x \in A \rightarrow x \in B \cap C)$$

(部分集合の定義)

$$A \subseteq B \cap C$$

$$\Leftrightarrow \forall x (x \in A \rightarrow x \in B \cap C)$$

$$\Leftrightarrow \forall x (x \in A \rightarrow ((x \in B) \land (x \in C))$$

(部分集合の定義)

(共通部分の定義)

$$A \subseteq B \cap C$$

$$\Leftrightarrow \forall x (x \in A \rightarrow x \in B \cap C)$$

$$\Leftrightarrow \forall x (x \in A \to ((x \in B) \land (x \in C))$$

$$\Leftrightarrow \forall x ((x \in A \rightarrow x \in B) \land (x \in A \rightarrow x \in C))$$

(部分集合の定義)

(共通部分の定義)

(含意の合成)

含意の合成

$$(P \rightarrow Q) \land (P \rightarrow R) \Leftrightarrow P \rightarrow (Q \land R)$$

$$A \subseteq B \cap C$$

$$\Leftrightarrow \forall x (x \in A \rightarrow x \in B \cap C)$$

$$\Leftrightarrow \forall x (x \in A \rightarrow ((x \in B) \land (x \in C))$$

$$\Leftrightarrow \forall x ((x \in A \rightarrow x \in B) \land (x \in A \rightarrow x \in C))$$

$$\Leftrightarrow (\forall x (x \in A \to x \in B)) \land (\forall x (x \in A \to x \in C))$$

(共通部分の定義)

(含意の合成) (分配法則)

∀ の分配法則

$$(\forall x \in D (P(x))) \land (\forall x \in D (Q(x))) \Leftrightarrow \forall x \in D (P(x) \land Q(x))$$

$$A \subseteq B \cap C$$

$$\Leftrightarrow \forall x (x \in A \rightarrow x \in B \cap C)$$

$$\Leftrightarrow \forall x (x \in A \to ((x \in B) \land (x \in C))$$

$$\Leftrightarrow \forall x ((x \in A \rightarrow x \in B) \land (x \in A \rightarrow x \in C))$$

$$\Leftrightarrow (\forall x (x \in A \rightarrow x \in B)) \land (\forall x (x \in A \rightarrow x \in C))$$

$$\Leftrightarrow$$
 $(A \subseteq B) \land (A \subseteq C)$

(部分集合の定義)

(共通部分の定義)

(含意の合成)

(分配法則)

(部分集合の定義)

$$A \subseteq B \cap C$$

$$\Leftrightarrow \forall x (x \in A \rightarrow x \in B \cap C)$$

$$\Leftrightarrow \forall x (x \in A \to ((x \in B) \land (x \in C))$$

$$\Leftrightarrow \forall x ((x \in A \rightarrow x \in B) \land (x \in A \rightarrow x \in C))$$

$$\Leftrightarrow (\forall x (x \in A \rightarrow x \in B)) \land (\forall x (x \in A \rightarrow x \in C))$$

$$\Leftrightarrow$$
 $(A \subseteq B) \land (A \subseteq C)$

(部分集合の定義)

(共通部分の定義)

(含意の合成)

(分配法則)

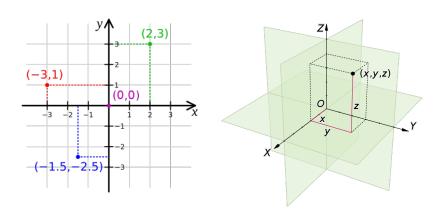
(部分集合の定義)

目次

- ① 論理を用いた証明 (続1)
- ② 論理を用いた証明 (続2):空集合を扱う
- 3 集合の直積
- 4 冪集合
- ⑤ 証明の例題
- ⑥ 今日のまとめ

座標

- ▶ 2次元平面の点の座標は2つの実数を「対」にして表現する
- ▶ このように,集合の要素を「対」にすることは有用



 $http://en.wikipedia.org/wiki/Cartesian_coordinate_system$

構造体

プログラミングの構造体

```
struct account {
   string name;
   int account_number;
   int balance;
};
```

数個のデータを組にして、一つの構造を表現する

順序対 (2個組)

順序対とは? (常識に基づく定義)

順序対とは , ものを 2 つ並べたもののことである .

▶ a と a' をこの順で並べたものは「(a, a')」と表記する

「順序対」は単に「対」や「組」と呼ばれることもある

同じ順序対 (常識に基づく定義)

2つの順序対(a,a')と(b,b')が等しいことを(a,a')=(b,b')と表記し,

$$a=b$$
 かつ $a'=b'$

であることと定義する

注意:(a, a') と (a', a) は a ≠ a' ならば異なる

集合の直積 (1)

集合の直積

集合 A と集合 B の直積を $A \times B$ と表記して,

$$A \times B = \{(x,y) \mid x \in A \text{ かつ } y \in B\}$$

と定義する

「直積」は「デカルト積」とも呼ぶ

例

$$A = \{a, b\}, B = \{c, d, e\}$$
 のとき,

$$A \times B = \{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)\}$$

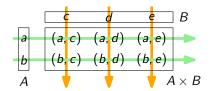
簡単な確認:A imes B の要素数 = (A の要素数) imes (B の要素数)

集合の直積:図示

例

$$A = \{a, b\}, B = \{c, d, e\}$$
 のとき,

$$A \times B = \{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)\}$$



例 続き

$$A = \{a, b\}, B = \{c, d, e\}$$
 のとき,

$$B \times A = \{(c, a), (c, b), (d, a), (d, b), (e, a), (e, b)\}$$

n個組

nは自然数

n個組とは? (常識に基づく定義)

- n 個組とは n ものを n 個並べたもののことである n
 - $ightharpoonup a_1, a_2, \ldots, a_n$ をこの順で並べたものは「 (a_1, a_2, \ldots, a_n) 」と表記する

同じ n 個組 (常識に基づく定義)

2つの n 個組 (a_1,a_2,\ldots,a_n) と (b_1,b_2,\ldots,b_n) が等しいことを $(a_1,a_2,\ldots,a_n)=(b_1,b_2,\ldots,b_n)$ と表記し,

すべての i に対して $a_i = b_i$

であることと定義する

集合の直積 (2)

集合の直積

集合 A_1, A_2, \dots, A_n の直積を $A_1 \times A_2 \times \dots \times A_n$ と表記して,

$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1, x_2, \dots, x_n) \mid \forall i \in \{1, 2, \dots, n\} \ (x_i \in A_i)\}$$

と定義する

「
$$A_1 imes A_2 imes \cdots imes A_n$$
」を「 $\prod_{i=1}^{n} A_i$ 」と書くこともある

例

$$A = \{a, b\}, B = \{c, d, e\}, C = \{f, g\}$$
 のとき,

$$A \times B \times C = \{(a, c, f), (a, c, g), (a, d, f), (a, d, g), (a, e, f), (a, e, g), (b, c, f), (b, c, g), (b, d, f), (b, d, g), (b, e, f), (b, e, g)\}$$

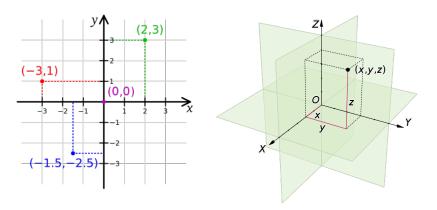
簡単な確認: $A_1 \times A_2 \times \cdots \times A_n$ の要素数 $= (A_1$ の要素数) $\times (A_2$ の要素数) $\times \cdots \times (A_n$ の要素数)

集合の直積 (関係する記法)

- ▶ *A* × *A* を *A*² と書く
- ト $A \times A \times A$ を A^3 と書く
- $\underbrace{A \times A \times \cdots \times A}_{n \text{ \tiny fig}}$ を A^n と書く

集合の直積:例1(デカルト座標系)

- ▶ $\mathbb{R}^2 = 2$ 次元平面
- ▶ ℝ³ = 3 次元空間



http://en.wikipedia.org/wiki/Cartesian_coordinate_system

集合の直積:例2(IPアドレス)

(IPv4 における) IP アドレスは 1 バイトの数 4 つで表現される

- www.uec.ac.jp: 130.153.9.10
- www.kantei.go.jp: 202.232.146.151

つまり,

可能な IP アドレス全体の集合 = $\{0,\ldots,255\}^4$

集合の直積:例3(DNA(デオキシリボ核酸))

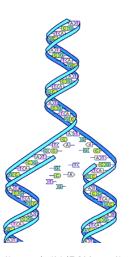
DNA は生物の遺伝情報を担う物質

▶ アデニン (A), チミン (T), シトシン (C), グアニン (G) という塩基の並び方で遺伝情 報はだいたい決められている

つまり,

► DNA が持つ遺伝情報全体の集合 = {A, T, C, G}"

nは生物種によって異なる自然数



 $http://en.wikipedia.org/wiki/DNA_replication$

集合の直積:補足

集合の直積 (再掲)

集合 A と集合 B の直積を $A \times B$ と表記して,

$$A \times B = \{(x, y) \mid x \in A$$
かつ $y \in B\}$

と定義する

定義から,次が分かる

- \rightarrow $A \times \emptyset = \emptyset$
- $\triangleright \emptyset \times B = \emptyset$

目次

- 論理を用いた証明 (続1)
- ② 論理を用いた証明 (続2):空集合を扱う
- ③ 集合の直積
- 4 冪集合
- ⑤ 証明の例題
- ⑥ 今日のまとめ

冪集合

冪集合

集合 A の冪集合とは A の部分集合全体から成る集合であり, 2^A と表記する.

$$2^A = \{B \mid B \subseteq A\}$$

- ▶ 「冪集合」の他に「巾集合」「べき集合」「ベキ集合」とも書く
- ▶ 「 2^A 」の他に「 $\mathcal{P}(A)$ 」,「 $\mathscr{P}(A)$ 」とも書く
- ▶ 冪集合の要素は集合 (冪集合は集合の集合)

例

$$A = \{a, b, c\}$$
 のとき

$$2^{A} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

簡単な確認: 2^A の要素数 = $2^{A \text{ obstance}}$

冪集合:他の例

冪集合 (再掲)

集合 A の冪集合とは A の部分集合全体から成る集合であり, 2^A と表記する.

$$2^A = \{B \mid B \subseteq A\}$$

- $ightharpoonup 2^{\{a\}} = \{\emptyset, \{a\}\}$
- ▶ $2^{\{\emptyset\}} = \{\emptyset, \{\emptyset\}\}$

目次

- ① 論理を用いた証明 (続1)
- ② 論理を用いた証明 (続2):空集合を扱う
- 3 集合の直積
- 4 冪集合
- ⑤ 証明の例題
- ⑥ 今日のまとめ

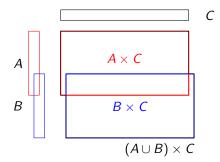
証明の例題4

例題 4

任意の集合 A, B, C に対して,次が成り立つことを証明せよ.

$$(A \cup B) \times C = (A \times C) \cup (B \times C).$$

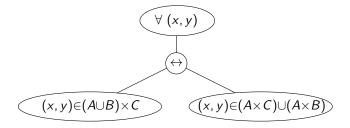
図の直観



例題 4: 論理構造

「=」の定義に基づいて書き直す

$$\forall (x,y) ((x,y) \in (A \cup B) \times C \leftrightarrow (x,y) \in (A \times C) \cup (B \times C))$$



同値変形によって証明してみる

$$(x,y) \in (A \cup B) \times C$$

$$(x,y) \in (A \cup B) \times C$$

 $\Leftrightarrow (x \in A \cup B) \land (y \in C)$

(直積の定義)

$$(x,y) \in (A \cup B) \times C$$

$$\Leftrightarrow$$
 $(x \in A \cup B) \land (y \in C)$

$$\Leftrightarrow$$
 $((x \in A) \lor (x \in B)) \land (y \in C)$

(直積の定義)

(合併の定義)

$$(x,y) \in (A \cup B) \times C$$

- \Leftrightarrow $(x \in A \cup B) \land (y \in C)$
- \Leftrightarrow $((x \in A) \lor (x \in B)) \land (y \in C)$
- $\Leftrightarrow ((x \in A) \land (y \in C)) \lor ((x \in B) \land (y \in C))$

(直積の定義)

(合併の定義)

(分配法則)

分配法則

$$(P \lor Q) \land R \Leftrightarrow (P \land R) \lor (Q \land R)$$

$$(x,y) \in (A \cup B) \times C$$

$$\Leftrightarrow$$
 $(x \in A \cup B) \land (y \in C)$

$$\Leftrightarrow$$
 $((x \in A) \lor (x \in B)) \land (y \in C)$

$$\Leftrightarrow ((x \in A) \land (y \in C)) \lor ((x \in B) \land (y \in C))$$

$$\Leftrightarrow$$
 $((x,y) \in A \times C) \vee ((x,y) \in B \times C)$

(直積の定義)

(合併の定義)

(分配法則)

(直積の定義)

$$(x,y) \in (A \cup B) \times C$$

$$\Leftrightarrow$$
 $(x \in A \cup B) \land (y \in C)$

$$\Leftrightarrow ((x \in A) \lor (x \in B)) \land (y \in C)$$

$$\Leftrightarrow$$
 $((x \in A) \land (y \in C)) \lor ((x \in B) \land (y \in C))$

$$\Leftrightarrow$$
 $((x,y) \in A \times C) \vee ((x,y) \in B \times C)$

$$\Leftrightarrow$$
 $(x,y) \in (A \times C) \cup (B \times C)$

(直積の定義)

(合併の定義)

(分配法則)

(直積の定義)

(合併の定義)

$$(x,y) \in (A \cup B) \times C$$

$$\Leftrightarrow$$
 $(x \in A \cup B) \land (y \in C)$

$$\Leftrightarrow$$
 $((x \in A) \lor (x \in B)) \land (y \in C)$

$$\Leftrightarrow$$
 $((x \in A) \land (y \in C)) \lor ((x \in B) \land (y \in C))$

$$\Leftrightarrow$$
 $((x,y) \in A \times C) \vee ((x,y) \in B \times C)$

$$\Leftrightarrow$$
 $(x,y) \in (A \times C) \cup (B \times C)$

(直積の定義)

(合併の定義)

(分配法則)

(直積の定義)

(合併の定義)

証明の例題5

例題 5

集合 A, B に対して,次が成り立つことを証明せよ.

$$2^{A\cap B}=2^A\cap 2^B.$$

定義に基づいて書き直す

$$\forall X (X \in 2^{A \cap B} \leftrightarrow X \in 2^A \cap 2^B)$$

同値変形によって証明してみる

$$X \in 2^{A \cap B}$$

$$X \in 2^{A \cap B}$$

$$\Leftrightarrow X \subseteq A \cap B$$

(冪集合の定義)

$$X \in 2^{A \cap B}$$

- $\Leftrightarrow X \subseteq A \cap B$
- $\Leftrightarrow X \subseteq A$ かつ $X \subseteq B$

(冪集合の定義)

(例題 3)

例題3

 $A \subseteq B \cap C \Leftrightarrow A \subseteq B \text{ n} A \subseteq C$

$$X \in 2^{A \cap B}$$

- $\Leftrightarrow X \subseteq A \cap B$
- $\Leftrightarrow X \subseteq A$ かつ $X \subseteq B$
- $\Leftrightarrow X \in 2^A$ かつ $X \in 2^B$

- (冪集合の定義)
 - (例題3)
- (冪集合の定義)

$$X \in 2^{A \cap B}$$

- $\Leftrightarrow X \subseteq A \cap B$
- $\Leftrightarrow X \subseteq A$ かつ $X \subseteq B$
- $\Leftrightarrow X \in 2^A$ かつ $X \in 2^B$
- $\Leftrightarrow X \in 2^A \cap 2^B$

(冪集合の定義)

(例題 3)

(冪集合の定義)

(共通部分の定義)

$$X \in 2^{A \cap B}$$

- $\Leftrightarrow X \subseteq A \cap B$
- $\Leftrightarrow X \subseteq A$ かつ $X \subseteq B$
- $\Leftrightarrow X \in 2^A$ かつ $X \in 2^B$
- $\Leftrightarrow X \in 2^A \cap 2^B$

(冪集合の定義)

(例題3)

(冪集合の定義)

(共通部分の定義)

目次

- ① 論理を用いた証明 (続1)
- ② 論理を用いた証明 (続2):空集合を扱う
- ③ 集合の直積
- 4 冪集合
- ⑤ 証明の例題
- 6 今日のまとめ

今日のまとめ

今日の目標

- ▶ 部分集合について理解を深める
- ▶ 集合の直積と冪集合 (べき集合) を理解する

今後の予告

今までの部分を基礎として進める

- ▶ 2 つの集合がどのような関係を持っているか?
 - ▶ 対応,関数,関係
- 無限を取り扱う方法
 - 数学的帰納法,再帰的定義

目次

- 1 論理を用いた証明 (続1)
- ② 論理を用いた証明 (続2):空集合を扱う
- 3 集合の直積
- 4 冪集合
- ⑤ 証明の例題
- 6 今日のまとめ