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Goal of this lecture

Background

A hyperplane arrangement has abundant information

Often, we’re interested in substructures of a hyperplane
arrangement

Envelopes and levels are examples of such structures

Goal of this lecture

Learn the relevant notions for envelopes and levels

Learn the connection with Voronoi diagrams
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Voronoi diagrams

Nearest neighbors

P = {p1, . . . , pn} ⊆ Rd a finite point set

Def.: Nearest neighbor

A nearest neighbor of a point q ∈ Rd in P is
a point p ∈ P such that

d(p, q) ≤ d(p′, q) ∀ p′ ∈ P
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Voronoi diagrams

Voronoi diagrams

P = {p1, . . . , pn} ⊆ Rd a finite point set, n ≥ 2

Def.: Voronoi diagram

The Voronoi diagram of P is a partition of Rd by the regions

vor(S) = {q ∈ Rd | S = the nearest neighbors of q in P}

for all S ⊆ P , |S | ≥ 1

Denote the Voronoi diagram of P by Vor(P)

Each non-empty vor(S) is called the Voronoi region of S
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Voronoi diagrams

Example: Voronoi diagrams
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Voronoi diagrams

Example: Voronoi diagrams
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Voronoi diagrams

Example: Voronoi diagrams
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Voronoi diagrams

Example: Voronoi diagrams
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Voronoi diagrams

Example: Voronoi diagrams
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Voronoi diagrams

Dimension of Voronoi regions

Def.: Dimension of a Voronoi region

The dimension of vor(S) is
the dimension of a minimal affine subspace containing vor(S)
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Voronoi diagrams

Special Voronoi regions

Voronoi regions have names according to their dimensions

Voronoi vertex: 0-dimensional Voronoi region

Voronoi edge: 1-dimensional Voronoi region

Voronoi ridge: d−2-dimensional Voronoi region

Voronoi facet: d−1-dimensional Voronoi region

Voronoi cell: d-dimensional Voronoi region
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Voronoi diagrams

The number of Voronoi cells

Question

How many Voronoi cells can there be in the Voronoi diagram of a set
of n points in Rd?

This determines the intrinsic difficulty of the problem of computing
the Voronoi diagram of a given point set

1
2

3

4

5

6

7

8

9

Y. Okamoto (JAIST) I631 (13) 2011-11-16 9 / 45



Voronoi diagrams

2-Nearest neighbors

P = {p1, . . . , pn} ⊆ Rd a finite point set

Def.: 2-Nearest neighbor

A 2-nearest neighbor of a point q ∈ Rd in P is
a point p ∈ P such that there exists a set X with |X | ≤ 1 and

d(p, q) ≤ d(p′, q) ∀ p′ ∈ P \ X
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Voronoi diagrams

Order-2 Voronoi diagrams

P = {p1, . . . , pn} ⊆ Rd a finite point set, n ≥ 3

Def.: Order-2 Voronoi diagram

The order-2 Voronoi diagram of P is a partition of Rd by the
regions

vor(2)(S) = {q ∈ Rd | S = the 2-nearest neighbors of q in P}

for all S ⊆ P , |S | ≥ 2

Denote the order-2 Voronoi diagram of P by Vor(2)(P)

Each non-empty vor(2)(S) is called the Voronoi region of S

Dimensions and special names are defined similarly
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Voronoi diagrams

Example: Order-2 Voronoi diagrams
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Voronoi diagrams

Example: Order-2 Voronoi diagrams
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Voronoi diagrams

Example: Order-2 Voronoi diagrams
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Voronoi diagrams

Example: Order-2 Voronoi diagrams
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Voronoi diagrams

Example: Order-2 Voronoi diagrams
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Voronoi diagrams

k-Nearest neighbors

P = {p1, . . . , pn} ⊆ Rd a finite point set

Def.: k-Nearest neighbor

A k-nearest neighbor of a point q ∈ Rd in P is
a point p ∈ P such that there exist a set X ⊆ P with |X | ≤ k−1 and

d(p, q) ≤ d(p′, q) ∀ p′ ∈ P \ X

Y. Okamoto (JAIST) I631 (13) 2011-11-16 13 / 45



Voronoi diagrams

Order-k Voronoi diagrams

P = {p1, . . . , pn} ⊆ Rd a finite point set, n ≥ k+1

Def.: Order-k Voronoi diagram

The order-k Voronoi diagram of P is a partition of Rd by the
regions

vor(k)(S) = {q ∈ Rd | S = the k-nearest neighbors of q in P}

for all S ⊆ P , |S | ≥ k

Denote the Voronoi diagram of P by Vor(k)(P)

Each non-empty vor(k)(S) is called the Voronoi region of S

Dimensions and special names are defined similarly

Y. Okamoto (JAIST) I631 (13) 2011-11-16 14 / 45



Voronoi diagrams

Example: Order-3 Voronoi diagrams
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Voronoi diagrams

Example: Farthest-point Voronoi diagrams
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The order-(n−1) Voronoi diagram is usually called
the farthest-point Voronoi diagram

Y. Okamoto (JAIST) I631 (13) 2011-11-16 16 / 45



Voronoi diagrams

The number of Voronoi cells in Vor(k)(P)

Question

How many can Voronoi cells there be in the order-k Voronoi diagram
of a set of n points in Rd?

This determines the intrinsic difficulty of the problem of computing
the order-k Voronoi diagram of a given point set
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Voronoi diagrams

The rest of today’s lecture

We will see

Voronoi diagrams and order-k Voronoi diagrams are closely related to
envelopes and levels of hyperplane arrangements

The rest of the lecture

Definition of envelopes and levels

Relationship with Voronoi diagrams
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Envelopes and levels

1 Voronoi diagrams

2 Envelopes and levels

3 Relationship with Voronoi diagrams

Y. Okamoto (JAIST) I631 (13) 2011-11-16 19 / 45



Envelopes and levels

Example: Levels of a hyperplane arrangement
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Envelopes and levels

Levels of a point in a hyperplane arrangement

A = {H1, . . . ,Hn} a hyperplane arrangement in Rd where
Hi = {x ∈ Rd | ai · x = bi}, ai ∈ Rd \ {0} (ai · ed > 0), bi ∈ R

Level of a point

The level of a point p ∈ Rd in A is
the number of hyperplanes in A below p;
Alternatively, the level of p is k if

k = |{i ∈ {1, . . . , n} | ai · p < bi}|
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Envelopes and levels

Levels of a point in a hyperplane arrangement

A = {H1, . . . ,Hn} a hyperplane arrangement in Rd where
Hi = {x ∈ Rd | ai · x = bi}, ai ∈ Rd \ {0} (ai · ed > 0), bi ∈ R

Observation

Every point in the same face in the arrangement has the same level
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Envelopes and levels

Levels of a hyperplane arrangement

A = {H1, . . . ,Hn} a hyperplane arrangement in Rd where
Hi = {x ∈ Rd | ai · x = bi}, ai ∈ Rd \ {0} (ai · ed > 0), bi ∈ R

Def.: Levels of a hyperplane arrangement

The k-level of A is the boundary of the set of all points of level at
most k
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Envelopes and levels

Lower envelope of a hyperplane arrangement

A = {H1, . . . ,Hn} a hyperplane arrangement in Rd where
Hi = {x ∈ Rd | ai · x = bi}, ai ∈ Rd \ {0} (ai · ed > 0), bi ∈ R

Def.: Lower envelope of a hyperplane arrangement

The lower envelope of A is the 0-level of A
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Envelopes and levels

Upper envelope of a hyperplane arrangement

A = {H1, . . . ,Hn} a hyperplane arrangement in Rd where
Hi = {x ∈ Rd | ai · x = bi}, ai ∈ Rd \ {0} (ai · ed > 0), bi ∈ R

Def.: Upper envelope of a hyperplane arrangement

The upper envelope of A is the (n−1)-level of A
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Envelopes and levels

Structures of levels

The k-level of a hyperplane arrangement is a collection of polyhedra

They are faces of the hyperplane arrangements

In particular, they are convex
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Relationship with Voronoi diagrams

1 Voronoi diagrams

2 Envelopes and levels

3 Relationship with Voronoi diagrams
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Relationship with Voronoi diagrams

Unit paraboloids

Define the unit paraboloid in Rd+1 as

U = {x ∈ Rd+1 | xd+1 = x21 + x22 + · · ·+ x2d}

http://en.wikipedia.org/wiki/Paraboloid
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Relationship with Voronoi diagrams

Lifting up a point set to the unit paraboloid

For p ∈ Rd , let u(p) = (p, p21 + p22 + · · ·+ p2d) ∈ Rd+1

p

u(p)
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Relationship with Voronoi diagrams

Tangent hyperplanes

The hyperplane H(p) = {x ∈ Rd+1 | xd+1 =
d∑

i=1

(2pixi − p2i )} is

tangent to U at u(p) (Exercise)

p

u(p)
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Relationship with Voronoi diagrams

Relationship with distances

Observation

For points p, q ∈ Rd ,
the vertical distance from q to H(p) is d(p, q)2

d

d2

p

u(p)

q

u(q)
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Relationship with Voronoi diagrams

Proof of the observation

d(p, q)2 =
d∑

i=1

(pi − qi)
2

The vertical distance from q to H(p) is

= u(q)−
d∑

i=1

(2piqi − p2i )

=
d∑

i=1

q2
i −

d∑
i=1

(2piqi − p2i )

=
d∑

i=1

(q2
i − 2piqi + p2i ) =

d∑
i=1

(pi − qi)
2

These two are equal
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Relationship with Voronoi diagrams

Comparing distances
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Relationship with Voronoi diagrams

Comparing distances

p3
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Relationship with Voronoi diagrams

Relationship with Voronoi diagrams

Proposition

The Voronoi diagram of P is the projection of the upper envelope of
the hyperplane arrangement {H(p) | p ∈ P} to the hyperplane
{x ∈ Rd+1 | xd+1 = 0}
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Relationship with Voronoi diagrams

Relationship with farthest-point Voronoi diagrams

Proposition

The farthest-point Voronoi diagram of P is the projection of the
lower envelope of the hyperplane arrangement {H(p) | p ∈ P} to the
hyperplane {x ∈ Rd+1 | xd+1 = 0}
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Relationship with Voronoi diagrams

Relationship with order-2 Voronoi diagrams

Fact

The order-2 Voronoi diagram of P is the projection of the part of the
hyperplane arrangement {H(p) | p ∈ P} between the (n−2)-level
and the (n−3)-level to the hyperplane {x ∈ Rd+1 | xd+1 = 0}
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Relationship with Voronoi diagrams

Relationship with order-k Voronoi diagrams

Fact

The order-k Voronoi diagram of P is the projection of the part of the
hyperplane arrangement {H(p) | p ∈ P} between the (n−k)-level
and the (n−k−1)-level to the hyperplane {x ∈ Rd+1 | xd+1 = 0}
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Relationship with Voronoi diagrams

The number of Voronoi cells in Voronoi diagrams

Consequence

The Voronoi diagram of a set of n points in Rd has

at most n Voronoi cells

at most O(ndd/2e) vertices

This is a consequence of the facts that

The upper envelope is the boundary of a polyhedron with at
most n facets

The number of vertices of a d-dim polytope with n facets is
O(nbd/2c) (Upper bound theorem)
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Relationship with Voronoi diagrams

The number of Voronoi cells in farthest-point Voronoi diagrams

Consequence

The farthest-point Voronoi diagram of a set of n points in Rd has

at most n Voronoi cells

at most O(ndd/2e) vertices

This is a consequence of the facts that

The lower envelope is the boundary of a polyhedron with at
most n facets

The number of vertices of a d-dim polytope with n facets is
O(nbd/2c) (Upper bound theorem)
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Relationship with Voronoi diagrams

Convexity of Voronoi regions

Consequence

Every Voronoi region of the order-k Voronoi diagram of a point set in
Rd is convex

This is a consequence of the facts that

Each face of the hyperplane arrangement is convex

The projection of a convex set is convex (Exercise)
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Summary

Voronoi diagrams

Def.: A partition of Rd with respect to the distances to a given
point set

Terms: Voronoi regions, Voronoi cells, ...

Levels and Envelopes

Level of a point: the number of hyperplanes below the point

k-Level: the boundary of the set of points with level at most k

Lower envelope: 0-level

Upper envelope: (n−1)-level

Connection to Voronoi diagrams: Lift up to the unit paraboloid, and
consider the hyperplane arrangement induced by tangents
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A remark

Fact (Lee ’82)

The order-k Voronoi diagram of a set of n points in R2 has
O(k(n − k)) Voronoi cells; This bound is tight

Not much is known for the number of Voronoi cells in the order-k
Voronoi diagrams when d ≥ 3
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Next lecture

Even in R2, determining the maximum number of edges in the
k-level of a line arrangement is a difficult problem

We’ll look at an argument that gives some upper bound
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Further reading

Matoušek: Lectures on Discrete Geometry

4, 5, 11

Edelsbrunner: Algorithms in Combinatorial Geometry

Chapters 1, 13
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