I631: Foundation of Computational Geometry (11) Hyperplane Arrangements I

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

November 14, 2011

"Last updated: 2011/11/14 11:47"

Background

- A hyperplane arrangement is another central concept in discrete and computational geometry (and also in other fields of mathematics)
- It has a close relationship with other objects as finite point sets and polytopes

Goal of this lecture

- Learn the relevant notions for hyperplane arrangements
- Learn connections with finite point sets via duality

Duality

3 Signed covectors and signed cocircuits

 $d \geq 1$ a natural number

Def.: Hyperplane arrangement

A hyperplane arrangement is a finite set $\mathcal{A} = \{H_1, \ldots, H_n\}$ of hyperplanes in \mathbb{R}^d ;

$$H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\}$$

for some $a_i \in \mathbb{R}^d \setminus \{0\}$ and $b_i \in \mathbb{R}$

Assigning a sign vector to a point

$$\sigma(z)_i = \begin{cases} + & \text{if } a_i \cdot z > b_i, \\ 0 & \text{if } a_i \cdot z = b_i, \\ - & \text{if } a_i \cdot z < b_i \end{cases} \text{ for all } i \in \{1, \dots, n\}$$

Faces of a hyperplane arrangement

 $\mathcal{A} = \{H_1, \dots, H_n\}$ a hyperplane arrangement

Def.: Face

A face of \mathcal{A} is a set defined as

$$\{z \in \mathbb{R}^d \mid \sigma(z) = s\}$$

for some sign vector $s \in \{+, -, 0\}^n$

Dimension of a face

Dimension

The **dimension** of a face F of a hyperplane arrangement is the dimension of a minimal affine subspace containing F

Hyperplane arrangements Vertices, edges, ridges, facets, cells

A face has a name according to its dimension

- Vertex: 0-dimensional face
- Edge: 1-dimensional face
- **Ridge**: d-2-dimensional face
- Facet: *d*−1-dimensional face
- Cell: *d*-dimensional face
- A face (more precisely, the closure of a face) is a polyhedron
- A cell is sometimes called a *region* or a *chamber*

Examples: Vertices

This arrangement has seven vertices

Examples: Edges

This arrangement has twenty edges; Among them, ten are bounded and ten are unbounded

Edges are also facets in this arrangement

Examples: Cells

This arrangement has fourteen cells; Among them, four are bounded and ten are unbounded

Simple arrangements

Simple arrangement

A hyperplane arrangement \mathcal{A} in \mathbb{R}^d is simple if the intersection of k hyperplanes in \mathcal{A} is of dimension d - kfor all $k \in \{2, 3, \dots, d + 1\}$

In \mathbb{R}^2 , the condition says

- The intersection of any two lines is a point, and
- The intersection of any three lines is empty

Hyperplane arrangements in \mathbb{R}^3

In \mathbb{R}^3 , the condition says

- The intersection of any two planes is a line,
- The intersection of any three planes is a point, and
- The intersection of any four planes is empty

The number of cells in simple hyperplane arrangements

Proposition

The # of cells of a simple arrangement of n hyperplanes in \mathbb{R}^d is

$$\Phi_d(n) = \sum_{i=0}^d \binom{n}{i}$$

Proof: by induction on n + dBase case: n + d = 1, 2 (then n = 0 or (n, d) = (1, 1)) When n = 0: The # of cells = 1

• When
$$n = 0$$
: $\Phi_d(n) = \Phi_d(0) = \sum_{i=0}^d {0 \choose i} = 1$

• When
$$(n, d) = (1, 1)$$
: The $\#$ of cells = 2

• When (n, d) = (1, 1): $\Phi_d(n) = \Phi_1(1) = \binom{1}{0} + \binom{1}{1} = 1 + 1 = 2$

Proof continued

Induction step: Assume the statement holds for all n' + d' < n + d

- \blacksquare Consider adding one hyperplane to the arrangement of $n{-}1$ hyperplanes in \mathbb{R}^d
- Addition partitions several cells into two cells

• # partitioned cells =
$$\Phi_{d-1}(n-1)$$
 (by simplicity)

Hence

$$\Phi_d(n) = \Phi_d(n-1) + \Phi_{d-1}(n-1)$$

■ This recurrence has a unique solution, and ∑^d_{i=0} (ⁿ_i) satisfies the recurrence (exercise)

Ouality

Signed covectors and signed cocircuits

Point-hyperplane duality

For a hyperplane $H = \{x \in \mathbb{R}^d \mid a \cdot x = 1\}$ where $a \in \mathbb{R}^d \setminus \{0\}$ its dual is a point

$$\mathcal{D}(H) = a \in \mathbb{R}^d$$

■ For a point p ∈ ℝ^d \ {0} its dual is a hyperplane

Incidence is preserved under duality

For a hyperplane
$$H = \{x \in \mathbb{R}^d \mid a \cdot x = 1\}$$
,
let $H^- = \{x \in \mathbb{R}^d \mid a \cdot x \le 1\}$

Proposition

For a point
$$p\in \mathbb{R}^d\setminus\{0\}$$
 and
a hyperplane $H=\{x\in \mathbb{R}^d\mid a\cdot x=1\}$ with $a\in \mathbb{R}^d\setminus\{0\}$

1
$$p \in H \Leftrightarrow \mathcal{D}(p) \ni \mathcal{D}(H)$$

2 $p \in H^- \Leftrightarrow \mathcal{D}(p)^- \ni \mathcal{D}(H)$

Proof of Proposition

Proposition

For a point
$$p \in \mathbb{R}^d \setminus \{0\}$$
 and
a hyperplane $H = \{x \in \mathbb{R}^d \mid a \cdot x = 1\}$ with $a \in \mathbb{R}^d \setminus \{0\}$
1 $p \in H \Leftrightarrow \mathcal{D}(p) \ni \mathcal{D}(H)$
2 $p \in H^- \Leftrightarrow \mathcal{D}(p)^- \ni \mathcal{D}(H)$

Proof of (1): (Proof of (2) is left as an exercise)

$$\bullet \ p \in H \Leftrightarrow a \cdot p = 1$$

$$\square \mathcal{D}(p) = \{x \in \mathbb{R}^d \mid p \cdot x = 1\}$$

•
$$\mathcal{D}(H) = a$$

$$\blacksquare \ \mathcal{D}(p) \ni \mathcal{D}(H) \Leftrightarrow p \cdot a = 1$$

The (one-way) correspondence of a signed covector and a face

$$P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d \setminus \{0\}$$
 a set of n points

Fact

The arrangement
$$\mathcal{A} = \{\mathcal{D}(p_i) \mid i \in \{1, ..., n\}\}$$
 has a face
with a sign vector $s \in \{+, -, 0\}^n$
 $\Rightarrow s \in \{+, -, 0\}^n$ is a signed covector of P

The converse doesn't hold

The (two-way) correspondence of a signed covector and a face

$${\mathcal P}=\{{\mathcal p}_1,\ldots,{\mathcal p}_n\}\subseteq {\mathbb R}^d\setminus\{0\}$$
 a set of n points

Fact

The arrangement
$$\mathcal{A} = \{\mathcal{D}(p_i) \mid i \in \{1, ..., n\}\}$$
 has a face with a sign vector $s \in \{+, -, 0\}^n$
 $\Leftrightarrow \pm s \in \{+, -, 0\}^n \setminus \{0\}$ are signed covectors of P

2 Duality

3 Signed covectors and signed cocircuits

Goal of this section

- The facts above propose definitions of signed covectors and signed cocircuits of a hyperplane arrangement
- They encode combinatorial structures of a hyperplane arrangement

Signed covectors and signed cocircuits

Signed covectors of a hyperplane arrangement

 $\mathcal{A} = \{H_1, \dots, H_n\} \text{ a hyperplane arrangement in } \mathbb{R}^d$ $H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\} \text{ where } a_i \in \mathbb{R}^d \text{ and } b_i \in \mathbb{R}$

Signed covectors

The signed covectors of A are the vectors in $\{+, -, 0\}^n$ defined as

$$\mathcal{V}^*(\mathcal{A}) = \{\pm(\operatorname{sgn}(a_1 \cdot x - b_1), \dots, \operatorname{sgn}(a_n \cdot x - b_n)) \mid x \in \mathbb{R}^d\} \cup \{0\}$$

Each non-zero signed covector corresponds to a face

Signed covectors and signed cocircuits

Signed cocircuits of a hyperplane arrangement

 $\mathcal{A} = \{H_1, \dots, H_n\} \text{ a hyperplane arrangement in } \mathbb{R}^d$ $H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\} \text{ where } a_i \in \mathbb{R}^d \text{ and } b_i \in \mathbb{R}$

Signed cocircuits

The signed cocircuits of \mathcal{A} are the minimal elements in $\mathcal{V}^*(\mathcal{A})\setminus\{0\}$; The set of signed cocircuits of \mathcal{A} is denoted by $\mathcal{C}^*(\mathcal{A})$

Each signed cocircuit corresponds to a face of minimum dimension

Signed covectors and signed cocircuits

Duality and signed covectors and cocircuits

$$P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d \setminus \{0\}$$

Fact

Let \mathcal{A} be the arrangement of n hyperplanes H_1, \ldots, H_n , where $H_i = \mathcal{D}(p_i)$

$$\mathcal{V}^*(P) = \mathcal{V}^*(\mathcal{A}), \qquad \mathcal{C}^*(P) = \mathcal{C}^*(\mathcal{A})$$

 $\mathcal{A} = \{H_1, \dots, H_n\}$ a hyperplane arrangement in \mathbb{R}^d , where $H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = 1\}$ for $a_i \in \mathbb{R}^d \setminus \{0\}$

Fact

Let
$$P \subseteq \mathbb{R}^d$$
 be a set of *n* points $\mathcal{D}(H_1), \ldots, \mathcal{D}(H_n)$

$$\mathcal{V}^*(\mathcal{A}) = \mathcal{V}^*(\mathcal{P}), \qquad \mathcal{C}^*(\mathcal{A}) = \mathcal{C}^*(\mathcal{P})$$

- **Def.**: a finite set of hyperplanes in \mathbb{R}^d
- Concepts: faces, cells, signed covectors, signed cocircuits
- # cells in a simple arrangement of *n* hyperplanes in \mathbb{R}^d = $O(n^d)$ (*d* constant)

Duality

- A point $p \neq 0 \mapsto$ a hyperplane $\{x \mid p \cdot x = 1\}$
- A hyperplane $\{x \mid a \cdot x = 1\}$ with $a \neq 0 \mapsto a$ point a

Further reading

- Matoušek: Lectures on Discrete Geometry
 - Chapters 5, 6
- Ziegler: *Lectures on Polytopes*
 - Lecture 7
- Edelsbrunner: *Algorithms in Combinatorial Geometry*
 - Chapters 1, 7

Duality

3 Signed covectors and signed cocircuits