
Enumeration School September 28, 2011
Fundamentals & Basic Algorithms: Exercises Yoshio Okamoto

Legend: (∗) Recommended; (−) Easy; (+) Hard
Notice 1: You need to prove the correctness and the efficiency of algorithms.
Notice 2: For some of the problems, the problem poser doesn’t have complete solutions

Exercise 1 Consider the subset enumeration algorithm by binary partition given in the lecture, and modify
the algorithm so that it outputs the objects with difference output. Prove that this modification yields an
amortized constant-time delay algorithm.

Exercise 2 Prove Proposition 2 from the lecture (a rule to determine the next object in a Gray code for
subset enumeration).

Exercise 3 Prove Proposition 4 from the lecture (that the number of edges on the path from one output
to the next output passed by prepostorder traversal is constant).

Exercise 4 (∗−) Design an amortized polynomial-time delay algorithm to output all subsets of {1, . . . , n}
with even cardinality, when given a natural number n as input. Here “polynomial” means a polynomial in
n. If possible, design an amortized linear-time delay algorithm or a worst-case linear-time delay algorithm.

Exercise 5 Design an amortized polynomial-time delay algorithm to output all subsets of {1, . . . , n} that has
cardinality of multiples of q, when given two natural numbers n and q, q ≤ n, as input. Here “polynomial”
means a polynomial in n. If possible, design an amortized linear-time delay algorithm or a worst-case
linear-time delay algorithm.

Exercise 6 (∗) Design an amortized polynomial-time delay algorithm to output all subsets of {1, . . . , n}
that sum up to s, when given two natural numbers n and s as input. Here “polynomial” means a polynomial
in n and log2 s. If possible, design an amortized linear-time delay algorithm or a worst-case linear-time
algorithm. Note: for example, the sum of the elements of {3, 7, 8} is 3 + 7 + 8 = 18.

Exercise 7 Design an amortized polynomial-time delay algorithm to output all subsets of {1, . . . , n} in the
lexicographic order, when given a natural number n as input. Here “polynomial” means a polynomial in n.
If possible, design an amortized linear-time delay algorithm or a worst-case linear-time algorithm. Note: For
two subsets X,Y ⊆ {1, . . . , n}, we say that X is lexicographically smaller than Y if minX \ Y < minY \X.
For convenience, we set min ∅ = −∞.

Exercise 8 (∗) A permutation (a1, . . . , an) of the set {1, . . . , n} is a derangement if ai 6= i for all i ∈
{1, . . . , n}. Design an amortized polynomial-time delay algorithm to output all derangements of {1, . . . , n},
when given a natural number n. Here “polynomial” means a polynomial in n. If possible, design an amortized
linear-time delay algorithm or a worst-case linear-time algorithm.

Exercise 9 A permutation (a1, . . . , an) of the set {1, . . . , n} is alternating if it satisfies a1 > a2 < a3 >
a4 < · · · . Design an amortized polynomial-time delay algorithm to output all alternating permutations of
{1, . . . , n}, when given a natural number n. Here “polynomial” means a polynomial in n. If possible, design
an amortized linear-time delay algorithm or a worst-case linear-time algorithm.

Exercise 10 (∗) For natural numbers r1, . . . , rm and c1, . . . , cn, a 2-way contingency table with row sums
(r1, . . . , rm) and column sums (c1, . . . , cn) is an n ×m matrix A = (aij) with natural number entries such
that

∑n
j=1 aij = ri for all i ∈ {1, . . . ,m} and

∑m
i=1 aij = cj for all j ∈ {1, . . . , n}. Design an amortized

polynomial-time delay algorithm to output all 2-way contingency tables with row sums (r1, . . . , rm) and
column sums (c1, . . . , cn), when given r1, . . . , rm and c1, . . . , cn as input. Here “polynomial” means a poly-
nomial in

∑
i log2 ri+

∑
j log2 cj . If possible, design an amortized linear-time delay algorithm or a worst-case

linear-time algorithm. Hint: As a first step, consider how to find one contingency table. If you find a simple



construction, then you may try to construct an enumeration tree with this simple construction as a root,
and apply reverse search.

Exercise 11 Design an amortized polynomial-time delay algorithm to output all subsets of X that sum up
to even numbers, when given a finite set X ⊆ {1, . . . , n} as input. Here “polynomial” means a polynomial
in the size of X and log2 n. If possible, design an amortized linear-time delay algorithm or a worst-case
linear-time algorithm.

Exercise 12 A increasing subsequence of a permutation π = (a1, . . . , an) of the set {1, . . . , n} is a sub-
sequence (ai1 , ai2 , . . . , aik) of π such that ai1 < ai2 < · · · < aik . Design an amortized polynomial-time
delay algorithm to output all increasing subsequences of π, when given a permutation π of the set {1, . . . , n}
as input. Here “polynomial” means a polynomial in n. If possible, design an amortized linear-time delay
algorithm or a worst-case linear-time algorithm. Note: By defintion, an empty sequence and a sequence of
length one are also increasing subsequences.

Exercise 13 (You may need a familiarity with graph theory and graph algorithms.)
A clique in an undirected graph G = (V,E) is a vertex subset S ⊆ V of G such that every pair of two vertices
in S are joined by an edge. Design an amortized polynomial-time delay algorithm to output all cliques in
a given undirected graph. If possible, design an amortized linear-time delay algorithm or a worst-case
linear-time algorithm. Note: By definition, an empty set and a subset of size one are also cliques.

Exercise 14 (+) (You may need a familiarity with graph theory and graph algorithms.)
A spanning forest in an undirected graph G = (V,E) is a subgraph of G that is maximal with respect to
the property of containing no cycle. Design an amortized polynomial-time delay algorithm to output all
spanning forests in a given undirected graph. If possible, design an amortized linear-time delay algorithm
or a worst-case linear-time algorithm.

Exercise 15 (+) (You may need a familiarity with discrete geometry and computational geometry.)
For a finite point set P ⊆ R2 on the 2-dimensional plane, a subset S ⊆ P is linearly separable if there
exists a line ` ⊆ R2 such that all points in S lie on one side of ` and all points in P \ S lie on the other
side of `. Design an amortized polynomial-time delay algorithm to output all linearly separable subsets of a
given point set P , assuming that no three points in P lie on a single line. If possible, design an amortized
linear-time delay algorithm or a worst-case linear-time algorithm.

Exercise 16 (+) (You may need a familiarity with discrete geometry and computational geometry.)
For a finite point set P ⊆ R2 on the 2-dimensional plane, a subset S ⊆ P lies in convex position if there
exists a convex polygon with S as its vertex set. Design an amortized polynomial-time delay algorithm to
output all subsets of a given point set P that lie in convex position, assuming that no three points in P
lie on a single line. If possible, design an amortized linear-time delay algorithm or a worst-case linear-time
algorithm. Note: By definition, the empty set and a subset of size one are also in convex position.

2


