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Obstacles for designing enumeration algorithms

Example of (instances of) enumeration problems

Output all subsets of {1,2,3,4,5} that sum up to 6
Answer: {1,2,3},{1,5},{2,4}

@ # outputs = 3
@ # subsets of {1,2,3,4,5} = 2% =32
The following algorithm is very inefficient

@ Look through the subsets of {1,2,3,4,5}, and
output if they sum up to 6

How can we enumerate correctly and efficiently?? J
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What is an enumeration problem?

What is an enumeration problem?

A problem to output all objects satisfying a given condition
exhaustively without duplication

(there may be a condition on the output order)

Example of (instances of) enumeration problems

Output all subsets of {1,2,3,4,5} that sum up to 6
Answer: {1,2,3},{1,5},{2,4}

v

Example of (instances of) more realistic enumeration problems

Output “web pages” that contain the string “chlorine”
in the decreasing order of their PageRanks

\,
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Evaluation of enumeration algorithms — correctness

Evaluation of enumeration algorithms
What should be proved for algorithms
o Correctness

o Efficiency

Correctness of enumeration algorithms

To output all objects with a given condition,
exhaustively without duplication (in a specified order, if any)
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Evaluation of enumeration algorithms How to measure the efficiency of enumeration algorithms — time

: : : n: input size
Evaluation of enumeration algorithms P

. N: # outputs
What should be proved for algorithms # P
O Comesiness Output polynomial-time, or polynomial total time
o Efficiency Enumerate all objects in polynomial time in n & N
Efficiency of enumeration algorithms Amortized polynomial-time delay

In theory, to “output in polynomial time” Enumerate all objects in polynomial time in n, and linear time in N
(time to output a next object is amortized polynomial-time in n)

Worst-case polynomial-time delay

# outputs can be exponential in the input size
therefore Time to output a next object is polynomial in n

———— Need to reconsider what “output in poly time” means

When delay is concerned, the following must also be poly in n
Preprocessing: Time for the algo to spend until the first output
Postprocessing: Time for the algo to spend after the last output
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Relationship among the concepts How to measure the efficiency of enumeration algorithms — space
n: input size

. . S N: # outputs
An algorithm runs in output polynomial time #* P
< amortized polynomial-time delay Polynomial space
< worst-case polynomial-time delay | Enumerate all objects in polynomial space in n
Examples When the “space complexity” is considered,

we only measure the space of a working tape,
but not the space of an output tape
(We spend the space of Q(N) on the output tape)

Total time | Output poly | Amortized | Worst-case
poly delay | poly delay
O(n3N?) Vv X X
O(n*N) 4 4 ?

Remark:

o Total time doesn't solely determine if the algorithm runs in
the worst-case poly delay
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Obstacles for designing efficient enumeration algorithms Contents of Part |
If we want to avoid duplication... @ What are enumeration problems & enumeration algorithms?

o Enough to store all outputs on the working tape @ Obstacles for designing enumeration algorithms

h . @ Design techniques for enumeration algorithms
ZOWEYE, cannot be a poly-space algorithm (often) & ques &
o Binary partition

@ Cannot store all outputs on the working tape o Combinatorial Gray code
o Reverse search

In addition, if we want to miss no object e Hard enumeration problems

@ Enough to know # outputs in advance

L 4 outputs is hard to compute (often) The following lectures...

however
(Cf #P—hardness) o Prof. Shin—ichi Nakano

. . . Graph enumeration (enumerating more complex objects)
@ No idea when to halt, since we don't even know the number

@ Prof. Hiroki Arimura

(Imagine a timekeeper for a marathon) Pattern mining (enumerating even more complex objects)
@ Prof. Takeaki Uno
An efficient enumeration looks like a dream Enumeration of complex structures
but, sometimes we can!! (enumerating yet even more complex objects)
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An illustrative example Solving the subset enumeration problem by binary partition

The subset enumeration problem Input: a natural number n

Input: a natural number n Algorithm design strategy

Output: all subsets of the set {1,2,...,n} Case distinction

1. Partition the problem (virtually) into

Example: when the input n = 4, the outputs are . .
o the problem to output all subsets including “1" and

0 {1} {2} {3} o the problem to output all subsets excluding “1”
{4} {1,2} {1,3} {1,4} 2. Partition each of the problems (virtually) into
{2,3} {2,4} {3,4} {1,2,3} o the problem to output all subsets including “2" and
{1,2,4} {1,3,4} {2,3,4} {1,2,3,4} o the problem to output all subsets excluding “2”

3. Partition each of the problems ...

Involved remark (only for those who are acquainted with algorithms)

Assume a word RAM as a computational model, in which the input natural
number, which doesn’t have to be 16-bit or 32-bit, fits in one word, and the
usual operations on words can be performed in constant time. The space
complexity also counts words. Furthermore, assume the input n is unary
encoded.
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Sample run of the algorithm Binary partition — more in detail

Subset enumeration algorithm (binary partition)
0 {4} {1} {1,4} Input: a natural number n

Output: all subsets of {1,...,n}
3 3,4 1,3 1,3,4
{8} (3,4} {1,3} { } o Call A(0,1)
{2} {2,4} {1,2} {1,2,4} ’
2.3 {234 {123} {1,234
Precond.: i € {1,...,n,n+1}, X C{1,...,i—1}
Postcond.: Output all members of {XU Y | Y C {i,...,n}}
o If i = n+1, then output X and halt

o Otherwise, call A(X,i+1) and A(X U {i},i+1)
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Sample run of the detailed version Correctness of the algorithm

Enough to prove that the postcond. holds assuming the precond.

Precond.: i € {1,...,n,n+1}, X C{1,...,i—1}
Postcond.: Output all members of {XU Y | Y C {i,...,n}}
e If i = n+1, then output X and halt
o Otherwise, call A(X,i+1) and A(X U {i},i+1)

0, {4}, {3}, {3.4}, {2}, {2.4}, {2,3}, {2,3,4}, {1}, {1, 4}, Induction on /
{la?’}v {17374}1 {1,2}, {17274}v {17273}v {1727374} @ When /i = n+1: Easy
@ When i < n:

e « The ouput of AGK. 11 s XUV | Y € (541,

o The output of A(XU{i}, i+1) is {XU{i}UY|YC{i+1,...,n}}
o Their unionis {XUY | Y C{i,...,n}}
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Efficiency of the algorithm — time (1) Efficiency of the algorithm — time (2)

\A(M)\ A({z},s)[ ‘A({l}j)‘ \A({Lz;_s)[ \A(m,a)\ \A({z},s)[ ‘A({l}.3)‘ \A({1_2}_3)[
A0,4)] ABLY] [AMLe]  AG2314)]  AGLL4)] [AUL3E4)] AGL2L4)] [A(L2314)] AW,4)] ABLY)] [AMLe]  AG2314)]  AGLLe)] [AUL3EA)] A{L2L4)] [A(L2314)]
[A(0.5)] [AG3E5)] \ [AG2E5)] \ AG2.315)] A{LLS)] [A(1.3}1.5)] ' AL 2} 5) [ \[A({L.2,3}.5)] [A(.5)] [A3E5)] \ [AG2E5)] \ AW2.315)] A{LL5)] [A(1.3}.5)] ' AL 2} 5)[\[A({1.2,3}.5)]
A} A}
[A({a}.5)| A{3,415) || AU2.41.5)] [A((2.3.4).5)| A{L4L5)| [AGL3,4),5)] [A({1.2,4),5)||A({1,2.3.4).5)| [A({4}.5)| A{3,41,5)||AU2.41.5)] [AG(2.:3.4).5) || AL 415)| [AGL3,415)] A({1.2,4}.5)|[A({1.2.3,4).5)|
I O S A NN ] ]
| T T T T \ T T T T T T T
] . ] . @ Each edge of the tree can be traversed in constant time
@ Time complexity < Time to traverse th.e recursion tree . o # edges of the tree = O(N)
+ the worst-case time to output one obj @ The worst-case time to output one object = O(n)
X #f outputs e . Time complexity = O(N + nN) = O(nN)

o Let N = # outputs (= 2") (amortized linear-time delay)
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Efficiency of the algorithm — space Efficiency of the algorithm — time (revisited)

A1) A1)
A®0,2) A({1},2) A®0,2) A({1},2)
A9.3) A({2).3) A((1).3) A({1.2).3) A(9.3) A({2).3) A((1).3) A({1.2) 3)
A0 ALY [AL] AM@3L4] AL [AWL3L9)] AGL2L4)] [AGL2.31.4)] AO] ALY [AL4] AM@3L4] AGL)] [AL319)] AGL2L4)] [A(L2.3).4)]
[A0.5)|  \[AE15)] \ [AG2L5)] \ AG231.5)] AGLLS)] O\ [AGL3)5) (x({l,Z},MAmzs}.s)\ [A0.5)|  \[AE15)] \ [AG2L5)] \ AG231.5)] AGLLS)] O\ [AGL3)5) \A({l-,Z}-,mA({L?ﬁ}ﬁ)\
[A.5)]  AWB45)|[AG24.5)] [A(23.4).5] A(L4.5)] [A(L3.4).5)] [A(12.4).5)][A({1.2.3.4).5)] [A@.5)] A5 |[AG24.5)] [A(23.4).9][A(L4.5)] [A(L3.4).5)] A({L2.4).5)][A({1.23.4)5)]

Indeed, it's worst-case linear-time delay
@ The worst-case occurs between the rightmost output of the
left subtree and the leftmost output of the right subtree, and
this is O(n)
o (Detail omitted)

During the execution, a part of the recursion tree is stored
The size of a stored part = O(n)

The size of the arguments in a function call = O(n)

.". Space complexity = O(n)



Contents of Part |

@ What are enumeration problems & enumeration algorithms?

o Obstacles for designing enumeration algorithms
@ Design techniques for enumeration algorithms

e Binary partition
o Combinatorial Gray code
o Reverse search

@ Hard enumeration problems

Yoshio Okamoto Enumeration Algorithms Basics

The graph @, for subset enumeration

Also known as a n-dimensional Hamming cube

{2,3,4} {1,2,3,4}
{2,4 {28} {12
2 {1]2,3}
{1]2
3 {113}
0 1
(3,4} {1,3,4}
{4} {1,4}

X,Y C{1,...,n} adjacent <= | XAY| =1
(the symm diff has only one elem)
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Solving the subset enumeration problem by Gray codes

Basic ideas

@ Define an undirected graph over the subsets to output

@ Enumerate by traversing a Hamiltonian path of the graph

{2,3,4} {1,2,3,4}
{2!4 {‘# } {1) 5
2 12,3}
{12
3 {13}
0 1
{3,4} {1,3,4}
{4} {1,4

Hamiltonian path (cycle): a path (cycle) that visits all vertices
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The Hamiltonicity of @,

Proposition 1
For all n > 1, @, contains a Hamiltonian path from () to {n}

Proof: Induction on n

@ When n = 1: Easy
o When n > 1:

o The subgraph induced by the subsets including n ~ Q,_1
o The subgraph induced by the subsets excluding n ~ Q,_1

'SR

0 {n}

'SR

{n—1} {n-1,n}

|

|

e Joining {n—1} & {n—1, n} yields a Hamiltonian path
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Enumeration along the Hamiltonian path What to understand for algorithm design

{2,3,4} {1,2,3,4} What to understand for algorithm design
After outputting a set X, we need to find the next output X’
2.4 AT quickly
2 {142,3} 0.{1}{1,2},{2},{2,3},{1,2,3},{1,3}, {3},
me {3,4},{1,3,4},{1,2,3,4},{2,3,4},{2,4},{1,2,4},{1,4}, {4}
4 | ol
0 1 If we enumerate all subsets by traversing the Hamiltonian path of
Qn constructed in Proposition 1 as (), {1}, ..., then the output X’
{3,4} {1,3,4} next to the set X can be represented as follows
o 1.4} X' — XA{1} (|X| even)
’ XA{1+min X} (|X]| odd)

0,{1},{1,2},{2}, {2,3},{1,2,3}. {1, 3}, {3},
(3,4}, {1,3,4},{1,2,3,4},{2,3,4},{2.4}, {1,2,4},{1,4}, {4}
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Proof: Exercise

The subset enumeration problem: An algorithm based on Gray codes Correctness of the algorithm
Subset enumeration algorithm (Gray codes) Subset enumeration algorithm (Gray codes)

Input: n Input: n
Output: all subsets of {1,...,n} Output: all subsets of {1,...,n}
o Initialize X :=0, p:=0, i :=0 o Initialize X :=0, p:=0, i :=0
@ Repeat (* invariant: p=|X| mod 2, i = min X *) @ Repeat (* invariant: p=|X| mod 2, i = min X *)
o Output X o Output X
o If i = n, then halt o If i = n, then halt
o If p=0, then X := XA{1l}, p:=1, i:=min X o If p=0, then X := XA{1}, p:=1, i:=min X
o If p=1, then X := XA{1+i}, p:=0, i :=min X o If p=1, then X := XA{1+i}, p:=0, i :=min X

Follows from Proposition 2 and the invariant
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Efficiency of the algorithm

(Gray codes)

Subset enumeration algorithm

Input: n

Output: all subsets of {1,...,

n}

o Initialize X :=0, p:=0,i:=0
@ Repeat (* invariant: p = |X| mod 2, i = min X *)

o Output X
o If i = n, then halt

o If p=0, then X := XA{1l}, p:=1, i:=min X
o If p=1, then X := XA{1+i}, p:=0, i :=min X

@ Time

e The symm-diff and the find-min can be performed in O(1)

time with a plain data structure
o Outputting one object can be done in O(n)
o .. The worst-case delay is O(n)

@ Space

o The sum of the sizes of X, p, i: O(n)

An example of difference output

0, {1}, {1,2},

+1, +2,
{1,3}, {3} {3,4},
-2, -1, +4,
{2,4}, {124}, {14},
-3, -1, -2,

{2},

-1,
{1,3,4},
+1,

{4}

-1

{2,3},

+3,
{1,2,3,4},
+2,

{1,2,3},
+1,
{2,3,4},
-1,
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Compact output

Why compact output?

o If we want to output an object of size at most n,
we'd need a complexity of O(n)

@ Is it possible to compress the output?

“Compact output” does
@ compress the outputs

@ not compress after outputting all objects,
but output compressed objects

Examples of compact outputs

| \

o Difference output <— we only deal with this

@ History output

@ Binary decision diagram (BDD) output

| |
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A subset enumeration algorithm based on Gray codes + diff output

Subsets enumeration algorithm (Gray codes + difference output)
Input: n
Output: all subsets of {1,...,n}
o Initialize X := 0, p:= 0, i := 0, and output X
@ Repeat (* invariant: p=|X| mod 2, i = min X *)
o If i = n, then halt
o If p=0, then
o If 1 € X, then output “—1"
o If 1 &€ X, then output “+1"
o X :=XA{1l}, p:=1,i:=minX
o If p=1, then
o If 14+i € X, then output “—(1+/)"
o If 14+i ¢ X, then output “+(1+/)"
o X = XA{1+i}, p:=0, i :==min X

\

Time complexity: Worst-case delay O(1), Space complexity: O(n)



Contents of Part | Solving the subset enumeration problem by reverse search

@ What are enumeration problems & enumeration algorithms?

Basic ideas

@ Obstacles for designing enumeration algorithms o Define a rooted tree on the subsets to enumerate

@ Design techniques for enumeration algorithms

e Binary partition
o Combinatorial Gray code
o Reverse search

0]
@ Hard enumeration problems ‘{1} {2}‘ {3}‘ {4}
/ // \R

{12 {13} 23] (14 [(24)] /{374}\

@ Enumerate by traversing the rooted tree

{124 [(L3.4]  [{23.4)]
{17 25 37 4}
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Reminder: Terminology on rooted trees Reverse-search subset enumeration: Construction of a rooted tree

root Construction of a rooted tree
____________ depth 0 e Root: 0
height
€ i — — - depth 1 e For X C{1,...,n} (X #0), define its parent p(X) as

p(X) := X\ {min X}

1 A "~ depth 2 Proposition 3
Y__ ) ~ - depth 3 This rooted tree is well-defined

leaves Proof sketch: # elements of X > # elements of p(X)

u is a child of v, and v is a parent of u
(and other terms around families)

@ Root: a unique node without parent ‘{112}‘ {133}‘ {273}‘ ‘{174}‘ ‘{2’4}‘ {3’4}‘
@ Leaf: a node without child
{1,2,3}
°
o

{124 [{(L3.4]  [123.4}]

Depth of a node v: # edges on a path from the root to v
Height of a tree: maximum depth {1,2,3,4}
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Reverse-search subset enumeration: Parent-child relationship Sample run of the algorithm

How to find a parent from a child m
For a subset X C {1,...,n} (X # (), define its parent p(X) as
p(X) := X\ {min X} {1} /{2V {3}| {4}}\
/ \
(@3] [23)]

Depth-first search requires an op to find children from a parent ‘{1 21| 13 2.3} ‘{1 4}‘ ‘{2 4}‘ ‘{3 4}J

How to find children from a parent

For a subset Y C {1,...,n} and any i < min Y ‘{1,274}‘ ‘{1,374}‘ ‘{2,374}‘
Y U {i} is a child of Y (where min{) = c0), and
any child of Y can be represented in this form {15278 34);
[ [ [23] [L4e] [24] B4
(1.2.3) [(L29] [13e] [234)] 0, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}, {4}, {1,4},
A (2.4, (12,4}, (3,4}, (13,4}, (2.3.4}, {1.2.3.4)

Reverse-search subset enumeration algorithm Correctness and efficiency of the reverse-search algorithm
Subset enumeration algorithm Correctness

Input: a natural number n; Output: all subsets of {1,...,n} ° Postco_ndltlonugf B(X_) follows from the c’?rrectness of the
operation to “find children from a parent
e Call B(0)

Efficiency: Time

B(X) @ # edges in the enumeration tree = N —1

Precond.: X C {1,...,n} _ (N = # output = 2")
Postcond.: Output X and all descendants of X in the tree o .. Total time = O(N + nN) = O(nN)
o Output X e .. Amortized delay = O(n)
© /= minX @ Height of the enumeration tree = n
e If i =1, then halt o .". Worst-case delay = O(n)
o Otherwise, j := 1 and repeat o (Difference output cannot reduce the order, since the size of a
o If j=iorj>n then halt difference can be Q(n))
o Otherwise, call B(X U {j}) Efficiency: Space
o ji=j+1 @ O(n) since the height of the tree = n

v
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Prepostorder traversal — How to effectively perform the difference output Sample run of prepostorder traversal

Acceleration by prepostorder traversal  (a.k.a. odd-even traversal)
Ideas of prepostorder traversal
In the enumeration tree
@ At an even-depth node, output the corresp. obj. when we enter
(Output myself before outputting the descendants)
@ At an odd-depth node, output the corresp. obj. when we leave
(Output myself after outputting the descendants)
Merits of prepostorder traversal

@ Reduce the worst-case delay
@ Reduce the difference of outputs (typically to constant)

@ .. Combining prepostorder traversal and difference output

often) achieves “worst-case constant-time delay”
(often) y 4 0, {1}, {1,2}, {2}, {1,3}, {23}, {1,2,3}, {3}, {14}, {2,4},
{1,2,4}, {3,4}, {1,3,4}, {1,2,3,4}, {2,3,4}, {4}

Comparison of delays Comparison of differences

Usual reverse search (preorder)

0, {1}, {2},2 {1,2}, {31},2 ; {1,3},
+1, ~1+2, +1, ~1,243, +1,
{1 /{2y {3} {4}\}\ 2,3}, {1,2,3}, {4}, (1,4}, {24}, {1,2,4},

/ ~142,3, +1, —1,2,3+4, +1, 142, 41,
L2y {3y [23] (L4 (24 (3.4 (3.4}, {134}, {234}, {1,2.3,4}
/ —1,243, +1, —142, +1
‘{172,4}‘ ‘{17374}‘ ‘{27374}‘ Prepostorder

0, {1}, {1.2}, {2}, {13}, {23}

{1,2,3,4} +1, +2, —1, —2+41,3, —1+42,

{1,2,3}, {3}, {1,4}, {2,4}, {1,2,4}, {3,4},

Usual reverse search (preorder) +1, -1,2, —3+1,4, —142, +1, —1,2+3,
T o 42 @ 1
11, 12, -1, -2,3

Prepostorder
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Reverse-search subset enumeration + prepostorder traversal

Subset enumeration algorithm

Input: a natural number n; Output: all outputs of {1,...,n}

e Call B(0,0)

B(X, p)
Precond.: X C {1,...,n}, p=|X| mod 2
Postcond.: Output X and all descendants of X in the tree

If p=0, then output X

i := min X

If i =1, then skip the following
Otherwise, j := 1 and repeat the following

e If j =i orj > n, then break the loop
o Otherwise, call B(X U {j}, p+1 mod 2)
o j:=j+1

If p=1, then output X

Halt
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Contents of Part |

@ What are enumeration problems & enumeration algorithms?
@ Obstacles for designing enumeration algorithms
@ Design techniques for enumeration algorithms

e Binary partition
o Combinatorial Gray code
o Reverse search

@ Hard enumeration problems
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Difference output with prepostorder traversal

@ Prepostorder traversal can be applied to any rooted tree

Proposition 4

For prepostorder traversal on any rooted tree, the number of edges
between a (unique) path from any output to the next output is at
most some constant

Proof: Exercise
Hence

Proposition 5

Reverse-search algorithm (+ prepostorder traversal & difference
output) achieves the worst-case constant-time delay and
polynomial space

Yoshio Okamoto Enumeration Algorithms Basics

Pros and cons of these methods

Binary partition
— Effective for objects with recursive structures
+ Easy to design
— Not so small delay
Combinatorial Gray codes
— Effective for objects with simple structures
+ Small delay (with difference output)
— Difficult to design (existence of Hamiltonian paths)
— Difficult to be "worst-case constant-time delay”
Reverse search
+ Effective for objects with more complex structures
+ Small delay (with difference output, prepostorder traversal)
+ Easy to achieve “worst-case constant-time delay”
— Need the “fluency” to design
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Another example Permutations in this lecture
T s e b ()

Input: a natural number n A permutation of the set X C {1,...,n} is a sequence

Output: all subsets of the set {1,2,...,n} ( )
’ al,..-,dm

e [peitmuiaien cnumerzion prellsm that satisfies the following (where | X| = m)

Input: a natural number n
Output: all permutations of the set {1,2,..., n}

eVeeX, Jauniqueie{l,...,m}st. e=g

o Example: (2,4,3,6) is a permutation of {2,3,4,6}
@ For brevity, we sometimes write “2436" and “2,4,3,6"

@ The empty sequence is represented by e
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Approaches to the permutation enumeration problem Permutation enumeration algorithm based on backtracking (sample run)

Approach by binary partition
@ Rather called “backtracking”
Approach by combinatorial Gray codes
@ Definition of a graph, the existence of a Hamiltonian path

@ How to traverse the Hamiltonian path

Approach by reverse search

@ Definition of a rooted tree, and the parent-child relationship \312\ \321\

@ How to find children from a parent
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Approaches to the permutation enumeration problem Graph P, for the permutation enumeration problem

Approach by binary partition

@ Rather called “backtracking”

Approach by combinatorial Gray codes
@ Definition of a graph, the existence of a Hamiltonian path
@ How to traverse the Hamiltonian path

Approach by reverse search

@ Definition of a rooted tree, and the parent-child relationship

@ How to find children from a parent

a,a adjacent in P, & a can be obtained from &’
by an adjacent transposition
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How to find a next object by the combinatorial Gray code

Hamiltonian cycle in the graph P,

o A combinatorial Gray code for {1,...,n— 1} at hand
@ Insert n at possible positions
o from right to left, left to right, right to left, ...

1234 3124 2314
1243 3142 2341
1423 3412 2431
4123 4312 4231
4132 4321 4213
1432 3421 2413
1342 3241 2143
1324 3214 2134

@ The algorithm moves n as far as possible, and then move n—1
4321 by one, move n as far as possible, ..., when n and n—1 got

a,a’ adjacent in P, < a can be obtained from &’ stuck, more n—2 by one, ...

by an adjacent transposition This is known as the Steinhaus—Johnson—Trotter algorithm
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Approaches to the permutation enumeration problem

Approach by binary partition
@ Rather called “backtracking”
Approach by combinatorial Gray codes
@ Definition of a graph, the existence of a Hamiltonian path
@ How to traverse the Hamiltonian path
Approach by reverse search
@ Definition of a rooted tree, and the parent-child relationship

@ How to find children from a parent
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An example

n=4

1234

2134 3214

[4231]

2314 [7[3124] [4321] [2431 4132| [1342] [1423] [2143] [3241] [4213]

[2341] [3142] [4312] [2413] [3421] [4123]
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Basic strategy for reverse search (the permutation enumeration problem)

Definition of a rooted tree by parent-child relationship
@ Root: (1,2,...,n)
o Parent of a permutation a: For the smallest i s.t. a; # i
the perm obtained by exchanging
aj & aj where a; =i
@ The rooted tree is well-defined:
The parent has a longer prefix with a; = i

@ Children of a perm a:
For the smallest i s.t. a; # i,
the perm obtained by exchanging ay & ajr
where i/ < iand /" <
(If i =1, then ais a leaf)
(If such i doesn't exist, set i = n+1)
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A permutation enumeration algorithm by reverse search

A permutation enumeration algorithm (reverse search)

Input: a natural number n; Output: all permutations of {1,..., n}
e Call B((1,2,...,n),n+1)

B(a, )
Precond.: ais a perm of {1,...,n}, i=max{j|lax=k Vk < j}+1
Postcond.: Output a and all descendants of a in the tree

@ Output a

e If i =1, then halt

o Otherwise, i’ :=1,;" := 2 and repeat the following

a’ := the permutation obtained from a by exchanging a; & aj/
Call B(d', ")

If " =i—1andj = n, then halt

If // = n, then /" .= i"+1,j .= i"+1; If j/ # n, then j' := j'+1 )
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Two examples have been discussed Contents of Part |

. . . . N
The subset enumeration problem (done) @ What are enumeration problems & enumeration algorithms?

o . : .
I @ el A @ Obstacles for designing enumeration algorithms

Output: all subsets of the set {1,2,...,n} ° De5|gé1. technlqu.esl, for enumeration algorithms
” e Binary partition

o Combinatorial Gray code

o Reverse search

The permutation enumeration problem (done)

Input: a natural number n

: @ Hard enumeration problems
Output: all permutations of the set {1,2,...,n}

Other examples
@ In the following lectures, and exercises

@ fro the problems in your favor
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Problems without efficient enumeration algorithms?? Problems for which finding one output is already hard

There must be a reason, if you can't find an efficient algorithm...

The subset sums enumeration problems

Examples: Problems for which Input: n natural numbers aj, ..., a,, and a natural number b
o Finding one output is already hard Output: all subsets S C {1,...,n} such that } ;.gai = b

@ Determining exhaustiveness is hard

@ Determining duplicated outputs is hard o Finding one output is NP-hard (Karp 1972)

therefore . .
@ ———— enumeration is also hard

Remarks
@ A lot of NP-hard problems are known

@ Before investigating enumeration algorithms
one should look at “hardness of finding one output”
(This will change the strategy for algorithm design)
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Problems for which determining exhaustiveness is hard

The vertex set enumeration of a convex polyhedron

Input: a natural number d and n halfspaces in the d-dim space
Output: all vertices of the intersection of the halfspaces
(a convex polyhedron)

@ The existence of an output poly-time algorithm = P = NP
(Khachiyan, Boros, Borys, Elbassioni, Gurvich 2006)
@ In other words:
Given an input and a subset of the output,
determining if there is another object to output is NP-hard

therefore . .
@ ———— Enumeration is hard

Remark
@ A similar result is known for the maximal t-frequent sets

enumeration problem
(Boros, Gurvich, Khachiyan, Makino 2003)
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Contents of Part |

@ What are enumeration problems & enumeration algorithms?

@ Obstacles for designing enumeration algorithms
@ Design techniques for enumeration algorithms

e Binary partition
o Combinatorial Gray code
o Reverse search

@ Hard enumeration problems

Refer to the (dirty) codes in C and Python written by Okamoto
www. jaist.ac.jp/ okamotoy/lect/2011/enumschool/
These codes are based on the algorithms in the lecture, but

not as efficient as promised there
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Problems for which determining duplicated outputs is hard

The unlabeled graphs enumeration problem

Input: n
Output: all unlabeled graphs with n vertices

@ Enough to determine if a newly found graph is isomorphic to
a graph that has already been found

however

@ ——— The graph isomorphism (Gl) problem is hard
(Unknown to be NP-complete, or poly-time solvable)

o therefore, pyitticult to design an efficient algorithm

Remarks
@ “The linear codes enumeration problem” is similar
@ For some classes of graphs, the Gl can be solved efficiently
For them, “canonical forms” are often employed,

which are also useful for enumeration
(c.f. Lecture of Prof. Nakano)
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Exercises

Exercises
Exercises are the most important

o Regretfully, there is little chance to think over algorithms by
oneself in undergrad classes

@ You should enjoy designing algorithm in the exercises

| \

Tips for exercises
@ Group work is recommended

@ Discuss an outline of a solution
@ Detail should be filled by yourself
@ Ask lecturers if something is unclear
@ Don't stick to one problem, but switch to another problem
(if you get stuck)
@ Don’t have to solve all problems
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