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Goal of this lecture

Background

Determining the maximum number of vertices in the k-level of a
line arrangement (in the plane) is a difficult problem

Some lower bounds and upper bounds are known

Goal of this lecture

Learn a typical lower bound argument

Learn a typical upper bound argument

through the k-level problem
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The k-level problem
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The k-level problem

The k-level problem

The k-level problem

What is the maximum number of vertices in the k-level of a simple
arrangement of n lines in the plane?

Namely, for a simple line arrangement A in R2, let

ek(A) = the number of vertices in the k-level of A

and let

ek(n) = max{ek(A) | A the arrangement of n lines in R2}

The task is to determine ek(n)
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The k-level problem

We usually look at the median level

Main target

Determining ebn/2c(n), the number of vertices in the median level

Why?

Fact (Agarwal, Aronov, Chan, Sharir ’98)

ebn/2c(n) = O(nα) for some constant α
⇒ ek(n) = O(n(k + 1)α−1) for all k ∈ {0, . . . , bn/2c}

Fact (Edelsbrunner ’87)

ebn/2c(n) = Ω(nα) for some constant α
⇒ ek(n) = Ω(n(k + 1)α−1) for all k ∈ {0, . . . , bn/2c}
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The k-level problem

Conjectured bound on the number of edges in the median level

Let e(n) = ebn/2c(n), for simplicity

Conjecture (Erdős, Lovász, Simmons, Straus ’73)

e(n) = o(n1+ε)

for any fixed constant ε > 0

We are far from proving/disproving this conjecture
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The k-level problem

Known upper bounds

e(n) = O(n3/2) (Lovász ’71)
(Erdős, Lovász, Simmons, Straus ’73)

(Agarwal, Aronov, Chan, Sharir ’98)
(Chan ’05)

e(n) = O(n3/2/ log∗ n) (Pach, Steiger, Szemerédi ’92)

e(n) = O(n4/3) (Dey ’98)
(Andrzejak, Aronov, Har-Peled, Seidel, Welzl ’98)
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The k-level problem

Known lower bounds

e(n) = Ω(n log n) (Erdős, Lovász, Simmons, Straus ’73)

e(n) = n exp(Ω(
√

log n)) (Tóth ’01)
(Nivasch ’08)

Y. Okamoto (JAIST) I631 (14) 2011-11-28 9 / 36

The k-level problem

What we are going to look at

Lower bound: e(n) ≥ 2n − 3 for all n ≥ 2
Proof by Erdős, Lovász, Simmons, Straus ’73

Upper bound: e(n) = O(n3/2)
Proof by Chan ’05
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Lower bound

1 The k-level problem

2 Lower bound

3 Upper bound
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Lower bound

An easy lower bound for e(n)

Theorem (Erdős, Lovász, Simmons, Straus ’73)

e(n) ≥ 2n − 3 for all natural numbers n ≥ 2

Basic strategy for the proof

Prove e(n + 2) ≥ e(n) + 4 for all natural numbers n ≥ 2

Then, we can prove e(n) ≥ 2n − 3 by induction

When n = 2, we see e(2) ≥ 1
When n = 3, we see e(3) ≥ 3
When n ≥ 4, by the recursion above

e(n + 2) ≥ e(n) + 4 = (2n − 3) + 4 = 2(n + 2)− 3
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Lower bound

How to derive the recursion

Want to prove

e(n + 2) ≥ e(n) + 4 for all natural numbers n ≥ 2

Let An be the simple arrangement of n lines
that gives the max number of vertices of the median level
among all simple arrangements of n lines:

e(n) = ebn/2c(An)

We construct a simple arrangement A′n+2 of n+2 lines from An

s.t. the number of vertices of the median level is ≥ e(n) + 4

Then
e(n + 2) ≥ eb(n+2)/2c(A′n+2) ≥ e(n) + 4
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Lower bound

Construction of A′n+2

Add two lines to the left of all vertices of An so that
their intersection comes below the lines of An

A′
n+2
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Upper bound

1 The k-level problem
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3 Upper bound
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Upper bound

Upper bound for e(n)

Theorem (Lovász ’71)

e(n) = O(n3/2)

Namely, for any simple arrangement A of n lines in R2

ebn/2c(A) = O(n3/2)

We look at the proof by Chan ’05

In his proof, we study a more general problem
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Upper bound

A more general problem: Setup (1)

A a simple arrangement of n lines in R2

Let k ∈ {0, . . . , n − 1} fixed
Let i ≥ 1 be a natural number
Let Vi(A) = the set of vertices of the i -level of A
(Let Vi(A) = ∅ when i < 0 or i ≥ n)
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Upper bound

A more general problem: Setup (2)

Let

Bi = (Vk−i(A) \ Vk−i−1(A)) ∪ (Vk+i(A) \ Vk+i+1(A))

Ii = (Vk−i+1 ∪ Vk−i+2 ∪ · · · ∪ Vk+i−2 ∪ Vk+i−1) \ (Vk−i ∪ Vk+i)

Note: |I2| = ek(A) for any k

k

k−i

k+i
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Upper bound

A more general problem: Claim

Claim

|Ii | ≤ 2i · |Bi |+ 2i2

k

k−i

k+i
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Upper bound

Proof of the claim (1)

We employ the following charging scheme
Fix u ∈ Ii
Let `1, `2 intersect at u
Walk to the right along `1, `2 from u
You reach vertices v1, v2 in Bi or go to the +x-infinity

k

k−i

k+i

u

`1

`2

v1

v2
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Upper bound

Proof of the claim (2)

We employ the following charging scheme

If v1 lies to the left of v2, we charge u to v1
If v2 lies to the left of v1, we charge u to v2
If both go to the +x-infinity, we charge u to +∞

k

k−i

k+i

u

`1

`2
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Upper bound

Proof of the claim (2)

Each u ∈ Ii pays one unit

Q.: How much does each v ∈ Bi ∪ {+∞} receive?

k

k−i

k+i

u

`1

`2
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Upper bound

Proof of the claim (3)

For v ∈ Vk−i(A) \ Vk−i−1(A) ⊆ Bi , receiving from u ∈ Ii
u is the intersection of two lines, say `1 and `2,
`1 goes through v , `2 goes above v
∴ Each such u is associated with a line strictly between the
(k−i)-level and the (k+i)-level of A at the x-coordinate of v
∴ # of such u is < 2i

k+i

k−i
v

u
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Upper bound

Proof of the claim (4)

For v ∈ Vk+i(A) \ Vk+i+1(A) ⊆ Bi , receiving from u ∈ Ii
u is the intersection of two lines, say `1 and `2,
`1 goes through v , `2 goes below v
∴ Each such u is associated with a line strictly between the
(k−i)-level and the (k+i)-level of A at the x-coordinate of v
∴ # of such u is < 2i

k+i

k−i

v
u
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Upper bound

Proof of the claim (5)

For v = +∞
# of lines ` leading to +∞ < 2i

When v receives from u, u is the intersection of two such lines

# of pairs < 2i2

k+i

k−i

u
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Upper bound

Proof of the claim (6)

Summarizing

|Ii | = transferred units ≤ 2i · |Bi |+ 2i2

∴ |Ii | ≤ 2i · |Bi |+ 2i2

k

k−i

k+i

Y. Okamoto (JAIST) I631 (14) 2011-11-28 26 / 36

Upper bound

The next step

We have proved
|Ii | ≤ 2i |Bi |+ 2i2

Observe: |Bi | = |Ii+1| − |Ii |
Therefore

|Ii | ≤ 2i(|Ii+1| − |Ii |) + 2i2

∴ |Ii | ≤
2i

2i + 1
· |Ii+1|+ i

Enough to solve this recursion with |In| =
(
n
2

)
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Upper bound

Solving the recursion (1)

|Ii | ≤
2i

2i + 1
|Ii+1|+ i

≤ 2i

2i + 1

(
2(i + 1)

2(i + 1) + 1
|Ii+2|+ (i + 1)

)
+ i

=
2i

2i + 1

2(i + 1)

2(i + 1) + 1
|Ii+2|+

2i

2i + 1
(i + 1) + i
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Upper bound

Solving the recursion (2)

|Ii | ≤
2i

2i + 1

2(i + 1)

2(i + 1) + 1
|Ii+2|+

2i

2i + 1
(i + 1) + i

≤ 2i

2i + 1

2(i + 1)

2(i + 1) + 1

(
2(i + 2)

2(i + 2) + 1
|Ii+3|+ (i + 2)

)
+

2i

2i + 1
(i + 1) + i

=
2i

2i + 1

2(i + 1)

2(i + 1) + 1

2(i + 2)

2(i + 2) + 1
|Ii+3|

+
2i

2i + 1

2(i + 1)

2(i + 1) + 1
(i + 2) +

2i

2i + 1
(i + 1) + i

=
i+2∏
j=i

2j

2j + 1
|Ii+3|+

i+1∑
j=i

j∏
h=i

2h

2h + 1
(j + 1) + i
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Upper bound

Solving the recursion (3)

|Ii | ≤
i+2∏
j=i

2j

2j + 1
|Ii+3|+

i+1∑
j=i

j∏
h=i

2h

2h + 1
(j + 1) + i

...

=
n−1∏
j=i

2j

2j + 1
|In|+

n−2∑
j=i

j∏
h=i

2h

2h + 1
(j + 1) + i

≤
√

i

n − 1

n2

2
+

n−2∑
j=i

√
i

j
(j + 1) + i

Exercise
m∏
j=i

2j

2j + 1
≤
√

i

m
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Upper bound

Solving the recursion (4)

|Ii | ≤
√

i

n − 1

n2

2
+

n−2∑
j=i

√
i

j
(j + 1) + i

≤ O(n3/2i1/2) +
n−2∑
j=i

O(
√
j
√
i)

≤ O(n3/2i1/2) +
n∑

j=1

O(
√
n
√
i)

≤ O(n3/2i1/2) + O(n3/2i1/2)

= O(n3/2i1/2)
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Upper bound

Finalizing the proof

For any k
ek(A) = |I2| = O(n3/2);

In particular
ebn/2c(A) = O(n3/2)
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Summary

e(n) = max # of vert’s in the med level of the arrangement of n lines

We have proved

e(n) ≥ 2n − 3

e(n) = O(n3/2)

State of the art

e(n) = n exp(Ω(
√

log n))

e(n) = O(n4/3)

Determining e(n) is a notorious problem
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Further reading

Matoušek: Lectures on Discrete Geometry

Chapter 11

Edelsbrunner: Algorithms in Combinatorial Geometry

Chapter 3

Chan: On levels in arrangements of curves II: A simple inequality
and its consequences

Discrete & Computational Geometry 34 (2005) 11–24
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Survey sheet

Today, please submit the survey sheet for the latter half of
this course
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