
.

.

.

......

Enumeration School Part I
Fundamentals & Basic Algorithms

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

September 28, 2011
Enumeration School

Yoshio Okamoto Enumeration Algorithms Basics .

.. What is an enumeration problem?

.
What is an enumeration problem?
..

......

A problem to output all objects satisfying a given condition
exhaustively without duplication
(there may be a condition on the output order)

.
Example of (instances of) enumeration problems
..

......

Output all subsets of {1, 2, 3, 4, 5} that sum up to 6
Answer: {1, 2, 3}, {1, 5}, {2, 4}

.
Example of (instances of) more realistic enumeration problems
..

......

Output “web pages” that contain the string “chlorine”
in the decreasing order of their PageRanks

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Obstacles for designing enumeration algorithms

.
Example of (instances of) enumeration problems
..

......

Output all subsets of {1, 2, 3, 4, 5} that sum up to 6
Answer: {1, 2, 3}, {1, 5}, {2, 4}

# outputs = 3

# subsets of {1, 2, 3, 4, 5} = 25 = 32

The following algorithm is very inefficient

Look through the subsets of {1, 2, 3, 4, 5}, and
output if they sum up to 6

.

......How can we enumerate correctly and efficiently??

Yoshio Okamoto Enumeration Algorithms Basics .

.. Evaluation of enumeration algorithms — correctness

.
Evaluation of enumeration algorithms
..

......

What should be proved for algorithms

Correctness

Efficiency

.
Correctness of enumeration algorithms
..

......

To output all objects with a given condition,
exhaustively without duplication (in a specified order, if any)

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Evaluation of enumeration algorithms

.
Evaluation of enumeration algorithms
..

......

What should be proved for algorithms

Correctness

Efficiency

.
Efficiency of enumeration algorithms
..
......In theory, to “output in polynomial time”

.
Issues
..

......

# outputs can be exponential in the input size
therefore−−−−−→ Need to reconsider what “output in poly time” means

Yoshio Okamoto Enumeration Algorithms Basics .

.. How to measure the efficiency of enumeration algorithms — time

n: input size
N: # outputs
.
Output polynomial-time, or polynomial total time
..
......Enumerate all objects in polynomial time in n & N

.
Amortized polynomial-time delay
..

......

Enumerate all objects in polynomial time in n, and linear time in N
(time to output a next object is amortized polynomial-time in n)

.
Worst-case polynomial-time delay
..
......Time to output a next object is polynomial in n

When delay is concerned, the following must also be poly in n
Preprocessing: Time for the algo to spend until the first output
Postprocessing: Time for the algo to spend after the last output

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Relationship among the concepts

.
Observation
..

......

An algorithm runs in output polynomial time
⇐ amortized polynomial-time delay
⇐ worst-case polynomial-time delay

.
Examples
..

......

Total time Output poly Amortized Worst-case
poly delay poly delay

O(n3N2)
√

× ×
O(n4N)

√ √
?

Remark:

Total time doesn’t solely determine if the algorithm runs in
the worst-case poly delay

Yoshio Okamoto Enumeration Algorithms Basics .

.. How to measure the efficiency of enumeration algorithms — space

n: input size
N: # outputs
.
Polynomial space
..
......Enumerate all objects in polynomial space in n

When the “space complexity” is considered,
we only measure the space of a working tape,
but not the space of an output tape
(We spend the space of Ω(N) on the output tape)

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Obstacles for designing efficient enumeration algorithms

.
If we want to avoid duplication...
..

......

Enough to store all outputs on the working tape
however−−−−→ cannot be a poly-space algorithm (often)

Cannot store all outputs on the working tape

.
In addition, if we want to miss no object...
..

......

Enough to know # outputs in advance
however−−−−→ # outputs is hard to compute (often)

however−−−−→

(cf. #P-hardness)

No idea when to halt, since we don’t even know the number

(Imagine a timekeeper for a marathon)

.

......

An efficient enumeration looks like a dream
but, sometimes we can!!

Yoshio Okamoto Enumeration Algorithms Basics .

.. Contents of Part I

What are enumeration problems & enumeration algorithms?

Obstacles for designing enumeration algorithms
Design techniques for enumeration algorithms

Binary partition
Combinatorial Gray code
Reverse search

Hard enumeration problems

.
The following lectures...
..

......

Prof. Shin-ichi Nakano
Graph enumeration (enumerating more complex objects)

Prof. Hiroki Arimura
Pattern mining (enumerating even more complex objects)

Prof. Takeaki Uno
Enumeration of complex structures

(enumerating yet even more complex objects)

Yoshio Okamoto Enumeration Algorithms Basics

.

.. An illustrative example

.
The subset enumeration problem
..

......

Input: a natural number n
Output: all subsets of the set {1, 2, . . . , n}

Example: when the input n = 4, the outputs are

∅ {1} {2} {3}
{4} {1, 2} {1, 3} {1, 4}
{2, 3} {2, 4} {3, 4} {1, 2, 3}
{1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

.
Involved remark (only for those who are acquainted with algorithms)
..

......

Assume a word RAM as a computational model, in which the input natural
number, which doesn’t have to be 16-bit or 32-bit, fits in one word, and the
usual operations on words can be performed in constant time. The space
complexity also counts words. Furthermore, assume the input n is unary
encoded.

Yoshio Okamoto Enumeration Algorithms Basics .

.. Solving the subset enumeration problem by binary partition

Input: a natural number n
.
Algorithm design strategy
..

......

Case distinction

1. Partition the problem (virtually) into

the problem to output all subsets including “1” and
the problem to output all subsets excluding “1”

2. Partition each of the problems (virtually) into

the problem to output all subsets including “2” and
the problem to output all subsets excluding “2”

3. Partition each of the problems ...

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Sample run of the algorithm

∅

{3}

{2}

{2, 3}

{4}

{3, 4}

{2, 4}

{2, 3, 4}

{1}

{1, 3}

{1, 2}

{1, 2, 3}

{1, 4}

{1, 3, 4}

{1, 2, 3, 4}

{1, 2, 4}

Yoshio Okamoto Enumeration Algorithms Basics .

.. Binary partition — more in detail

.
Subset enumeration algorithm (binary partition)
..

......

Input: a natural number n
Output: all subsets of {1, . . . , n}

Call A(∅, 1)

.
A(X , i)
..

......

Precond.: i ∈ {1, . . . , n, n+1}, X ⊆ {1, . . . , i−1}
Postcond.: Output all members of {X ∪ Y | Y ⊆ {i , . . . , n}}

If i = n+1, then output X and halt

Otherwise, call A(X , i+1) and A(X ∪ {i}, i+1)

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Sample run of the detailed version

A(∅, 1)

A(∅, 4)

A(∅, 3)

A({3}, 5)

A({4}, 5) A({3, 4}, 5)

A({3}, 4) A({2}, 4)

A({2}, 5)

A({2, 4}, 5)

A({2}, 3)

A(∅, 2)

A({2, 3}, 5)

A({2, 3, 4}, 5)

A({2, 3}, 4) A({1}, 4)

A({1}, 5)

A({1, 4}, 5)

A({1}, 3)

A({1}, 2)

A({1, 2}, 3)

A({1, 3}, 5)

A({1, 3, 4}, 5) A({1, 2, 4}, 5)

A({1, 3}, 4) A({1, 2}, 4) A({1, 2, 3}, 4)

A({1, 2}, 5) A({1, 2, 3}, 5)

A({1, 2, 3, 4}, 5)

A(∅, 5)

∅, {4}, {3}, {3, 4}, {2}, {2, 4}, {2, 3}, {2, 3, 4}, {1}, {1, 4},
{1, 3}, {1, 3, 4}, {1, 2}, {1, 2, 4}, {1, 2, 3}, {1, 2, 3, 4}

Yoshio Okamoto Enumeration Algorithms Basics .

.. Correctness of the algorithm

Enough to prove that the postcond. holds assuming the precond.
.
A(X , i)
..

......

Precond.: i ∈ {1, . . . , n, n+1}, X ⊆ {1, . . . , i−1}
Postcond.: Output all members of {X ∪ Y | Y ⊆ {i , . . . , n}}

If i = n+1, then output X and halt

Otherwise, call A(X , i+1) and A(X ∪ {i}, i+1)

Induction on i

When i = n+1: Easy

When i ≤ n:

The output of A(X , i+1) is {X ∪ Y | Y ⊆ {i+1, . . . , n}}
The output of A(X∪{i}, i+1) is {X∪{i}∪Y |Y⊆{i+1, . . . , n}}
Their union is {X ∪ Y | Y ⊆ {i , . . . , n}}

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Efficiency of the algorithm — time (1)

A({2}, 4)

A(∅, 1)

A({1}, 2)A(∅, 2)

A(∅, 3) A({2}, 3) A({1}, 3) A({1, 2}, 3)

A({1, 2, 3}, 4)A({1, 2}, 4)A({1, 3}, 4)A({1}, 4)A({2, 3}, 4)A({3}, 4)A(∅, 4)

A(∅, 5) A({3}, 5) A({2}, 5) A({2, 3}, 5) A({1}, 5) A({1, 3}, 5) A({1, 2}, 5) A({1, 2, 3}, 5)

A({1, 2, 3, 4}, 5)A({1, 2, 4}, 5)A({1, 3, 4}, 5)A({1, 4}, 5)A({2, 3, 4}, 5)A({2, 4}, 5)A({3, 4}, 5)A({4}, 5)

Time complexity ≤ Time to traverse the recursion tree

Time complexity ≤

+ the worst-case time to output one obj

Time complexity ≤ +

× # outputs

Let N = # outputs (= 2n)

Yoshio Okamoto Enumeration Algorithms Basics .

.. Efficiency of the algorithm — time (2)

A({2}, 4)

A(∅, 1)

A({1}, 2)A(∅, 2)

A(∅, 3) A({2}, 3) A({1}, 3) A({1, 2}, 3)

A({1, 2, 3}, 4)A({1, 2}, 4)A({1, 3}, 4)A({1}, 4)A({2, 3}, 4)A({3}, 4)A(∅, 4)

A(∅, 5) A({3}, 5) A({2}, 5) A({2, 3}, 5) A({1}, 5) A({1, 3}, 5) A({1, 2}, 5) A({1, 2, 3}, 5)

A({1, 2, 3, 4}, 5)A({1, 2, 4}, 5)A({1, 3, 4}, 5)A({1, 4}, 5)A({2, 3, 4}, 5)A({2, 4}, 5)A({3, 4}, 5)A({4}, 5)

Each edge of the tree can be traversed in constant time
# edges of the tree = Θ(N)
The worst-case time to output one object = O(n)
∴ Time complexity = O(N + nN) = O(nN)

∴ Time complexity =

(amortized linear-time delay)

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Efficiency of the algorithm — space

A({2}, 4)

A(∅, 1)

A({1}, 2)A(∅, 2)

A(∅, 3) A({2}, 3) A({1}, 3) A({1, 2}, 3)

A({1, 2, 3}, 4)A({1, 2}, 4)A({1, 3}, 4)A({1}, 4)A({2, 3}, 4)A({3}, 4)A(∅, 4)

A(∅, 5) A({3}, 5) A({2}, 5) A({2, 3}, 5) A({1}, 5) A({1, 3}, 5) A({1, 2}, 5) A({1, 2, 3}, 5)

A({1, 2, 3, 4}, 5)A({1, 2, 4}, 5)A({1, 3, 4}, 5)A({1, 4}, 5)A({2, 3, 4}, 5)A({2, 4}, 5)A({3, 4}, 5)A({4}, 5)

During the execution, a part of the recursion tree is stored

The size of a stored part = O(n)

The size of the arguments in a function call = O(n)

∴ Space complexity = O(n)

Yoshio Okamoto Enumeration Algorithms Basics .

.. Efficiency of the algorithm — time (revisited)

A({2}, 4)

A(∅, 1)

A({1}, 2)A(∅, 2)

A(∅, 3) A({2}, 3) A({1}, 3) A({1, 2}, 3)

A({1, 2, 3}, 4)A({1, 2}, 4)A({1, 3}, 4)A({1}, 4)A({2, 3}, 4)A({3}, 4)A(∅, 4)

A(∅, 5) A({3}, 5) A({2}, 5) A({2, 3}, 5) A({1}, 5) A({1, 3}, 5) A({1, 2}, 5) A({1, 2, 3}, 5)

A({1, 2, 3, 4}, 5)A({1, 2, 4}, 5)A({1, 3, 4}, 5)A({1, 4}, 5)A({2, 3, 4}, 5)A({2, 4}, 5)A({3, 4}, 5)A({4}, 5)

Indeed, it’s worst-case linear-time delay

The worst-case occurs between the rightmost output of the
left subtree and the leftmost output of the right subtree, and
this is O(n)

(Detail omitted)

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Contents of Part I

What are enumeration problems & enumeration algorithms?

Obstacles for designing enumeration algorithms

Design techniques for enumeration algorithms

Binary partition
Combinatorial Gray code
Reverse search

Hard enumeration problems

Yoshio Okamoto Enumeration Algorithms Basics .

.. Solving the subset enumeration problem by Gray codes

.
Basic ideas
..

......

Define an undirected graph over the subsets to output

Enumerate by traversing a Hamiltonian path of the graph

∅

{2}

{1}

{1, 2}

{3} {1, 3}

{2, 3}

{1, 2, 3}

{4} {1, 4}

{2, 4}

{2, 3, 4}

{1, 2, 4}

{1, 3, 4}{3, 4}

{1, 2, 3, 4}

Hamiltonian path (cycle): a path (cycle) that visits all vertices
Yoshio Okamoto Enumeration Algorithms Basics

.

.. The graph Qn for subset enumeration

Also known as a n-dimensional Hamming cube

∅

{2}

{1}

{1, 2}

{3} {1, 3}

{2, 3}

{1, 2, 3}

{4} {1, 4}

{2, 4}

{2, 3, 4}

{1, 2, 4}

{1, 3, 4}{3, 4}

{1, 2, 3, 4}

X ,Y ⊆ {1, . . . , n} adjacent ⇐⇒ |X△Y | = 1

X ,Y ⊆ {1, . . . , n} adjacent⇐⇒

(the symm diff has only one elem)
Yoshio Okamoto Enumeration Algorithms Basics .

.. The Hamiltonicity of Qn

.
Proposition 1
..
......For all n ≥ 1, Qn contains a Hamiltonian path from ∅ to {n}

Proof: Induction on n

When n = 1: Easy
When n > 1:

The subgraph induced by the subsets including n ≃ Qn−1

The subgraph induced by the subsets excluding n ≃ Qn−1

∅

{n−1, n}{n−1}

{n}

Joining {n−1} & {n−1, n} yields a Hamiltonian path
Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Enumeration along the Hamiltonian path

∅

{2}

{1}

{1, 2}

{3} {1, 3}

{2, 3}

{1, 2, 3}

{4} {1, 4}

{2, 4}

{2, 3, 4}

{1, 2, 4}

{1, 3, 4}{3, 4}

{1, 2, 3, 4}

∅, {1}, {1, 2}, {2}, {2, 3}, {1, 2, 3}, {1, 3}, {3},
{3, 4}, {1, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}, {2, 4}, {1, 2, 4}, {1, 4}, {4}

Yoshio Okamoto Enumeration Algorithms Basics .

.. What to understand for algorithm design

.
What to understand for algorithm design
..

......

After outputting a set X , we need to find the next output X ′

quickly

∅, {1}, {1, 2}, {2}, {2, 3}, {1, 2, 3}, {1, 3}, {3},
{3, 4}, {1, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}, {2, 4}, {1, 2, 4}, {1, 4}, {4}
.
Proposition 2
..

......

If we enumerate all subsets by traversing the Hamiltonian path of
Qn constructed in Proposition 1 as ∅, {1}, . . ., then the output X ′

next to the set X can be represented as follows

X ′ =

{
X△{1} (|X | even)
X△{1+minX} (|X | odd)

Proof: Exercise

Yoshio Okamoto Enumeration Algorithms Basics

.

.. The subset enumeration problem: An algorithm based on Gray codes

.
Subset enumeration algorithm (Gray codes)
..

......

Input: n
Output: all subsets of {1, . . . , n}

Initialize X := ∅, p := 0, i := 0

Repeat (* invariant: p = |X | mod 2, i = minX *)

Output X
If i = n, then halt
If p = 0, then X := X△{1}, p := 1, i := minX
If p = 1, then X := X△{1+i}, p := 0, i := minX

Yoshio Okamoto Enumeration Algorithms Basics .

.. Correctness of the algorithm

.
Subset enumeration algorithm (Gray codes)
..

......

Input: n
Output: all subsets of {1, . . . , n}

Initialize X := ∅, p := 0, i := 0

Repeat (* invariant: p = |X | mod 2, i = minX *)

Output X
If i = n, then halt
If p = 0, then X := X△{1}, p := 1, i := minX
If p = 1, then X := X△{1+i}, p := 0, i := minX

Follows from Proposition 2 and the invariant

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Efficiency of the algorithm

.
Subset enumeration algorithm (Gray codes)
..

......

Input: n
Output: all subsets of {1, . . . , n}

Initialize X := ∅, p := 0, i := 0

Repeat (* invariant: p = |X | mod 2, i = minX *)

Output X
If i = n, then halt
If p = 0, then X := X△{1}, p := 1, i := minX
If p = 1, then X := X△{1+i}, p := 0, i := minX

Time
The symm-diff and the find-min can be performed in O(1)
time with a plain data structure
Outputting one object can be done in O(n)
∴ The worst-case delay is O(n)

Space
The sum of the sizes of X , p, i : O(n)

Yoshio Okamoto Enumeration Algorithms Basics .

.. Compact output

.
Why compact output?
..

......

If we want to output an object of size at most n,
we’d need a complexity of Θ(n)

Is it possible to compress the output?

.
“Compact output” does
..

......

compress the outputs

not compress after outputting all objects,
but output compressed objects

.
Examples of compact outputs
..

......

Difference output ← we only deal with this

History output

Binary decision diagram (BDD) output

Yoshio Okamoto Enumeration Algorithms Basics

.

.. An example of difference output

∅, {1}, {1, 2}, {2}, {2, 3}, {1, 2, 3},
+1, +2, −1, +3, +1,

{1, 3}, {3}, {3, 4}, {1, 3, 4}, {1, 2, 3, 4}, {2, 3, 4},
−2, −1, +4, +1, +2, −1,
{2, 4}, {1, 2, 4}, {1, 4}, {4}
−3, −1, −2, −1

Yoshio Okamoto Enumeration Algorithms Basics .

.. A subset enumeration algorithm based on Gray codes + diff output

.
Subsets enumeration algorithm (Gray codes + difference output)
..

......

Input: n
Output: all subsets of {1, . . . , n}

Initialize X := ∅, p := 0, i := 0, and output X

Repeat (* invariant: p = |X | mod 2, i = minX *)

If i = n, then halt
If p = 0, then

If 1 ∈ X , then output “−1”
If 1 ̸∈ X , then output “+1”
X := X△{1}, p := 1, i := minX

If p = 1, then

If 1+i ∈ X , then output “−(1+i)”
If 1+i ̸∈ X , then output “+(1+i)”
X := X△{1+i}, p := 0, i := minX

Time complexity: Worst-case delay O(1), Space complexity: O(n)
Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Contents of Part I

What are enumeration problems & enumeration algorithms?

Obstacles for designing enumeration algorithms

Design techniques for enumeration algorithms

Binary partition
Combinatorial Gray code
Reverse search

Hard enumeration problems

Yoshio Okamoto Enumeration Algorithms Basics .

.. Solving the subset enumeration problem by reverse search

.
Basic ideas
..

......

Define a rooted tree on the subsets to enumerate

Enumerate by traversing the rooted tree

∅

{3}{1} {2} {4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Reminder: Terminology on rooted trees

root
depth 0

depth 1

depth 2

depth 3

u

vheight

leaves

u is a child of v , and v is a parent of u
(and other terms around families)

Root: a unique node without parent

Leaf: a node without child

Depth of a node v : # edges on a path from the root to v

Height of a tree: maximum depth

Yoshio Okamoto Enumeration Algorithms Basics .

.. Reverse-search subset enumeration: Construction of a rooted tree

.
Construction of a rooted tree
..

......

Root: ∅
For X ⊆ {1, . . . , n} (X ̸= ∅), define its parent p(X ) as
p(X ) := X \ {minX}

.
Proposition 3
..
......This rooted tree is well-defined

Proof sketch: # elements of X > # elements of p(X )

∅

{3}{1} {2} {4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Reverse-search subset enumeration: Parent-child relationship

.
How to find a parent from a child
..

......

For a subset X ⊆ {1, . . . , n} (X ̸= ∅), define its parent p(X ) as
p(X ) := X \ {minX}

Depth-first search requires an op to find children from a parent
.
How to find children from a parent
..

......

For a subset Y ⊆ {1, . . . , n} and any i < minY
Y ∪ {i} is a child of Y (where min ∅ =∞), and
any child of Y can be represented in this form

∅

{3}{1} {2} {4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Yoshio Okamoto Enumeration Algorithms Basics .

.. Sample run of the algorithm

∅

{1, 2}

{1} {2} {3} {4}

{1, 3}

{1, 2, 3}

{2, 3} {1, 4} {2, 4}

{1, 2, 4} {2, 3, 4}{1, 3, 4}

{1, 2, 3, 4}

{3, 4}

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, {1, 4},
{2, 4}, {1, 2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Reverse-search subset enumeration algorithm

.
Subset enumeration algorithm
..

......

Input: a natural number n; Output: all subsets of {1, . . . , n}
Call B(∅)

.
B(X )
..

......

Precond.: X ⊆ {1, . . . , n}
Postcond.: Output X and all descendants of X in the tree

Output X

i := minX

If i = 1, then halt

Otherwise, j := 1 and repeat

If j = i or j > n, then halt
Otherwise, call B(X ∪ {j})
j := j+1

Yoshio Okamoto Enumeration Algorithms Basics .

.. Correctness and efficiency of the reverse-search algorithm

Correctness

Postcondition of B(X ) follows from the correctness of the
operation to “find children from a parent”

Efficiency: Time

# edges in the enumeration tree = N − 1
(N = # output = 2n)

∴ Total time = O(N + nN) = O(nN)

∴ Amortized delay = O(n)

Height of the enumeration tree = n

∴ Worst-case delay = O(n)

(Difference output cannot reduce the order, since the size of a
difference can be Ω(n))

Efficiency: Space

O(n) since the height of the tree = n

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Prepostorder traversal — How to effectively perform the difference output

Acceleration by prepostorder traversal (a.k.a. odd-even traversal)
.
Ideas of prepostorder traversal
..

......

In the enumeration tree

At an even-depth node, output the corresp. obj. when we enter
(Output myself before outputting the descendants)

At an odd-depth node, output the corresp. obj. when we leave
(Output myself after outputting the descendants)

.
Merits of prepostorder traversal
..

......

Reduce the worst-case delay

Reduce the difference of outputs (typically to constant)

∴ Combining prepostorder traversal and difference output

∴

(often) achieves “worst-case constant-time delay”

Yoshio Okamoto Enumeration Algorithms Basics .

.. Sample run of prepostorder traversal

∅

{1, 2}

{1} {2} {3} {4}

{1, 3}

{1, 2, 3}

{2, 3} {1, 4} {2, 4}

{1, 2, 4} {2, 3, 4}{1, 3, 4}

{1, 2, 3, 4}

{3, 4}

∅, {1}, {1, 2}, {2}, {1, 3}, {2, 3}, {1, 2, 3}, {3}, {1, 4}, {2, 4},
{1, 2, 4}, {3, 4}, {1, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}, {4}

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Comparison of delays

∅

{3}{1} {2} {4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Usual reverse search (preorder)

Prepostorder

Yoshio Okamoto Enumeration Algorithms Basics .

.. Comparison of differences

Usual reverse search (preorder)
∅, {1}, {2}, {1, 2}, {3}, {1, 3},

+1, −1+2, +1, −1, 2+3, +1,
{2, 3}, {1, 2, 3}, {4}, {1, 4}, {2, 4}, {1, 2, 4},
−1+2, 3, +1, −1, 2, 3+4, +1, −1+2, +1,
{3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}
−1, 2+3, +1, −1+2, +1

Prepostorder
∅, {1}, {1, 2}, {2}, {1, 3}, {2, 3},

+1, +2, −1, −2+1, 3, −1+2,
{1, 2, 3}, {3}, {1, 4}, {2, 4}, {1, 2, 4}, {3, 4},
+1, −1, 2, −3+1, 4, −1+2, +1, −1, 2+3,
{1, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}, {4}
+1, +2, −1, −2, 3

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Reverse-search subset enumeration + prepostorder traversal

.
Subset enumeration algorithm
..

......

Input: a natural number n; Output: all outputs of {1, . . . , n}

Call B(∅,0)

.
B(X , p)
..

......

Precond.: X ⊆ {1, . . . , n}, p = |X | mod 2
Postcond.: Output X and all descendants of X in the tree

If p = 0, then output X
i := minX
If i = 1, then skip the following
Otherwise, j := 1 and repeat the following

If j = i or j > n, then break the loop
Otherwise, call B(X ∪ {j}, p+1 mod 2)
j := j+1

If p = 1, then output X
Halt

Yoshio Okamoto Enumeration Algorithms Basics .

.. Difference output with prepostorder traversal

Prepostorder traversal can be applied to any rooted tree

.
Proposition 4
..

......

For prepostorder traversal on any rooted tree, the number of edges
between a (unique) path from any output to the next output is at
most some constant

Proof: Exercise
Hence
.
Proposition 5
..

......

Reverse-search algorithm (+ prepostorder traversal & difference
output) achieves the worst-case constant-time delay and
polynomial space

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Contents of Part I

What are enumeration problems & enumeration algorithms?

Obstacles for designing enumeration algorithms

Design techniques for enumeration algorithms

Binary partition
Combinatorial Gray code
Reverse search

Hard enumeration problems

Yoshio Okamoto Enumeration Algorithms Basics .

.. Pros and cons of these methods

Binary partition

− Effective for objects with recursive structures

+ Easy to design

− Not so small delay

Combinatorial Gray codes

− Effective for objects with simple structures

+ Small delay (with difference output)

− Difficult to design (existence of Hamiltonian paths)

− Difficult to be “worst-case constant-time delay”

Reverse search

+ Effective for objects with more complex structures

+ Small delay (with difference output, prepostorder traversal)

+ Easy to achieve “worst-case constant-time delay”

− Need the “fluency” to design

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Another example

.
The subset enumeration problem (done)
..

......

Input: a natural number n
Output: all subsets of the set {1, 2, . . . , n}

.
The permutation enumeration problem
..

......

Input: a natural number n
Output: all permutations of the set {1, 2, . . . , n}

Yoshio Okamoto Enumeration Algorithms Basics .

.. Permutations in this lecture

.
Definition
..

......

A permutation of the set X ⊆ {1, . . . , n} is a sequence

(a1, . . . , am)

that satisfies the following (where |X | = m)

∀ e ∈ X , ∃ a unique i ∈ {1, . . . ,m} s.t. e = ai

Example: (2, 4, 3, 6) is a permutation of {2, 3, 4, 6}
For brevity, we sometimes write “2436” and “2, 4, 3, 6”

The empty sequence is represented by ε

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Approaches to the permutation enumeration problem

Approach by binary partition

Rather called “backtracking”

Approach by combinatorial Gray codes

Definition of a graph, the existence of a Hamiltonian path

How to traverse the Hamiltonian path

Approach by reverse search

Definition of a rooted tree, and the parent-child relationship

How to find children from a parent

Yoshio Okamoto Enumeration Algorithms Basics .

.. Permutation enumeration algorithm based on backtracking (sample run)

132 213 231 312 321

13 21 23 31 32

32

123

12

1

ε

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Approaches to the permutation enumeration problem

Approach by binary partition

Rather called “backtracking”

Approach by combinatorial Gray codes

Definition of a graph, the existence of a Hamiltonian path

How to traverse the Hamiltonian path

Approach by reverse search

Definition of a rooted tree, and the parent-child relationship

How to find children from a parent

Yoshio Okamoto Enumeration Algorithms Basics .

.. Graph Pn for the permutation enumeration problem

1234

1324

3124

3214

3241

3142

1342

1243

2134

2314

2341

2143

2431

2413

1423

1432

3421

3412

4312

4321

4132

4123

4231

4213

a, a′ adjacent in Pn ⇔ a can be obtained from a′

a, a′ adjacent in Pn ⇔

by an adjacent transposition
Yoshio Okamoto Enumeration Algorithms Basics

.

.. Hamiltonian cycle in the graph Pn

1234

1324

3124

3214

3241

3142

1342

1243

2134

2314

2341

2143

2431

2413

1423

1432

3421

3412

4312

4321

4132

4123

4231

4213

a, a′ adjacent in Pn ⇔ a can be obtained from a′

a, a′ adjacent in Pn ⇔

by an adjacent transposition
Yoshio Okamoto Enumeration Algorithms Basics .

.. How to find a next object by the combinatorial Gray code

A combinatorial Gray code for {1, . . . , n − 1} at hand
Insert n at possible positions

from right to left, left to right, right to left, ...

1234 3124 2314
1243 3142 2341
1423 3412 2431
4123 4312 4231
4132 4321 4213
1432 3421 2413
1342 3241 2143
1324 3214 2134

The algorithm moves n as far as possible, and then move n−1
by one, move n as far as possible, ..., when n and n−1 got
stuck, more n−2 by one, ...

This is known as the Steinhaus–Johnson–Trotter algorithm
Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Approaches to the permutation enumeration problem

Approach by binary partition

Rather called “backtracking”

Approach by combinatorial Gray codes

Definition of a graph, the existence of a Hamiltonian path

How to traverse the Hamiltonian path

Approach by reverse search

Definition of a rooted tree, and the parent-child relationship

How to find children from a parent

Yoshio Okamoto Enumeration Algorithms Basics .

.. Basic strategy for reverse search (the permutation enumeration problem)

Definition of a rooted tree by parent-child relationship

Root: (1, 2, . . . , n)

Parent of a permutation a: For the smallest i s.t. ai ̸= i

Parent of a permutation a:

the perm obtained by exchanging

Parent of a permutation a:

ai & aj where aj = i

The rooted tree is well-defined:
The parent has a longer prefix with ai = i

Children of a perm a:
For the smallest i s.t. ai ̸= i ,
the perm obtained by exchanging ai ′ & aj ′

where i ′ < i and i ′ < j ′

(If i = 1, then a is a leaf)
(If such i doesn’t exist, set i = n+1)

51324

12345

12354

15324

Yoshio Okamoto Enumeration Algorithms Basics

.

.. An example

n = 4

2134 3214 4231 1324 1432 1243

1234

42132314 4321 21433124 2431 32414132 14233412 1342

412334212413431231422341

Yoshio Okamoto Enumeration Algorithms Basics .

.. A permutation enumeration algorithm by reverse search

.
A permutation enumeration algorithm (reverse search)
..

......

Input: a natural number n; Output: all permutations of {1, . . . , n}
Call B((1, 2, . . . , n), n + 1)

.
B(a, i)
..

......

Precond.: a is a perm of {1, . . . , n}, i=max{j |ak=k ∀k ≤ j}+1
Postcond.: Output a and all descendants of a in the tree

Output a

If i = 1, then halt

Otherwise, i ′ := 1, j ′ := 2 and repeat the following

a′ := the permutation obtained from a by exchanging ai ′ & aj′
Call B(a′, i ′)
If i ′ = i − 1 and j ′ = n, then halt
If j ′ = n, then i ′ := i ′+1, j ′ := i ′+1; If j ′ ̸= n, then j ′ := j ′+1

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Two examples have been discussed

.
The subset enumeration problem (done)
..

......

Input: a natural number n
Output: all subsets of the set {1, 2, . . . , n}

.
The permutation enumeration problem (done)
..

......

Input: a natural number n
Output: all permutations of the set {1, 2, . . . , n}

Other examples

In the following lectures, and exercises

fro the problems in your favor

Yoshio Okamoto Enumeration Algorithms Basics .

.. Contents of Part I

What are enumeration problems & enumeration algorithms?

Obstacles for designing enumeration algorithms

Design techniques for enumeration algorithms

Binary partition
Combinatorial Gray code
Reverse search

Hard enumeration problems

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Problems without efficient enumeration algorithms??

.
There must be a reason, if you can’t find an efficient algorithm...
..

......

Examples: Problems for which

Finding one output is already hard

Determining exhaustiveness is hard

Determining duplicated outputs is hard

Yoshio Okamoto Enumeration Algorithms Basics .

.. Problems for which finding one output is already hard

.
The subset sums enumeration problems
..

......

Input: n natural numbers a1, . . . , an, and a natural number b
Output: all subsets S ⊆ {1, . . . , n} such that

∑
i∈S ai = b

Finding one output is NP-hard (Karp 1972)
therefore−−−−−→ enumeration is also hard

Remarks

A lot of NP-hard problems are known

Before investigating enumeration algorithms
one should look at “hardness of finding one output”
(This will change the strategy for algorithm design)

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. Problems for which determining exhaustiveness is hard

.
The vertex set enumeration of a convex polyhedron
..

......

Input: a natural number d and n halfspaces in the d-dim space
Output: all vertices of the intersection of the halfspaces

(a convex polyhedron)

The existence of an output poly-time algorithm ⇒ P = NP
(Khachiyan, Boros, Borys, Elbassioni, Gurvich 2006)

In other words:
Given an input and a subset of the output,
determining if there is another object to output is NP-hard
therefore−−−−−→ Enumeration is hard

Remark

A similar result is known for the maximal t-frequent sets
enumeration problem

(Boros, Gurvich, Khachiyan, Makino 2003)

Yoshio Okamoto Enumeration Algorithms Basics .

.. Problems for which determining duplicated outputs is hard

.
The unlabeled graphs enumeration problem
..

......

Input: n
Output: all unlabeled graphs with n vertices

Enough to determine if a newly found graph is isomorphic to
a graph that has already been found
however−−−−→ The graph isomorphism (GI) problem is hard

(Unknown to be NP-complete, or poly-time solvable)
therefore−−−−−→ Difficult to design an efficient algorithm

Remarks

“The linear codes enumeration problem” is similar

For some classes of graphs, the GI can be solved efficiently
For them, “canonical forms” are often employed,
which are also useful for enumeration

(c.f. Lecture of Prof. Nakano)

Yoshio Okamoto Enumeration Algorithms Basics

.

.. Contents of Part I

What are enumeration problems & enumeration algorithms?

Obstacles for designing enumeration algorithms

Design techniques for enumeration algorithms

Binary partition
Combinatorial Gray code
Reverse search

Hard enumeration problems

Refer to the (dirty) codes in C and Python written by Okamoto
www.jaist.ac.jp/~okamotoy/lect/2011/enumschool/

These codes are based on the algorithms in the lecture, but

not as efficient as promised there

Yoshio Okamoto Enumeration Algorithms Basics .

.. Exercises

.
Exercises
..

......

Exercises are the most important

Regretfully, there is little chance to think over algorithms by
oneself in undergrad classes

You should enjoy designing algorithm in the exercises

.
Tips for exercises
..

......

Group work is recommended

Discuss an outline of a solution

Detail should be filled by yourself

Ask lecturers if something is unclear

Don’t stick to one problem, but switch to another problem
(if you get stuck)

Don’t have to solve all problems

Yoshio Okamoto Enumeration Algorithms Basics



.

.

.. References (1/3)

Design techniques for enumeration algorithms

T. Uno, Enumeration problems. In M. Kubo, A. Tamura, T.
Matsui (eds), Handbook of Applied Mathematical
Programming, Sect. 14.4, Asakura, 2002, pp. 886–932.
(Japanese)

Enumeration of simple objects

A. Nijenhuis and H.S. Wilf, “Combinatorial Algorithms,”
Academic Press, 1978.
(Downloadable at the webpage of Herbert Wilf)

D. Knuth, “The Art of Computer Programming,” Vol. 4A,
Addison-Wesley, Upper Saddle River, NJ, 2011.

I. Semba, “Combinatorial Algorithms,” Saiensu-sha, 1989.
(Japanese)

Combinatorial Gray codes

C. Savage, A survey of combinatorial Gray codes. SIAM
Review 39 (1997) 605–629.

Yoshio Okamoto Enumeration Algorithms Basics .

.. References (2/3)

Reverse search

D. Avis and K. Fukuda, Reverse search for enumeration.
Discrete Applied Mathematics 65 (1996) 21–46.

K. Fukuda, Reverse search and its applications. In S. Fujishige
(ed), Discrete Structures and Algorithms II, Kyoritsu, 1993,
pp. 47–78. (Japanese)

J.L. White, Reverse search for enumeration — applications.
2008. http://cgm.cs.mcgill.ca/˜avis/doc/rs/applications/

J.L. White, Reverse search for enumeration —
implementations.
http://cgm.cs.mcgill.ca/˜avis/doc/rs/implementations/

Prepostorder traversal

Knuth, TAOCP Vol. 4, Fac. 4.

M. Sekanina, On an ordering of the set of vertices of a
connected graph. Spisy Př́ırodovědecké Fakulty University v
Brně 412 (1960) 137–140.

Yoshio Okamoto Enumeration Algorithms Basics

.

.. References (3/3)

Other sources cited in the slides

R.M. Karp, Reducibility among combinatorial problems. In
R.E. Miller and J.W. Thatcher (eds), Complexity of Computer
Computations, New York, Plenum, pp. 85–103.

L. Khachiyan, E. Boros, K. Borys, K. Elbassioni and V.
Gurvich, Generating all vertices of a polyhedron is hard.
Discrete & Computational Geometry 39 (2006) 174–190.

E. Boros, V. Gurvich, L. Khachiyan and K. Makino, On
maximal frequent and minimal infrequent sets in binary
matrices. Annals of Mathematics and Artificial Intelligence 39
(2003) 211–221.

Yoshio Okamoto Enumeration Algorithms Basics .


