1631: Foundation of Computational Geometry(9) Polytopes I

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

November 7, 2011

"Last updated: 2011/11/07 8:39"

Background

- Convex polygons are basic objects in computational geometry
- Convex polytopes are analogues of convex polygons in high dimensions

Goal of this lecture

- Learn the relevant notions for convex polytopes
- Acquaint yourself with some intuitions for convex polytopes

Polytopes

2 Examples

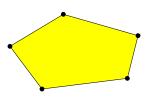
6 Faces

4 Face lattices

V-polytopes

V-polytopes

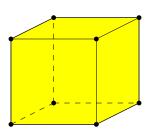
A set $P \subseteq \mathbb{R}^d$ is a **V-polytope** if P is the convex hull of some finite point set



V-polytopes: Another example

V-polytopes

A set $P \subseteq \mathbb{R}^d$ is a **V-polytope** if P is the convex hull of some finite point set



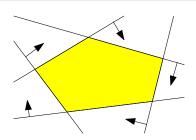
Y. Okamoto (JAIST) I631 (9) 2011-11-07 5 / 54

H-polytopes

H-polytopes

A set $P \subseteq \mathbb{R}^d$ is an **H-polytope** if

P is the intersection of a finite number of halfspaces, and bounded

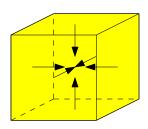


H-polytopes: Another example

H-polytopes

A set $P \subseteq \mathbb{R}^d$ is an **H-polytope** if

P is the intersection of a finite number of halfspaces, and bounded

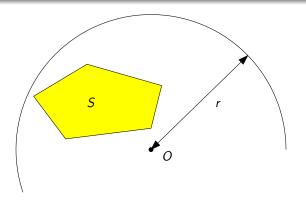


1631 (9) 2011-11-07

Boundedness (reminder)

A set $S \subseteq \mathbb{R}^d$ is **bounded** if \exists a real number $r \in \mathbb{R}$ such that

$$||x||_2 \le r$$
 for all $x \in S$

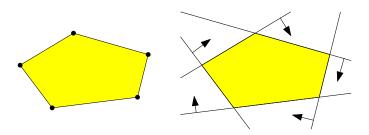


Y. Okamoto (JAIST) 1631 (9) 2011-11-07 8 / 54

Equivalence of V-polytopes and H-polytopes

Facts

- Every V-polytope is an H-polytope
 - If *P* is a V-polytope, then there exists a finite number of halfspaces such that *P* is their intersection
- Every H-polytope is a V-polytope
 - If *P* is an H-polytope, then there exists a finite point set such that *P* is its convex hull



Polytopes

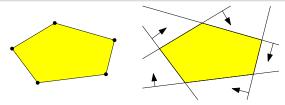
Def.: Polytopes

A **polytope** is a V-polytope or an H-polytope

V-representation and H-representation

P a polytope

- A V-representation of P is the description of P as the convex hull of a finite point set
- An **H-representation** of *P* is the description of *P* as the intersection of a finite number of halfspaces



Remark: H-polyhedra

H-polyhedra

A set $P \subseteq \mathbb{R}^d$ is an **H-polyhedron** if P is the intersection of a finite number of halfspaces

Namely, an H-polyhedron can be unbounded

Y. Okamoto (JAIST) 1631 (9) 2011-11-07 11 / 54

Dimension of an affine subspace

- To define the dimension of a polytope, we first define the dimension of an affine subspace
- Let S be an affine subspace of \mathbb{R}^d defined by

$$\{x \in \mathbb{R}^d \mid Ax = Ab'\}$$

for some natural number $k \leq d$, $A \in \mathbb{R}^{k \times d}$ and $b' \in \mathbb{R}^d$

Dimension of an affine subspace

S is r-dimensional if the linear subspace $\{x \in \mathbb{R}^d \mid Ax = 0\}$ of \mathbb{R}^d is r-dimensional; Denote by $\dim(S) = r$

Y. Okamoto (JAIST) 1631 (9) 2011-11-07 12 / 54

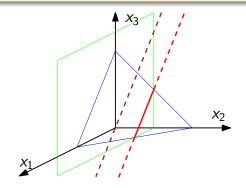
Dimension of an affine subspace: Example

$$S = \{x \in \mathbb{R}^d \mid Ax = Ab'\}$$
 for some $k \leq d$, $A \in \mathbb{R}^{k \times d}$ and $b' \in \mathbb{R}^d$

Dimension of an affine subspace

S is *r*-dimensional if

the linear subspace $\{x \in \mathbb{R}^d \mid Ax = 0\}$ of \mathbb{R}^d is r-dimensional



The dimension of a red line is 1

Y. Okamoto (JAIST) 1631 (9) 2011-11-07 13 / 54

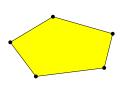
Dimension of a polytope

 $P \subseteq \mathbb{R}^d$ a polytope

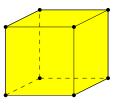
Dimension of a polytope

$$\dim(P) = \dim(\bigcap_{S \text{ affine: } S \supseteq P} S)$$

Namely, *P* is *r*-dimensional if the minimal affine subspace containing *P* is *r*-dimensional



$$dim(P) = 2$$



$$dim(P) = 3$$

Polytopes

2 Examples

6 Faces

4 Face lattices

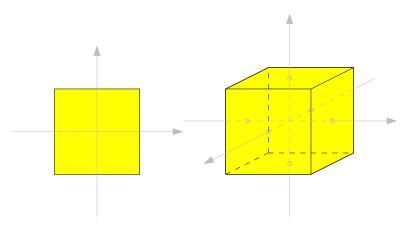
Closed intervals

A closed interval $I = [a, b] \subseteq \mathbb{R}$ is a polytope $(a \le b)$

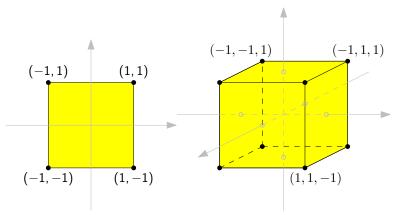
- V-representation: $I = conv(\{a, b\})$
- H-representation: $I = \{x \in \mathbb{R} \mid x \geq a, x \leq b\}$

$$dim(I) = \begin{cases} 1 & \text{if } a < b, \\ 0 & \text{if } a = b \end{cases}$$

A *d*-dimensional cube C_d is $[-1,1]^d$



A *d*-dimensional cube C_d is $[-1,1]^d$



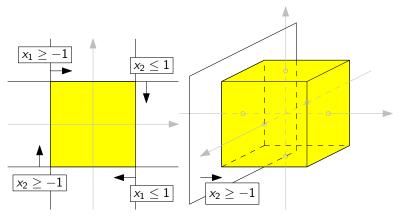
V-representation:

$$C_d = \text{conv}(\{x \in \mathbb{R}^d \mid x_i \in \{-1, 1\} \text{ for all } i \in \{1, \dots, d\}\})$$

Y. Okamoto (JAIST) 1631 (9) 2011-11-07 18 / 54

Cubes: H-representations

A *d*-dimensional cube C_d is $[-1,1]^d$



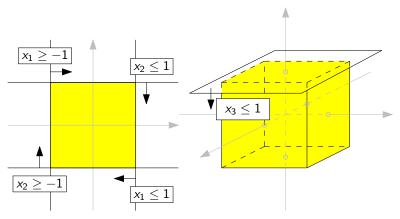
H-representation:

$$C_d = \{x \in \mathbb{R}^d \mid -1 \le x_i \le 1 \text{ for all } i \in \{1, \dots, d\}\}$$

Y. Okamoto (JAIST) I631 (9) 2011-11-07 19 / 54

Cubes: H-representations

A *d*-dimensional cube C_d is $[-1,1]^d$



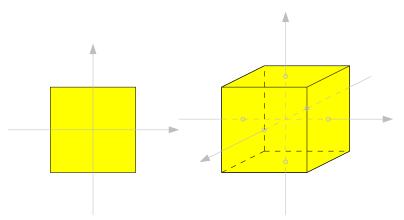
H-representation:

$$C_d = \{x \in \mathbb{R}^d \mid -1 \le x_i \le 1 \text{ for all } i \in \{1, \dots, d\}\}$$

Y. Okamoto (JAIST) I631 (9) 2011-11-07 19 / 54

Cubes: Dimensions

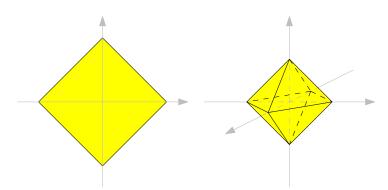
A *d*-dimensional cube C_d is $[-1,1]^d$



Dimension:

$$\dim(C_d) = d$$

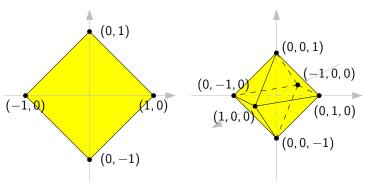
A *d*-dimensional crosspolytope C_d^* is $\left\{x \in \mathbb{R}^d \mid \sum_{i=1}^d |x_i| \leq 1 \right\}$



Y. Okamoto (JAIST) 1631 (9) 2011-11-07 21 / 54

Crosspolytopes: V-representations

A *d*-dimensional crosspolytope C_d^* is $\left\{x \in \mathbb{R}^d \mid \sum_{i=1}^a |x_i| \leq 1\right\}$



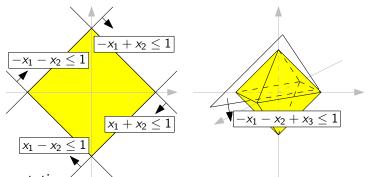
V-representation: If e_i denotes the *i*th standard basis vector

$$C_d^* = \operatorname{conv}(\{e_i \mid i \in \{1, \dots, d\}\}) \cup \{-e_i \mid i \in \{1, \dots, d\}\})$$

Y. Okamoto (JAIST) 1631 (9) 2011-11-07 22 / 54

Crosspolytopes: H-representations

A *d*-dimensional crosspolytope C_d^* is $\left\{x \in \mathbb{R}^d \mid \sum_{i=1}^a |x_i| \leq 1\right\}$

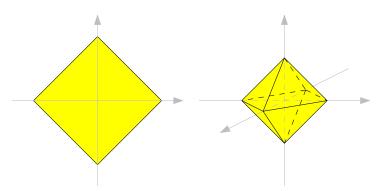


H-representation:

$$C_d^* = \left\{x \in \mathbb{R}^d \mid \sum_{i=1}^d s_i x_i \leq 1, s_i \in \{-1,1\} ext{ for all } i \in \{1,\ldots,d\}
ight\}$$

Crosspolytopes: Dimension

A *d*-dimensional crosspolytope C_d^* is $\left\{x \in \mathbb{R}^d \mid \sum_{i=1}^d |x_i| \leq 1\right\}$



Dimension:

$$\dim(C_d^*) = d$$

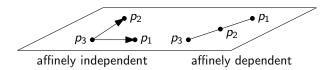
1631 (9) 2011-11-07 24 / 54

Affine independence

To define a simplex, we first define affine independence

Affine independence

A set $P = \{p_1, p_2, \dots, p_n\} \subseteq \mathbb{R}^d$ of points is **affinely independent** if the vectors $p_1 - p_n, p_2 - p_n, \dots, p_{n-1} - p_n$ are linearly independent



Property (Exercise)

 $P \subseteq \mathbb{R}^d$ is affinely independent $\Rightarrow |P| < d+1$

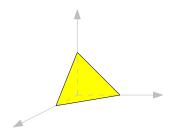
Y. Okamoto (JAIST) 1631 (9) 2011-11-07 25 / 54

Simplex

A *d*-dimensional simplex is the convex hull of a set of d+1 affinely independent points

A d-dimensional regular simplex

$$\Delta_d = \operatorname{conv}(\{e_i \in \mathbb{R}^{d+1} \mid i \in \{1, \dots, d+1\}\})$$



Note: Δ_d lives in \mathbb{R}^{d+1} but dim $(\Delta_d) = d$

Y. Okamoto (JAIST) 1631 (9) 2011-11-07 27 / 54

Polytopes

2 Examples

§ Faces

4 Face lattices

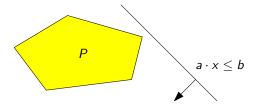
Valid inequalities

A **valid inequality** for a polytope $P \subseteq \mathbb{R}^d$ is an inequality

$$a \cdot x \leq b$$

for some $a \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that

$$\forall z \in P : a \cdot z \leq b$$



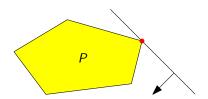
The halfspace $\{x \in \mathbb{R}^d \mid a \cdot x \leq b\}$ contains P (when $a \neq 0$)

Faces

A **face** of a polytope $P \subseteq \mathbb{R}^d$ is a set

$$P \cap \{x \mid a \cdot x = b\},\$$

where $a \cdot x \le b$ is a valid inequality for P

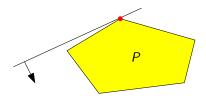


Faces

A **face** of a polytope $P \subseteq \mathbb{R}^d$ is a set

$$P \cap \{x \mid a \cdot x = b\},\$$

where $a \cdot x \le b$ is a valid inequality for P

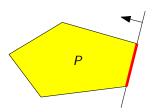


Faces

A face of a polytope $P \subseteq \mathbb{R}^d$ is a set

$$P \cap \{x \mid a \cdot x = b\},\$$

where $a \cdot x \le b$ is a valid inequality for P



Special faces

$P \subseteq \mathbb{R}^d$ any polytope

- P is a face of P
 - Let a = 0 and b = 0, then $\{x \mid a \cdot x = b\} = \mathbb{R}^d$, and so

$$P \cap \{x \mid a \cdot x = b\} = P \cap \mathbb{R}^d = P$$

- \blacksquare \emptyset is a face of P
 - Let a = 0 and b = 1, then $\{x \mid a \cdot x = b\} = \emptyset$, and so

$$P \cap \{x \mid a \cdot x = b\} = P \cap \emptyset = \emptyset$$

Faces of polytopes are polytopes

Observation

A face of a polytope is a polytope

<u>Proof</u>: Let P be a polytope and $F \subseteq P$ a face of P

- Let $F = P \cap \{x \mid a \cdot x = b\}$ = $P \cap \{x \mid a \cdot x \le b\} \cap \{x \mid a \cdot x \ge b\}$
- lacktriangle We know: P is the intersection of a finite number of halfspaces
- \blacksquare \therefore F is also the intersection of a finite number of halfspaces
- \blacksquare : F is a polytope

Vertices, Edges, Ridges, Facets

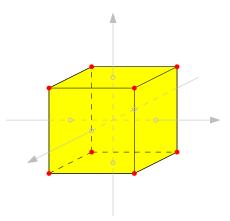
Since faces are polytopes, the dimension of a face is naturally defined

Faces with special names

P a d-dimensional polytope

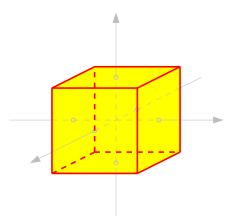
- \emptyset : (-1)-dimensional face
- Vertex: 0-dimensional face
- Edge: 1-dimensional face
- Ridge: (d-2)-dimensional face
- Facet: (d-1)-dimensional face
- P: d-dimensional face

The 3-dim cube has eight vertices



Example: Edges

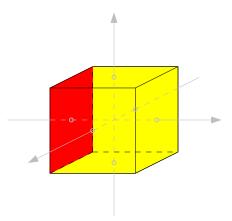
The 3-dim cube has twelve edges



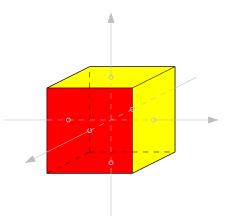
In 3-dimensional polytopes, edges = ridges

Y. Okamoto (JAIST) 1631 (9) 2011-11-07 35 / 54

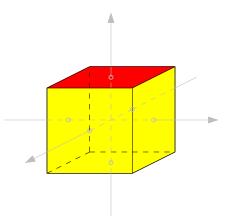
The 3-dim cube has six facets



The 3-dim cube has six facets

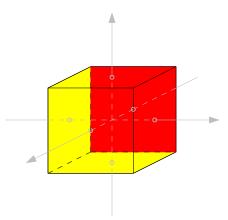


The 3-dim cube has six facets



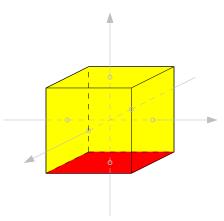
Y. Okamoto (JAIST) 1631 (9) 2011-11-07 36 / 54

The 3-dim cube has six facets

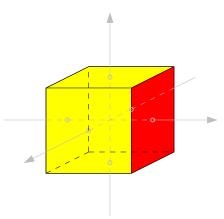


Y. Okamoto (JAIST) 1631 (9) 2011-11-07 36 / 54

The 3-dim cube has six facets



The 3-dim cube has six facets

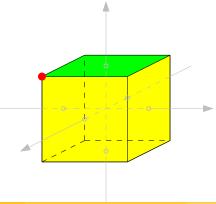


A face of a face of a polytope is a face of the polytope

Fact

P a polytope $F \subseteq P$ a face of P $F' \subseteq F$ a face of F

 \Rightarrow F' a face of P

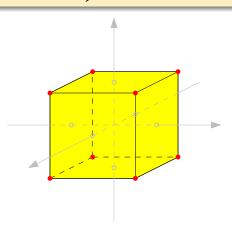


A polytope is the convex hull of its vertices

Fact

P a polytopeV the set of vertices of P

$$\Rightarrow P = \operatorname{conv}(V)$$



Polytopes

2 Examples

6 Faces

4 Face lattices

Fact (recap)

$$P \text{ a polytope}$$

$$F \subseteq P \text{ a face of } P$$

$$F' \subseteq F \text{ a face of } F$$

$$\Rightarrow F' \text{ a face of } P$$

Consequence

- \blacksquare Consider the relation "F' is a face of F" on all faces of P
- The fact above implies that this relation is transitive
- This relation is also reflexive
 - P is a face of P
- This relation is also anti-symmetric
 - F is a face of F' and F' is a face of $F \Rightarrow F = F'$ (Exercise)
- : this relation defines a partial order

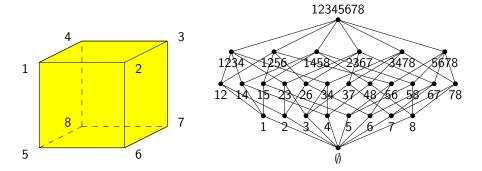
Face lattices

The **face lattice** of a polytope P is the partially ordered set (\mathcal{F}, \leq) where

- lacksquare \mathcal{F} is the family of all faces of P
- \forall $F, F' \in \mathcal{F}$: $F' \leq F$ iff F' is a face of F

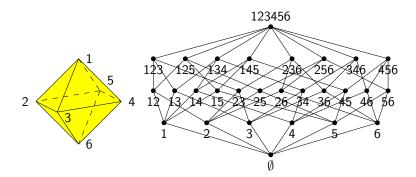
As the name suggests, this partially ordered set is actually a lattice, but this is not important in this lecture

Example: The 3-dimensional cube C_3

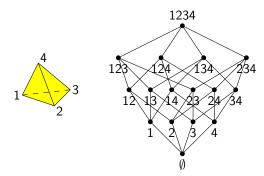


- The right figure shows a **Hasse diagram** of the face lattice
- For example, "1256" means " $conv(\{1, 2, 5, 6\})$ "

Example: The 3-dimensional crosspolytope C_3^*

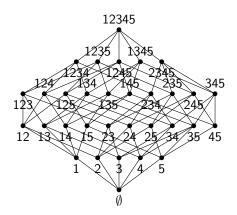


Example: A 3-dimensional simplex



Y. Okamoto (JAIST) 1631 (9) 2011-11-07 44 / 54

Example: A 4-dimensional simplex



Isomorphism of partially ordered sets

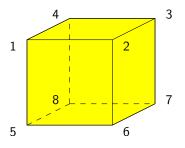
Two partially ordered sets (X_1, \leq_1) and (X_2, \leq_2) are **isomorphic** if \exists a bijection $\varphi \colon X_1 \to X_2$ such that

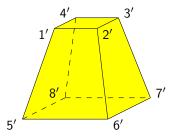
$$x_1 \leq_1 x_1' \qquad \Leftrightarrow \qquad \varphi(x_1) \leq_2 \varphi(x_1')$$

Combinatorial equivalence of polytopes

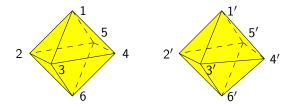
Two polytopes P and Q are **combinatorially equivalent** if their face lattices are isomorphic

Example 1: Combinatorial equivalence





Example 2: Combinatorial equivalence

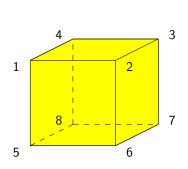


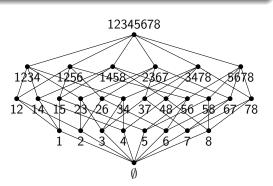
Note: The order types of the vertices are different

Simple polytopes

Simple polytopes

A *d*-dimensional polytope *P* is **simple** if every vertex is incident to *d* edges



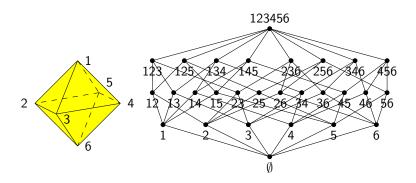


Cubes are simple

Simplicial polytopes

Simplicial polytopes

A d-dimensional polytope P is **simplicial** if every facet is incident to d ridges



Crosspolytopes are simplicial

Polytopes

- V-polytopes and H-polytopes
- Equivalence of V-polytopes and H-polytopes
- Examples: Cubes, Crosspolytopes, Simplices
- Simple polytopes and simplicial polytopes

Faces

- Def: Intersection of the polytope and a supporting hyperplane
- Vertices, edges, ..., ridges, facets
- Face lattices and combinatorial equivalence

Equivalence of V-polytopes and H-polytopes

- They are **mathematically** identical objects
- However, we don't know they are computationally (or algorithmically) identical
 - We don't know an efficient algorithm to transform a V-representation of a polytope to an H-representation, and vice versa

Further reading

- Matoušek: Lectures on Discrete Geometry
 - Chapter 5
- Ziegler: *Lectures on Polytopes*
 - Lectures 0, 1, 2
- Edelsbrunner: Algorithms in Combinatorial Geometry
 - Chapters 1, 8

Polytopes

2 Examples

§ Faces

4 Face lattices