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Goal of this lecture

Background

A hyperplane arrangement is another central concept in discrete
and computational geometry (and also in other fields of
mathematics)

It has a close relationship with other objects as finite point sets
and polytopes

Goal of this lecture

Learn the relevant notions for hyperplane arrangements

Learn connections with finite point sets via duality
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Hyperplane arrangements

Hyperplane arrangements

d ≥ 1 a natural number

Def.: Hyperplane arrangement

A hyperplane arrangement is a finite set A = {H1, . . . ,Hn} of
hyperplanes in Rd ;

Hi = {x ∈ Rd | ai · x = bi}

for some ai ∈ Rd \ {0} and bi ∈ R
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Hyperplane arrangements

Assigning a sign vector to a point

A = {H1, . . . ,Hn} a hyperplane arrangement,
Hi = {x ∈ Rd | ai · x = bi}
To a point z ∈ Rd , assign the sign vector σ(z) ∈ {+,−, 0}n:

σ(z)i =


+ if ai · z > bi ,

0 if ai · z = bi ,

− if ai · z < bi

for all i ∈ {1, . . . , n}
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Hyperplane arrangements

Faces of a hyperplane arrangement

A = {H1, . . . ,Hn} a hyperplane arrangement

Def.: Face

A face of A is a set defined as

{z ∈ Rd | σ(z) = s}

for some sign vector s ∈ {+,−, 0}n
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Hyperplane arrangements

Dimension of a face

Dimension

The dimension of a face F of a hyperplane arrangement is the
dimension of a minimal affine subspace containing F
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dim = 0
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Hyperplane arrangements

Vertices, edges, ridges, facets, cells

A face has a name according to its dimension

Vertex: 0-dimensional face

Edge: 1-dimensional face

Ridge: d−2-dimensional face

Facet: d−1-dimensional face

Cell: d-dimensional face

A face (more precisely, the closure of a face) is a polyhedron

A cell is sometimes called a region or a chamber
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Hyperplane arrangements

Examples: Vertices

This arrangement has seven vertices

Among them, ten are bounded and ten are unbounded
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Hyperplane arrangements

Examples: Edges

This arrangement has twenty edges;
Among them, ten are bounded and ten are unbounded

H1

H3H2 H4

H5

O

Edges are also facets in this arrangement
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Hyperplane arrangements

Examples: Cells

This arrangement has fourteen cells;
Among them, four are bounded and ten are unbounded
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Hyperplane arrangements

Simple arrangements

Simple arrangement

A hyperplane arrangement A in Rd is simple if
the intersection of k hyperplanes in A is of dimension d − k
for all k ∈ {2, 3, . . . , d + 1}

In R2, the condition says

The intersection of any two lines is a point, and

The intersection of any three lines is empty

H1

H3H2 H4

H5

O

H1

H3H2 H4

H5

O

Y. Okamoto (JAIST) I631 (11) 2011-11-14 12 / 30



Hyperplane arrangements

Simple arrangements in R3

In R3, the condition says

The intersection of any two planes is a line,

The intersection of any three planes is a point, and

The intersection of any four planes is empty
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Hyperplane arrangements

The number of cells in simple hyperplane arrangements

Proposition

The # of cells of a simple arrangement of n hyperplanes in Rd is

Φd(n) =
d∑

i=0

(
n

i

)
Proof: by induction on n + d
Base case: n + d = 1, 2 (then n = 0 or (n, d) = (1, 1))

When n = 0: The # of cells = 1

When n = 0: Φd(n) = Φd(0) =
∑d

i=0

(
0
i

)
= 1

When (n, d) = (1, 1): The # of cells = 2

When (n, d) = (1, 1): Φd(n) = Φ1(1) =
(
1
0

)
+
(
1
1

)
= 1 + 1 = 2
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Hyperplane arrangements

Proof continued

Induction step: Assume the statement holds for all n′ + d ′ < n + d

Consider adding one hyperplane to the arrangement of n−1
hyperplanes in Rd

Addition partitions several cells into two cells

# partitioned cells = Φd−1(n − 1) (by simplicity)

Hence
Φd(n) = Φd(n − 1) + Φd−1(n − 1)

This recurrence has a unique solution, and
∑d

i=0

(
n
i

)
satisfies the

recurrence (exercise)
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Duality

Point–hyperplane duality

For a hyperplane H = {x ∈ Rd | a · x = 1} where a ∈ Rd \ {0}
its dual is a point

D(H) = a ∈ Rd

For a point p ∈ Rd \ {0}
its dual is a hyperplane

D(p) = {x ∈ Rd | p · x = 1}

p

q

H D(H)
D(q)

D(p)
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Duality

Incidence is preserved under duality

For a hyperplane H = {x ∈ Rd | a · x = 1},
let H− = {x ∈ Rd | a · x ≤ 1}
Proposition

For a point p ∈ Rd \ {0} and
a hyperplane H = {x ∈ Rd | a · x = 1} with a ∈ Rd \ {0}

1 p ∈ H ⇔ D(p) 3 D(H)

2 p ∈ H− ⇔ D(p)− 3 D(H)

p

q

H1

D(H1)

D(q)

D(p)

r

H2

D(r)

D(H2)
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Duality

Proof of Proposition

Proposition

For a point p ∈ Rd \ {0} and
a hyperplane H = {x ∈ Rd | a · x = 1} with a ∈ Rd \ {0}

1 p ∈ H ⇔ D(p) 3 D(H)

2 p ∈ H− ⇔ D(p)− 3 D(H)

Proof of (1): (Proof of (2) is left as an exercise)

p ∈ H ⇔ a · p = 1

D(p) = {x ∈ Rd | p · x = 1}
D(H) = a

D(p) 3 D(H) ⇔ p · a = 1
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Duality

The (one-way) correspondence of a signed covector and a face

P = {p1, . . . , pn} ⊆ Rd \ {0} a set of n points

Fact

The arrangement A = {D(pi) | i ∈ {1, . . . , n}} has a face
with a sign vector s ∈ {+,−, 0}n
⇒ s ∈ {+,−, 0}n is a signed covector of P

p1

p2

D(p2)
D(p1)

p3 D(p3)

p4

D(p4)

−−++
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Duality

The converse doesn’t hold

p1

p2

D(p2)
D(p1)

p3 D(p3)

p4

D(p4)
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Duality

The (two-way) correspondence of a signed covector and a face

P = {p1, . . . , pn} ⊆ Rd \ {0} a set of n points

Fact

The arrangement A = {D(pi) | i ∈ {1, . . . , n}} has a face
with a sign vector s ∈ {+,−, 0}n
⇔ ±s ∈ {+,−, 0}n \ {0} are signed covectors of P

p1

p2

D(p2)
D(p1)

p3 D(p3)

p4

D(p4)
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Signed covectors and signed cocircuits
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Signed covectors and signed cocircuits

Goal of this section

The facts above propose definitions of signed covectors and
signed cocircuits of a hyperplane arrangement

They encode combinatorial structures of a hyperplane
arrangement
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Signed covectors and signed cocircuits

Signed covectors of a hyperplane arrangement

A = {H1, . . . ,Hn} a hyperplane arrangement in Rd

Hi = {x ∈ Rd | ai · x = bi} where ai ∈ Rd and bi ∈ R

Signed covectors

The signed covectors of A are the vectors in {+,−, 0}n defined as

V∗(A) = {±(sgn(a1 · x − b1), . . . , sgn(an · x − bn)) | x ∈ Rd} ∪ {0}

Each non-zero signed covector corresponds to a face

H1

H3H2 H4

H5

O

++00−

−0−++

++++−

Y. Okamoto (JAIST) I631 (11) 2011-11-14 25 / 30



Signed covectors and signed cocircuits

Signed cocircuits of a hyperplane arrangement

A = {H1, . . . ,Hn} a hyperplane arrangement in Rd

Hi = {x ∈ Rd | ai · x = bi} where ai ∈ Rd and bi ∈ R

Signed cocircuits

The signed cocircuits of A are the minimal elements in V∗(A)\{0};
The set of signed cocircuits of A is denoted by C∗(A)

Each signed cocircuit corresponds to a face of minimum dimension
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Signed covectors and signed cocircuits

Duality and signed covectors and cocircuits

P = {p1, . . . , pn} ⊆ Rd \ {0}
Fact

Let A be the arrangement of n hyperplanes H1, . . . ,Hn,
where Hi = D(pi)

V∗(P) = V∗(A), C∗(P) = C∗(A)

A = {H1, . . . ,Hn} a hyperplane arrangement in Rd ,
where Hi = {x ∈ Rd | ai · x = 1} for ai ∈ Rd \ {0}
Fact

Let P ⊆ Rd be a set of n points D(H1), . . . ,D(Hn)

V∗(A) = V∗(P), C∗(A) = C∗(P)
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Summary

Hyperplane arrangements

Def.: a finite set of hyperplanes in Rd

Concepts: faces, cells, signed covectors, signed cocircuits

# cells in a simple arrangement of n hyperplanes in Rd

= O(nd) (d constant)

Duality

A point p 6= 0 7→ a hyperplane {x | p · x = 1}
A hyperplane {x | a · x = 1} with a 6= 0 7→ a point a
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Further reading

Matoušek: Lectures on Discrete Geometry

Chapters 5, 6

Ziegler: Lectures on Polytopes

Lecture 7

Edelsbrunner: Algorithms in Combinatorial Geometry

Chapters 1, 7
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