離散数学第4回

集合(2): 論理を用いた証明

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2012年5月8日

最終更新: 2012年5月15日 23:27

今日の目標

- ▶ 「論理を用いた証明」の骨格を理解する
- ▶ 「論理を用いた証明」を書けるようになる

いままでの3回の講義の内容を全部使う

目次

- ① 部分集合の定義 再考
- ② 証明とその手順
- 3 実際にやってみる:最初の例
- ④ 表と証明の雛形の変更:テンプレート 例題 1 例題 2
- 5 今日のまとめ

部分集合の定義 (再掲)

部分集合の定義 (再掲)

A が B の部分集合であるとは,どのx に対しても次が成り立つこと

 $x \in A$ ならば $x \in B$

部分集合の表記法

A が B の部分集合であることを「 $A \subseteq B$ 」と表記する

「 $A \subset B$ 」や「 $A \subseteq B$ 」と表記することもある

部分集合の定義 (再掲)

部分集合の定義 (再掲)

A が B の部分集合であるとは,Eの \times に対しても次が成り立つこと

$$x \in A$$
 ならば $x \in B$

「 $\forall x ((x \in A) \rightarrow (x \in B))」ということ$

部分集合の表記法

A が B の部分集合であることを「 $A \subseteq B$ 」と表記する

「 $A \subset B$ 」や「 $A \subseteq B$ 」と表記することもある

部分集合ではないこと

定義から導かれる性質

A が B の部分集合ではないとは , ある x に対して次が成り立つこと

$$x \in A$$
 かつ $x \notin B$

同値変形による証明

$$\neg(\forall \ x \ ((x \in A) \rightarrow (x \in B)))$$

$$\leftrightarrow \neg(\forall x (\neg(x \in A) \lor (x \in B)))$$

$$\leftrightarrow \exists x (\neg(\neg(x \in A) \lor (x \in B)))$$

$$\leftrightarrow \exists x (\neg \neg (x \in A) \land \neg (x \in B)))$$

$$\leftrightarrow \exists x ((x \in A) \land \neg (x \in B)))$$

(含意の除去)

(∀の否定)

(ド・モルガンの法則)

(二重否定の除去)

部分集合ではないこと (続)

定義から導かれる性質

A が B の部分集合ではないとは , back back に対して次が成り立つこと

 $x \in A$ かつ $x \notin B$

部分集合ではないことの記法

AがBの部分集合ではないことを次のように書く

 $A \nsubseteq B$

真部分集合

真部分集合とは? (定義)

Aが B の真部分集合であるとは,次が成り立つこと

 $A \subseteq B$ かつ $B \nsubseteq A$

真部分集合であることの記法

AがBの真部分集合であることを次のように書く

 $A \subseteq B$

 $\lceil A \subset B \rfloor$ と書くこともある (が紛らわしいのでやらない方がよい)

空集合であること

空集合とは? (論理による定義)

Aが空集合であるとは,次が成り立つこと

任意のxに対して, $x \notin A$

- 記号で書けば「∀x (x ∉ A)」
- ▶ ∃の否定より,これは「¬∃x(x ∈ A)」と同値

目次

- 部分集合の定義 再考
- 2 証明とその手順
- ③ 実際にやってみる:最初の例
- 4 表と証明の雛形の変更:テンプレート 例題 1 例題 2
- 5 今日のまとめ

とりあえず,証明を見てみる(再掲)

証明してみること (1)

集合 A, B に対して,

 $A \cap B \subseteq A$

が成立する.

証明:

- ▶ x ∈ A ∩ B と仮定する.
- ▶ 共通部分の定義より, $x \in A$ かつ $x \in B$.
- ▶ よって, x ∈ A が成り立つ.
- したがって,A∩B⊆Aが成り立つ.

疑問?

これは何?

証明とは? (再掲)

証明とは? (常識に基づく定義)

定義と前提に基づき,推論を重ねて,結論を導くこと

「結論を導く」とは?

「『前提』ならば『結論』」という命題が恒真命題であることを示すこと

証明してみること(1)

集合 A, B に対して,

 $A \cap B \subseteq A$

が成立する.

これはどういう命題なのか? 定義に戻って書き直す

書き直した結果(の途中)

 $x \in A \cap B$ ならば $x \in A$

もう一度, 先ほどの証明を見てみる

証明:

- **▶** x ∈ A ∩ B と仮定する.
- ▶ 共通部分の定義より, $x \in A$ かつ $x \in B$.
- **▶** よって , *x* ∈ *A* が成り立つ .
- したがって,A∩B⊆Aが成り立つ.

前提を使っている

結論を導いている

証明の書き方について

真理値表や同値変形で恒真性を示しているわけではない なぜ?

- そのような手法で示せるとは限らないから
- ▶ そのような手法で書いた証明は人間が読みにくいから

人間が読めるように文章として書くことが重要!

格言

証明は考えを伝えるための,書き手と読み手のコミュニケーション.

どうやって証明を書けばいいのか?

訓練が必要!!!!!

この授業で薦める手順

- 下書きから構造を掴む
- 2 その構造をそのまま証明の文章として清書する

この講義でやる「証明の書き方」については以下の本を参考にする

- ▶ 松井知己『だれでも証明が書ける』,日本評論社,2010年
- ▶ Daniel J. Velleman, "How to Prove It (Second Edition)", Cambridge University Press, 2006

実際に証明をする前に,用語と記法を先に...

必要条件,十分条件

lackbox $lackbox{IP} \rightarrow Q$ 」が恒真であるとき、これを次のように書くことがある

$$P \Rightarrow Q$$

- ightharpoonup 「 $P \Rightarrow Q$ 」において,次の用語を使うことがある
 - ▶ P は「Q が成り立つための十分条件」
 - ▶ Q は「P が成り立つための必要条件」

必要十分条件

ightharpoonup 「 $P\leftrightarrow Q$ 」が恒真であるとき,これを次のように書くことがある

$$P \Leftrightarrow Q$$

- ▶ 「 $P \Leftrightarrow Q$ 」において,次の用語を使うことがある
 - ▶ P を「Q が成り立つための必要十分条件」
 - Q を「P が成り立つための必要十分条件」

目次

- 部分集合の定義 再考
- ② 証明とその手順
- 3 実際にやってみる:最初の例
- 4 表と証明の雛形の変更:テンプレート 例題 1 例題 2
- 5 今日のまとめ

実際にやってみる

証明してみること (1)

集合 A, B に対して,

 $A \cap B \subseteq A$

が成立する.

これはどういう命題なのか? 定義に戻って書き直す

書き直した結果 (の途中)

 $x \in A \cap B$ ならば $x \in A$

前提が「 $x \in A \cap B$ 」, 結論が「 $x \in A$ 」

やってみること

「前提 ⇒ 結論」を証明するために

- ▶ 恒真命題や推論を用いて,これを書き換える
- ▶ 式で書いていくのは見にくいので,表で書く

証明の雛形(ひながた)

部分集合の定義より, $x \in A \cap B$ ならば $x \in A$ 」を証明すればよい.

ここで「 $x \in A \cap B$ ならば $x \in A$ 」を結論として導く.

したがって, $A \cap B \subseteq A$ が成立する.

使える性質	導く性質
$x \in A \cap B$	$x \in A$

これは

$$(x \in A \cap B) \rightarrow (x \in A)$$

を表にして書いたもの(だと見なす)

証明の雛形の変更

部分集合の定義より、 $f(x \in A \cap B)$ ならば $f(x \in A)$ を証明すればよい.

 $x \in A \cap B$ であると仮定する.

ここで $x \in A$ 」を結論として導く.

したがって, $x \in A \cap B$ ならば $x \in A$ となる.

したがって, $A \cap B \subset A$ が成立する.

表の変更

使える性質	導く性質
$x \in A \cap B$	$x \in A$
$x \in A$ かつ $x \in B$	

これは

$$((x \in A) \land (x \in B)) \rightarrow (x \in A)$$

を表にして書いたもの(だと見なす)

証明の雛形の変更

部分集合の定義より $\int x \in A \cap B$ ならば $x \in A$ 」を証明すればよい.

 $x \in A \cap B$ であると仮定する.

共通部分の定義から, $x \in A$ かつ $x \in B$ となる.

ここで $x \in A$ 」を結論として導く.

したがって, $x \in A \cap B$ ならば $x \in A$ となる.

したがって, $A \cap B \subset A$ が成立する.

表の変更

使える性質	導く性質
$x \in A \cap B$	$x \in A$
$x \in A$ かつ $x \in B$	
$x \in A$	
$x \in B$	

これは

$$((x \in A) \land (x \in B)) \rightarrow (x \in A)$$

を表にして書いたもの(だと見なす)

証明の雛形の変更

部分集合の定義より $\int x \in A \cap B$ ならば $x \in A$ 」を証明すればよい.

 $x \in A \cap B$ であると仮定する.

共通部分の定義から, $x \in A$ かつ $x \in B$ となる. よって, $x \in A$ となる.

したがって, $x \in A \cap B$ ならば $x \in A$ となる.

したがって, $A \cap B \subset A$ が成立する.

23 / 103

証明の清書:文章として書く

証明:

部分集合の定義より, $x \in A \cap B$ ならば $x \in A$ 」を証明すればよい。 $x \in A \cap B$ であると仮定する.共通部分の定義から, $x \in A$ かつ $x \in B$ となる.よって, $x \in A$ となる.したがって, $x \in A \cap B$ ならば $x \in A$ となる.

したがって, $A \cap B \subseteq A$ が成立する.

証明の清書:文章として書く(読みにくいのでスライドでは整理)

証明:

- ▶ 部分集合の定義より「 $x \in A \cap B$ ならば $x \in A$ 」を証明すればよい.
- x ∈ A ∩ B であると仮定する.
- ▶ 共通部分の定義から, $x \in A$ かつ $x \in B$ となる.
- ▶ よって, $x \in A$ となる.
- ▶ したがって $A \cap B \subseteq A$ が成立する .

今の例で行っていること

- 1 表に「使える性質」と「導く性質」を分けて書く
 - ① 前提は「使える性質」に書く
 - 2 結論は「導く性質」に書く
- 2 同値変形,推論,定義を用いて,表を変更する
 - 1 表の変更に伴って,証明の雛形も変更する
- ③ 「使える性質」に「導く性質」が現れたら,証明終了!
- 4 証明の雛形に沿って,証明を清書する

推論とは?

推論とは?(常識に基づいた定義)

「 $P \rightarrow Q$ 」が恒真であるとき , 使える性質の中の P を Q で置き換えること

注意:「導く性質のP」をQで置き換えてはいけない

重要な性質

置換前の論理式が真であるとき,置換後の論理式も真である

表の書き方に関する注意

- ▶ 「使える性質」に書けるもの
 - 前提
 - ▶ 定義
 - ▶ 恒真であると既に証明されている命題 (定理と呼ぶ)
- ▶ 「導く性質」は必ず1つだけ

目次

- 部分集合の定義 再考
- ② 証明とその手順
- 3 実際にやってみる:最初の例
- ④ 表と証明の雛形の変更:テンプレート 例題 1 例題 2
- 5 今日のまとめ

表と証明の雛形の変更:テンプレート

次のような場合にどういう変更を行えばいいか?

$$\left\{\begin{array}{c} 使える性質 \\ 導く性質 \end{array}\right\}$$
に $\left\{\begin{array}{c} \wedge \\ \rightarrow \\ \lor \\ \neg \\ \forall \\ \exists \end{array}\right\}$ があるとき

- ▶ このそれぞれに対して「テンプレート」を与える
- ▶ テンプレートに沿って証明の例をもっと見てみる

テンプレート: 使える性質に ∧ があるとき (表)

変更前 導く性質 P \ Q P \ Q

変更後		
使える性質	導く性質	
$P \wedge Q$		
P		
Q		

証明の雛形に変更はない

例題1

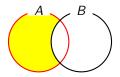
例題1:次を証明せよ

集合 A, B に対して,

$$(A \cup B) - B \subseteq A$$

が成立する.

オイラー図による直観



部分集合の定義より,証明することは次と同じ

 $x \in (A \cup B) - B$ $\Leftrightarrow \exists x \in A$

例題1:表

使える性質	導く性質
$x \in (A \cup B) - B$	$x \in A$

例題1:証明の雛形

部分集合の定義より, $x \in (A \cup B) - B$ ならば $x \in A$ 」を証明すればよい.

 $x \in (A \cup B) - B$ であると仮定する.

ここで $[x \in A]$ を結論として導く.

したがって $,x \in (A \cup B) - B$ ならば $x \in A$ 」となる.

したがって, $(A \cup B) - B \subseteq A$ となる.

例題1:表の変更

差集合の定義から

使える性質	導く性質
$x \in (A \cup B) - B$	$x \in A$
$x \in A \cup B \land x \notin B$	

使える性質に ∧ があるときのテンプレートから

使える性質	導く性質
$x \in (A \cup B) - B$	$x \in A$
$x \in A \cup B \land x \notin B$	
$x \in A \cup B$	
$x \notin B$	

例題1:証明の雛形の変更

部分集合の定義より, $x \in (A \cup B) - B$ ならば $x \in A$ 」を証明すればよい.

 $x \in (A \cup B) - B$ であると仮定する.

差集合の定義から, $x \in A \cup B$ かつ $x \notin B$ となる.

ここで $x \in A$ 」を結論として導く.

したがって $, x \in (A \cup B) - B$ ならば $x \in A$ 」となる.

したがって, $(A \cup B) - B \subseteq A$ となる.

例題1:表の変更

合併の定義から

使える性質	導く性質
$x \in (A \cup B) - B$	$x \in A$
$x \in A \cup B \land x \notin B$	
$x \in A \cup B$	
$x \notin B$	
$x \in A \lor x \in B$	

例題1:証明の雛形の変更

部分集合の定義より, $x \in (A \cup B) - B$ ならば $x \in A$ 」を証明すればよい.

 $x \in (A \cup B) - B$ であると仮定する.

差集合の定義から, $x \in A \cup B$ かつ $x \notin B$ となる.

合併の定義から, $x \in A$ または $x \in B$ となる.

ここで「 $x \in A$ 」を結論として導く.

したがって $, x \in (A \cup B) - B$ ならば $x \in A$ 」となる.

したがって, $(A \cup B) - B \subseteq A$ となる.

例題1:表の変更

使える性質	導く性質
$x \in (A \cup B) - B$	$x \in A$
$x \in A \cup B \land x \notin B$	
$x \in A \cup B$	
$x \notin B$	
$x \in A \lor x \in B$	

次の推論を使う (この推論の正しさの確認は演習問題)

$$(\neg P \land (P \lor Q)) \Rightarrow Q$$

表と証明の雛形の変更:テンプレート 例題1

テンプレート: 使える性質に ∨ があるとき (表)

変更前 導く性質 マP P ∨ Q

変更後 使える性質 導く性質 ¬P P ∨ Q Q Q

この推論は選言三段論法とも呼ばれる.

表と証明の雛形の変更:テンプレート 例題 1

テンプレート:使える性質に∨があるとき(証明の雛形)

例題1:表の変更

使える性質に∨があるときのテンプレート (選言三段論法) から

使える性質	導く性質
$x \in (A \cup B) - B$	$x \in A$
$x \in A \cup B \land x \notin B$	
$x \in A \cup B$	
$x \not\in B$	
$x \in A \lor x \in B$	
$x \in A$	

例題1:証明の雛形の変更

部分集合の定義より, $x \in (A \cup B) - B$ ならば $x \in A$ 」を証明すればよい.

 $x \in (A \cup B) - B$ であると仮定する.

差集合の定義から, $x \in A \cup B$ かつ $x \notin B$ となる.

合併の定義から, $x \in A$ または $x \in B$ となる.

 $x \notin B$ と「 $x \in A$ または $x \in B$ 」から, $x \in A$ となる.

したがって $\int x \in (A \cup B) - B$ ならば $x \in A$ 」となる.

したがって, $(A \cup B) - B \subseteq A$ となる.

例題1:証明の清書

証明:

- ▶ 部分集合の定義より, $x \in (A \cup B) B$ ならば $x \in A$ 」を証明すればよい.
- x ∈ (A ∪ B) B であると仮定する.
- ▶ 差集合の定義から, x ∈ A∪Bかつx ∉ Bとなる.
- ▶ 合併の定義から, $x \in A$ または $x \in B$ となる.
- $\triangleright x \notin B$ と「 $x \in A$ または $x \in B$ 」から, $x \in A$ となる.
- ▶ したがって $(x \in (A \cup B) B$ ならば $x \in A$ 」となる.
- ▶ したがって, $(A \cup B) B \subseteq A$ となる.

表と証明の雛形の変更:テンプレート 例題1

表と証明の雛形の変更:テンプレート

ここまでに登場したテンプレート

	\land	\rightarrow	\ \	_	\forall	\exists
使える性質	済		済			
導く性質						

例題 2

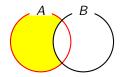
例題2:次を証明せよ

集合 A, B に対して,

$$A - (A \cap B) = A - B$$

が成立する.

オイラー図による直観



= の定義より,証明することは次と同じ

 $A-(A\cap B)\subseteq A-B$ かつ $A-B\subseteq A-(A\cap B)$

例題2:表

使える性質	導く性質
	$(A-(A\cap B)\subseteq A-B)\wedge (A-B\subseteq A-(A\cap B))$

例題2:証明の雛形

「=」の定義より, $A - (A \cap B) \subseteq A - B$ かつ $A - B \subseteq A - (A \cap B)$ 」を証明すればよい.

ここで「 $A-(A\cap B)\subseteq A-B$ かつ $A-B\subseteq A-(A\cap B)$ 」を結論として導く.

したがって, $A-(A\cap B)=A-B$ となる.

例題2:表

使える性質	導く性質
	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$

表と証明の雛形の変更:テンプレート 例題 2

テンプレート: 導く性質に ∧ があるとき (表)

変更前	
使える性質	導く性質
	$P \wedge Q$

变更後	
使える性質	導く性質
	$P \wedge Q$
	P
1.	
2	

使える性質	導く性質
	Q

表と証明の雛形の変更:テンプレート 例題 2

テンプレート:導く性質に∧があるとき(証明の雛形)

まず *P* を示す.

ここで「P」を結論として導く.

次に Q を示す.

ここで「Q」を結論として導く.

したがって, $P \land Q$ が成立する.

例題2:表の変更

導く性質に ∧ があるときのテンプレートから

使える性質	導く性質
	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
	$A-(A\cap B)\subseteq A-B$

۲

使える性質 導く性質
$$A-B\subseteq A-(A\cap B)$$

例題2:証明の雛形の変更

「=」の定義より「 $A-(A\cap B)\subset A-B$ かつ $A-B\subset A-(A\cap B)$ 」 を証明すればよい。

まず $A-(A\cap B)\subset A-B$ を示す.

ここで $A - (A \cap B) \subset A - B$ を結論として導く.

次に $A - B \subset A - (A \cap B)$ を示す.

ここで $A - B \subset A - (A \cap B)$ を結論として導く.

したがって, $A - (A \cap B) = A - B$ となる.

部分集合の定義から

使える性質	導く性質
	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
	$A - (A \cap B) \subseteq A - B$
	$(x \in A - (A \cap B)) \to (x \in A - B)$

. . .

まず $A - (A \cap B) \subseteq A - B$ を示す.

部分集合の定義から「 $x \in A - (A \cap B)$ ならば $x \in A - B$ 」を示せばよい。

ここで「
$$x \in A - (A \cap B)$$
 ならば $x \in A - B$ 」を結論として導く.

したがって $[x \in A - (A \cap B)]$ ならば $x \in A - B$ 」となる.

. . .

...

使える性質	導く性質
	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
	$A - (A \cap B) \subseteq A - B$
	$(x \in A - (A \cap B)) \rightarrow (x \in A - B)$

表と証明の雛形の変更:テンプレート 例題 2

テンプレート: 導く性質に → があるとき (表)

変更後 使える性質 P Q

これは

に基づく変更 (参照:第1回 追加問題1.5.2)

表と証明の雛形の変更:テンプレート 例題 2

テンプレート:導く性質に→があるとき(証明の雛形)

Pとする.

ここで「Q」を結論として導く.

導く性質に → があるときのテンプレートから

使える性質	導く性質
$x \in A - (A \cap B)$	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
	$A - (A \cap B) \subseteq A - B$
	$(x \in A - (A \cap B)) \to (x \in A - B)$
	$x \in A - B$

例題2(前半):証明の雛形の変更

. . .

まず $A-(A\cap B)\subseteq A-B$ を示す.

部分集合の定義から「 $x \in A - (A \cap B)$ ならば $x \in A - B$ 」を示せばよい。

 $x \in A - (A \cap B)$ であると仮定する.

ここで「 $x \in A - B$ 」を結論として導く.

したがって「 $x \in A - (A \cap B)$ ならば $x \in A - B$ 」となる.

. . .

. . .

差集合の定義から

使える性質	導く性質
$x \in A - (A \cap B)$	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
$x \in A \land x \notin A \cap B$	$A - (A \cap B) \subseteq A - B$
	$(x \in A - (A \cap B)) \to (x \in A - B)$
	$x \in A - B$

使える性質に ∧ があるときのテンプレートから

使える性質	導く性質
$x \in A - (A \cap B)$	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
$x \in A \land x \notin A \cap B$	$A - (A \cap B) \subseteq A - B$
$x \in A$	$(x \in A - (A \cap B)) \rightarrow (x \in A - B)$
$x \notin A \cap B$	$x \in A - B$

. . .

まず $A - (A \cap B) \subseteq A - B$ を示す.

部分集合の定義から「 $x \in A - (A \cap B)$ ならば $x \in A - B$ 」を示せばよい.

 $x \in A - (A \cap B)$ であると仮定する.

差集合の定義から, $x \in A$ かつ $x \notin A \cap B$ となる.

ここで $x \in A - B$ 」を結論として導く.

したがって $, x \in A - (A \cap B)$ ならば $x \in A - B$ 」となる.

. . .

. . .

∉の定義から

使える性質	導く性質
$x \in A - (A \cap B)$	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
$x \in A \land x \notin A \cap B$	$A - (A \cap B) \subseteq A - B$
$x \in A$	$(x \in A - (A \cap B)) \to (x \in A - B)$
$x \notin A \cap B$	$x \in A - B$
$\neg (x \in A \cap B)$	

共通部分の定義から

使える性質	導く性質
$x \in A - (A \cap B)$	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
$x \in A \land x \not\in A \cap B$	$A - (A \cap B) \subseteq A - B$
$x \in A$	$(x \in A - (A \cap B)) \rightarrow (x \in A - B)$
$x \notin A \cap B$	$x \in A - B$
$\neg(x \in A \cap B)$	
$\neg(x \in A \land x \in B)$	

ド・モルガンの法則から (同値変形)

使える性質	導く性質
$x \in A - (A \cap B)$	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
$x \in A \land x \notin A \cap B$	$A - (A \cap B) \subseteq A - B$
$x \in A$	$(x \in A - (A \cap B)) \rightarrow (x \in A - B)$
$x \notin A \cap B$	$x \in A - B$
$\neg(x \in A \cap B)$	
$\neg(x \in A \land x \in B)$	
$x \notin A \lor x \notin B$	
$\neg(x \in A \cap B)$ $\neg(x \in A \land x \in B)$	$x \in A - B$

例題2(前半):証明の雛形の変更

まず $A-(A\cap B)\subseteq A-B$ を示す.

部分集合の定義から「 $x \in A - (A \cap B)$ ならば $x \in A - B$ 」を示せばよい.

 $x \in A - (A \cap B)$ であると仮定する.

差集合の定義から, $x \in A$ かつ $x \notin A \cap B$ となる.

共通部分の定義とド・モルガンの法則から, $x \notin A$ または $x \notin B$ となる.

ここで「 $x \in A - B$ 」を結論として導く.

したがって $[x \in A - (A \cap B)]$ ならば $x \in A - B$ 」となる.

使える性質に∨があるときのテンプレート (選言三段論法) から

使える性質	導く性質
$x \in A - (A \cap B)$	$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$
$x \in A \land x \not\in A \cap B$	$A-(A\cap B)\subseteq A-B$
$x \in A$	$(x \in A - (A \cap B)) \rightarrow (x \in A - B)$
$x \notin A \cap B$	$x \in A - B$
$\neg(x \in A \cap B)$	
$\neg(x \in A \land x \in B)$	
$x \notin A \lor x \notin B$	
<i>x</i> ∉ <i>B</i>	

例題2(前半):証明の雛形の変更

まず $A-(A\cap B)\subseteq A-B$ を示す.

部分集合の定義から「 $x \in A - (A \cap B)$ ならば $x \in A - B$ 」を示せばよい.

 $x \in A - (A \cap B)$ であると仮定する.

差集合の定義から, $x \in A$ かつ $x \notin A \cap B$ となる.

共通部分の定義とド・モルガンの法則から, $x \notin A$ または

 $x \notin B$ となる.

 $x \in A$ と「 $x \notin A$ または $x \notin B$ 」から, $x \notin B$ となる.

ここで $[x \in A - B]$ を結論として導く.

したがって $,x \in A - (A \cap B)$ ならば $x \in A - B$ 」となる.

差集合の定義から

 $x \notin A \lor x \notin B$

 $x \notin B$ $x \in A - B$

使える性質 $x \in A - (A \cap B)$ $x \in A \land x \notin A \cap B$ $x \in A$ $x \notin A \cap B$ $\neg (x \in A \cap B)$ $\neg (x \in A \land x \in B)$

導く性質
$$(A - (A \cap B) \subseteq A - B) \wedge (A - B \subseteq A - (A \cap B))$$

$$A - (A \cap B) \subseteq A - B$$

$$(x \in A - (A \cap B)) \rightarrow (x \in A - B)$$

$$x \in A - B$$

例題2(前半):証明の雛形の変更

まず $A-(A\cap B)\subseteq A-B$ を示す.

部分集合の定義から「 $x \in A - (A \cap B)$ ならば $x \in A - B$ 」を示せばよい.

 $x \in A - (A \cap B)$ であると仮定する.

差集合の定義から, $x \in A$ かつ $x \notin A \cap B$ となる.

共通部分の定義とド・モルガンの法則から , $x \notin A$ または

 $x \notin B$ となる.

 $x \in A$, $x \notin B$ と差集合の定義から, $x \in A - B$ となる.

したがって $, x \in A - (A \cap B)$ ならば $, x \in A - B$ 」となる.

例題2:証明の雛形

「=」の定義より,「 $A-(A\cap B)\subseteq A-B$ かつ $A-B\subseteq A-(A\cap B)$ 」を証明すればよい.

まず $A-(A\cap B)\subseteq A-B$ を示す.

ここで $A - (A \cap B) \subseteq A - B$ を結論として導いた.

次に $A - B \subseteq A - (A \cap B)$ を示す.

ここで $A - B \subseteq A - (A \cap B)$ を結論として導く.

したがって, $A - (A \cap B) = A - B$ となる.

使える性質	導く性質
	$A-B\subseteq A-(A\cap B)$

部分集合の定義から

使える性質	導く性質
	$A - B \subseteq A - (A \cap B)$
	$x \in A - B \rightarrow x \in A - (A \cap B)$

例題2(後半):証明の雛形の変更

. . .

..

次に $A - B \subseteq A - (A \cap B)$ を示す.

部分集合の定義から「 $x \in A - B$ ならば $x \in A - (A \cap B)$ 」を示せばよい.

ここで「 $x \in A - B$ ならば $x \in A - (A \cap B)$ 」を結論として導く.

. . .

使える性質	導く性質
	$A - B \subseteq A - (A \cap B)$
	$x \in A - B \rightarrow x \in A - (A \cap B)$

表と証明の雛形の変更:テンプレート 例題 2

テンプレート:導く性質に→があるとき Part II (表)

使える性質	導く性質	
	$P \rightarrow Q$	
$\neg Q$	$ \neg P $	

これは対偶による証明とも呼ばれる証明手法

対偶法則 (第1回の「重要な恒真命題」)

$$(P \rightarrow Q) \Leftrightarrow (\neg Q \rightarrow \neg P)$$

表と証明の雛形の変更:テンプレート 例題 2

テンプレート:導く性質に→があるとき Part II (証明の雛形)

対偶による証明を行うために, $\neg Q$ を仮定する.

ここで ¬P を結論として導く.

したがって, $P \rightarrow Q$ が成立する.

対偶法則から

使える性質	導く性質
$x \not\in A - (A \cap B)$	$A - B \subseteq A - (A \cap B)$
	$x \in A - B \rightarrow x \in A - (A \cap B)$
	$x \notin A - B$

例題2(後半):証明の雛形の変更

• • •

..

次に $A - B \subseteq A - (A \cap B)$ を示す.

部分集合の定義から, $x \in A - B$ ならば $x \in A - (A \cap B)$ 」を示せばよい.

対偶による証明を行うために , $x \notin A - (A \cap B)$ であると仮定する .

ここで $x \notin A - B$ を結論として導く.

. . .

∉の定義から

使える性質	導く性質
$x \notin A - (A \cap B)$	$A - B \subseteq A - (A \cap B)$
$\neg(x \in A - (A \cap B))$	$x \in A - B \rightarrow x \in A - (A \cap B)$
	$x \notin A - B$

差集合の定義から

使える性質	導く性質
$x \notin A - (A \cap B)$	$A - B \subseteq A - (A \cap B)$
$\neg(x \in A - (A \cap B))$	$x \in A - B \rightarrow x \in A - (A \cap B)$
$\neg (x \in A \land x \not\in A \cap B)$	$x \notin A - B$

ド・モルガンの法則から

使える性質	導く性質
$x \notin A - (A \cap B)$	$A - B \subseteq A - (A \cap B)$
$\neg(x \in A - (A \cap B))$	$x \in A - B \rightarrow x \in A - (A \cap B)$
$\neg(x\in A\land x\not\in A\cap B)$	$x \notin A - B$
$x \notin A \lor x \in A \cap B$	

同じように,導く性質を書き換える

使える性質	導く性質
$x \notin A - (A \cap B)$	$A - B \subseteq A - (A \cap B)$
$\neg(x \in A - (A \cap B))$	$x \in A - B \rightarrow x \in A - (A \cap B)$
$\neg(x\in A\land x\not\in A\cap B)$	x ∉ A − B
$x \notin A \lor x \in A \cap B$	$x \not\in A \lor x \in B$

例題2(後半):証明の雛形の変更

..

次に $A - B \subseteq A - (A \cap B)$ を示す.

部分集合の定義から「 $x \in A - B$ ならば $x \in A - (A \cap B)$ 」を示せばよい.

対偶による証明を行うために , $x \notin A - (A \cap B)$ であると仮定する .

定義とド・モルガンの法則から, $x \notin A$ または $x \in A \cap B$ となる.

ここで $[x \notin A$ または $x \in B]$ を結論として導く.

定義とド・モルガンの法則から, $x \notin A - B$ となる.

使える性質	導く性質
$x \notin A - (A \cap B)$	$A - B \subseteq A - (A \cap B)$
$\neg(x \in A - (A \cap B))$	$x \in A - B \rightarrow x \in A - (A \cap B)$
$\neg(x\in A\land x\not\in A\cap B)$	x ∉ A − B
$x \not\in A \lor x \in A \cap B$	$x \notin A \lor x \in B$

表と証明の雛形の変更:テンプレート 例題 2

テンプレート: 導く性質に ∨ があるとき (表)

变更前	
使える性質	導く性質
	$P \lor Q$

質

これは

$$(P \lor Q) \Leftrightarrow (\neg P \to Q)$$

に基づく変更 (含意の除去)

表と証明の雛形の変更: テンプレート 例題 2

テンプレート:導く性質に∨があるとき(証明の雛形)

P ではないと仮定する.

ここで「Q」を結論として導く.

したがって, $P \lor Q$ が成立する.

導く性質に∨があるときのテンプレートから

使える	性質	導く性質
<i>x</i> ∉ <i>A</i> -	$-(A\cap B)$	$A - B \subseteq A - (A \cap B)$
$\neg (x \in A)$	$A-(A\cap B)$	$x \in A - B \rightarrow x \in A - (A \cap B)$
$\neg (x \in A)$	$A \wedge x \not\in A \cap B$)	x ∉ A − B
$x \not\in A \setminus$	$/ x \in A \cap B$	$x \notin A \lor x \in B$
$x \in A$		$x \in B$

例題2(後半):証明の雛形の変更

定義とド・モルガンの法則から, $x \notin A$ または $x \in A \cap B$ となる.

 $x \in A$ であると仮定する

ここで $[x \in B]$ を結論として導く.

したがって「 $x \notin A$ または $x \in B$ 」となる.

使える性質に∨があるときのテンプレート (選言三段論法) から

使える性質	導く性質
$x \notin A - (A \cap B)$	$A - B \subseteq A - (A \cap B)$
$\neg(x \in A - (A \cap B))$	$x \in A - B \rightarrow x \in A - (A \cap B)$
$\neg(x\in A\land x\not\in A\cap B)$	$x \notin A - B$
$x \notin A \lor x \in A \cap B$	$x \notin A \lor x \in B$
$x \in A$	$x \in B$
$x \in A \cap B$	

例題2(後半):証明の雛形の変更

定義とド・モルガンの法則から, $x \notin A$ または $x \in A \cap B$ となる.

 $x \in A$ であると仮定する

 $x \in A$ と「 $x \notin A$ または $x \in A \cap B$ 」から, $x \in A \cap B$ となる.

ここで「 $x \in B$ 」を結論として導く.

したがって「 $x \notin A$ または $x \in B$ 」となる.

共通部分の定義から

使える性質	導く性質
$x \notin A - (A \cap B)$	$A-B\subseteq A-(A\cap B)$
$\neg(x \in A - (A \cap B))$	$x \in A - B \rightarrow x \in A - (A \cap B)$
$\neg(x\in A\land x\not\in A\cap B)$	$x \notin A - B$
$x \notin A \lor x \in A \cap B$	$x \notin A \lor x \in B$
$x \in A$	$x \in B$
$x \in A \cap B$	
$x \in A \land x \in B$	

ゴノ 州丘

例題2(後半):表の変更

使える性質

 $x \in A$ $x \in B$

使える性質に △ があるときのテンプレートから

$x \notin A - (A \cap B)$ $\neg (x \in A - (A \cap B))$ $\neg (x \in A \land x \notin A \cap B)$ $x \notin A \lor x \in A \cap B$ $x \in A$ $x \in A \cap B$ $x \in A \land x \in B$

等く 注頁
$A-B\subseteq A-(A\cap B)$
$x \in A - B \rightarrow x \in A - (A \cap B)$
$x \notin A - B$
$x \notin A \lor x \in B$
$x \in B$

例題2(後半):証明の雛形の変更

定義とド・モルガンの法則から, $x \notin A$ または $x \in A \cap B$ となる.

 $x \in A$ であると仮定する

 $x \in A$ と「 $x \notin A$ または $x \in A \cap B$ 」から, $x \in A \cap B$ となる.

共通部分の定義から, $x \in B$ となる.

したがって「 $x \notin A$ または $x \in B$ 」となる.

例題2:証明の雛形

「=」の定義より, $A - (A \cap B) \subseteq A - B$ かつ $A - B \subseteq A - (A \cap B)$ 」を証明すればよい.

まず $A-(A\cap B)\subseteq A-B$ を示す.

ここで $A - (A \cap B) \subseteq A - B$ を結論として導いた.

次に $A - B \subseteq A - (A \cap B)$ を示す.

ここで $A - B \subseteq A - (A \cap B)$ を結論として導いた.

したがって, $A - (A \cap B) = A - B$ となる.

例題2:証明の清書(1)

- ▶ 「=」の定義より, $A (A \cap B) \subseteq A B$ かつ $A B \subseteq A (A \cap B)$ 」を証明すればよい.
- まず A (A ∩ B) ⊆ A B を示す.
- ▶ 部分集合の定義から「 $x \in A (A \cap B)$ ならば $x \in A B$ 」を示せば よい .
- x ∈ A − (A ∩ B) であると仮定する.
- ▶ 差集合の定義から, $x \in A$ かつ $x \notin A \cap B$ となる.
- ▶ 共通部分の定義とド・モルガンの法則から , $x \notin A$ または $x \notin B$ と なる .
- \triangleright $x \in A$ と「 $x \notin A$ または $x \notin B$ 」から, $x \notin B$ となる.
- x ∈ A , x ∉ B と差集合の定義から , x ∈ A B となる .

例題2:証明の清書(2)

- ▶ 次に A B ⊆ A (A ∩ B) を示す.
- ▶ 部分集合の定義から「 $x \in A B$ ならば $x \in A (A \cap B)$ 」を示せばよい.
- ▶ 対偶による証明を行うために $, x \notin A (A \cap B)$ であると仮定する .
- ▶ 定義とド・モルガンの法則から, $x \notin A$ または $x \in A \cap B$ となる.
- ▶ x ∈ A であると仮定する.
- $\triangleright x \in A$ と「 $x \notin A$ または $x \in A \cap B$ 」から, $x \in A \cap B$ となる.
- ▶ 共通部分の定義から, $x \in B$ となる.
- ▶ 定義とド・モルガンの法則から, x ∉ A B となる.
- ▶ したがって, $A (A \cap B) = A B$ となる.

と証明の雛形の変更:テンプレート 例題

表と証明の雛形の変更: テンプレート

ここまでに登場したテンプレート

	\land	\rightarrow	\ \	_	\forall	∃
使える性質	済		済			
導く性質	済	済	済			

他の場合のテンプレートははじめて使うときに紹介する

目次

- 部分集合の定義 再考
- ② 証明とその手順
- ③ 実際にやってみる:最初の例
- 4 表と証明の雛形の変更:テンプレート 例題 1 例題 2
- 5 今日のまとめ

今日のまとめ

証明の作り方

- ▶「使える性質」と「導く性質」を把握して,書き下す
- ▶ 表と証明の雛形を変更する (同値変形,推論,定義)
- ▶ 証明を清書する

目次

- ① 部分集合の定義 再考
- 2 証明とその手順
- 3 実際にやってみる:最初の例
- ④ 表と証明の雛形の変更:テンプレート 例題 1 例題 2
- 5 今日のまとめ