1631: Foundation of Computational Geometry (14) Envelopes and Levels II

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

November 28, 2011

"Last updated: 2011/11/28 7:20"

Y. Okamoto (JAIST)	l631 (14)	2011-11-28 1 ,	36
	The k-level problem		
• The <i>k</i> -level problem			
Lower bound			
-			

Opper bound

l631 (14)

Goal of this lecture

Background

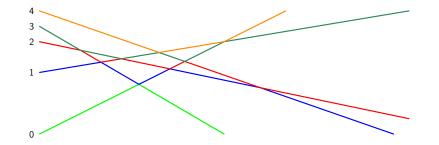
- Determining the maximum number of vertices in the k-level of a line arrangement (in the plane) is a difficult problem
- Some lower bounds and upper bounds are known

Goal of this lecture

- Learn a typical lower bound argument
- Learn a typical upper bound argument
- through the k-level problem

Y. Okamoto (JAIST)	l631 (14)	2011-11-28 2 / 36

The *k*-level problem Reminder: The *k*-level



The k-level problem

The k-level problem

The k-level problem

What is the maximum number of vertices in the k-level of a simple arrangement of *n* lines in the plane?

• Namely, for a simple line arrangement \mathcal{A} in \mathbb{R}^2 , let

```
e_k(\mathcal{A}) = the number of vertices in the k-level of \mathcal{A}
```

and let

$$e_k(n) = \max\{e_k(\mathcal{A}) \mid \mathcal{A} \text{ the arrangement of } n \text{ lines in } \mathbb{R}^2\}$$

• The task is to determine $e_k(n)$

Y. Okamoto (JAIST) l631 (14) 2011-11-28 5 / 36

```
The k-level problem
We usually look at the median level
```

Main target

Determining $e_{\lfloor n/2 \rfloor}(n)$, the number of vertices in the median level

Why?

Fact (Agarwal, Aronov, Chan, Sharir '98)

 $\begin{array}{l} e_{\lfloor n/2 \rfloor}(n) = O(n^{\alpha}) \text{ for some constant } \alpha \\ \Rightarrow e_k(n) = O(n(k+1)^{\alpha-1}) \text{ for all } k \in \{0, \dots, \lfloor n/2 \rfloor\} \end{array}$

Fact	(Edelsbrunner '87)
$e_{\lfloor n/2 \rfloor}(n) = \Omega(n^{lpha})$ for some constant $lpha$ $\Rightarrow e_k(n) = \Omega(n(k+1)^{lpha-1})$ for all $k \in \{0, \dots, \lfloor$	_n/2 <u>]</u> }

Y. Okamoto (JAIST)

I631 (14)

2011-11-28 6 / 36

(Lovász '71)

The k-level problem Conjectured bound on the number of edges in the median level

Let $e(n) = e_{\lfloor n/2 \rfloor}(n)$, for simplicity

Conjecture (Erdős, Lovász, Simmons, Straus '73)	l
$e(n)=o(n^{1+\varepsilon})$	I
for any fixed constant $arepsilon > 0$	

I631 (14)

We are far from proving/disproving this conjecture

The k-level problem Known upper bounds

•
$$e(n) = O(n^{3/2})$$

• $e(n) = O(n^{4/3})$

(Erdős, Lovász, Simmons, Straus '73) (Agarwal, Aronov, Chan, Sharir '98) (Chan '05) • $e(n) = O(n^{3/2} / \log^* n)$ (Pach, Steiger, Szemerédi '92) (Dey '98)

(Andrzejak, Aronov, Har-Peled, Seidel, Welzl '98)

The <i>k</i> -level pr Known lower bounds	oblem	The <i>k</i> -level problem What we are going to look at
• $e(n) = \Omega(n \log n)$ • $e(n) = n \exp(\Omega(\sqrt{\log n}))$	(Erdős, Lovász, Simmons, Straus '73) (Tóth '01) (Nivasch '08)	 Lower bound: e(n) ≥ 2n − 3 for all n ≥ 2 Proof by Erdős, Lovász, Simmons, Straus '73 Upper bound: e(n) = O(n^{3/2}) Proof by Chan '05

Y. Okamoto (JAIST)	l631 (14)	2011-11-28 9 / 36	Y. Okamoto (JAIST)	l631 (14)	2011-11-28
	Lower bound			Lower bound	
			An easy lower bound	for $e(n)$	
			Theorem	(Erdős, Lovász,	Simmons, Straus '7
-level problem			e(n) > 2n - 3 for all	natural numbers $n \ge 2$	
			Basic strategy for the	proof	
bound			Prove $e(n+2) \ge e(n+2)$	() + 4 for all natural numb	ers $n \ge 2$
				,	
			Then, we can pre-	ove $e(n) \geq 2n-3$ by indu	iction
			• When $n = 2$,	we see $e(2) \geq 1$	
r bound			• When $n = 3$,	we see $e(3) \ge 3$	
				by the recursion above	
			<i>/</i>	$(2) > c(\pi) + A = (2\pi - 2) + A$	(1 - 2)(1 + 2) = 2
			e(n +	$2) \ge e(n) + 4 = (2n - 3) + $	4 = 2(n + 2) - 3

Y. Okamoto (JAIST) I631 (14)

How to derive the recursion

Want to prove

 $e(n+2) \ge e(n) + 4$ for all natural numbers $n \ge 2$

■ Let A_n be the simple arrangement of *n* lines that gives the max number of vertices of the median level among all simple arrangements of *n* lines:

Lower bound

$$e(n) = e_{\lfloor n/2 \rfloor}(\mathcal{A}_n)$$

- We construct a simple arrangement A'_{n+2} of n+2 lines from A_n s.t. the number of vertices of the median level is ≥ e(n) + 4
- Then

$$e(n+2) \ge e_{\lfloor (n+2)/2 \rfloor}(\mathcal{A}'_{n+2}) \ge e(n) + 4$$

Y. Okamoto (JAIST)	1631 (14)	2011-11-28 13 / 3
	Upper bound	
• The <i>k</i> -level problem		
2 Lower bound		

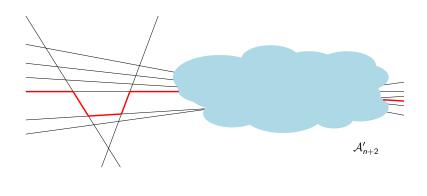
l631 (14)

Opper bound

Construction of \mathcal{A}'_{n+2}

Add two lines to the left of all vertices of A_n so that their intersection comes below the lines of A_n

Lower bound



Y. Okamoto (JAIST)	l631 (14)	2011-11-28	14 / 36

Upper bound for e(n)

Theorem	(Lovász '71)
$e(n)=O(n^{3/2})$	

Namely, for any simple arrangement \mathcal{A} of n lines in \mathbb{R}^2

$$e_{\lfloor n/2 \rfloor}(\mathcal{A}) = O(n^{3/2})$$

- We look at the proof by Chan '05
- In his proof, we study a more general problem

Y. Okamoto (JAIST)

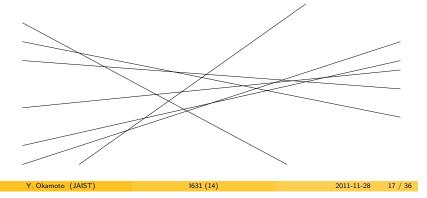
A more general problem: Setup (1)

 \mathcal{A} a simple arrangement of *n* lines in \mathbb{R}^2

- Let $k \in \{0, ..., n-1\}$ fixed
- Let $i \ge 1$ be a natural number
- Let $V_i(\mathcal{A})$ = the set of vertices of the *i*-level of \mathcal{A}

Upper bound

• (Let $V_i(\mathcal{A}) = \emptyset$ when i < 0 or $i \ge n$)



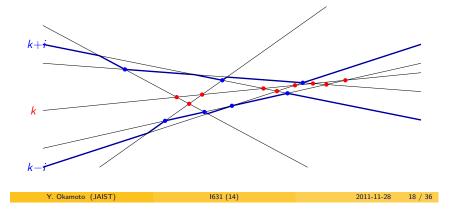
A more general problem: Setup (2)

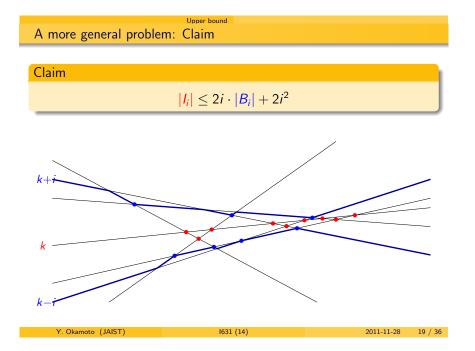
Let

 $\blacksquare B_i = (V_{k-i}(\mathcal{A}) \setminus V_{k-i-1}(\mathcal{A})) \cup (V_{k+i}(\mathcal{A}) \setminus V_{k+i+1}(\mathcal{A}))$

Upper bound

- $\blacksquare I_i = (V_{k-i+1} \cup V_{k-i+2} \cup \cdots \cup V_{k+i-2} \cup V_{k+i-1}) \setminus (V_{k-i} \cup V_{k+i})$
- Note: $|I_2| = e_k(\mathcal{A})$ for any k



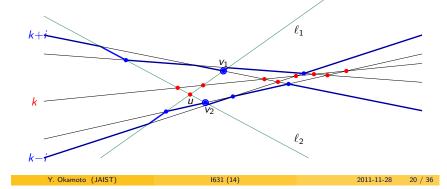


Proof of the claim (1)

We employ the following *charging scheme*

- Fix $u \in I_i$
- Let ℓ_1, ℓ_2 intersect at u
- Walk to the right along ℓ_1, ℓ_2 from u
- You reach vertices v_1 , v_2 in B_i or go to the +x-infinity

Upper bound

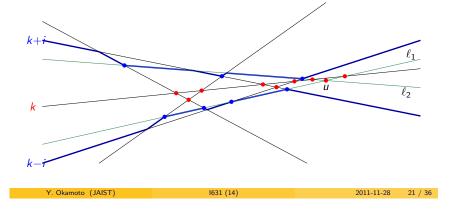


Proof of the claim (2)

We employ the following charging scheme

- If v_1 lies to the left of v_2 , we charge u to v_1
- If v_2 lies to the left of v_1 , we charge u to v_2
- If both go to the +x-infinity, we charge u to $+\infty$

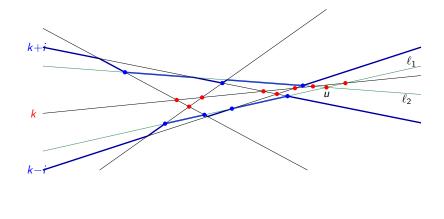
Upper bound



Proof of the claim (2)

- Each $u \in I_i$ pays one unit
- Q.: How much does each $v \in B_i \cup \{+\infty\}$ receive?

Upper bound



I631 (14)

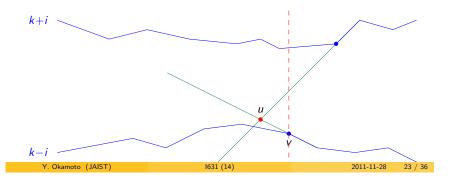
2011-11-28 22 / 36

Proof of the claim (3)

For $v \in V_{k-i}(\mathcal{A}) \setminus V_{k-i-1}(\mathcal{A}) \subseteq B_i$, receiving from $u \in I_i$

Upper bound

- u is the intersection of two lines, say l₁ and l₂, l₁ goes through v, l₂ goes above v
- ∴ Each such u is associated with a line strictly between the (k-i)-level and the (k+i)-level of A at the x-coordinate of v
 ∴ # of such u is < 2i



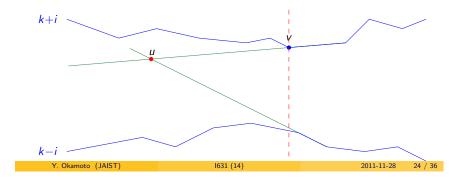
Proof of the claim (4)

Y. Okamoto (JAIST)

For $v \in V_{k+i}(\mathcal{A}) \setminus V_{k+i+1}(\mathcal{A}) \subseteq B_i$, receiving from $u \in I_i$

Upper bound

- *u* is the intersection of two lines, say *l*₁ and *l*₂, *l*₁ goes through *v*, *l*₂ goes below *v*
- ∴ Each such *u* is associated with a line strictly between the (*k*−*i*)-level and the (*k*+*i*)-level of A at the *x*-coordinate of *v*
- \therefore # of such *u* is < 2*i*



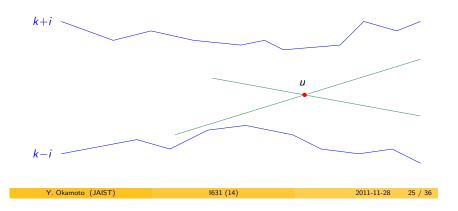
Proof of the claim (5)

For $v = +\infty$

- # of lines ℓ leading to $+\infty < 2i$
- When v receives from u, u is the intersection of two such lines

Upper bound

• # of pairs $< 2i^2$



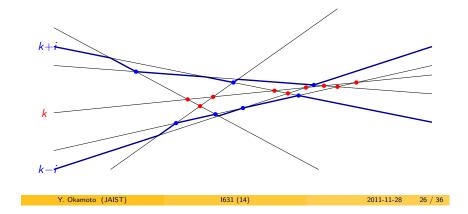
Proof of the claim (6)

Summarizing

• $|I_i| = \text{transferred units} \le 2i \cdot |B_i| + 2i^2$

Upper bound

 $\bullet \therefore |I_i| \le 2i \cdot |B_i| + 2i^2$



The next step

We have proved

$$|I_i| \le 2i|B_i| + 2i^2$$

Upper bound

- Observe: $|B_i| = |I_{i+1}| |I_i|$
- Therefore

$$|I_i| \leq 2i(|I_{i+1}| - |I_i|) + 2i^2$$

 $\therefore |I_i| \leq \frac{2i}{2i+1} \cdot |I_{i+1}| + i$

l631 (14)

• Enough to solve this recursion with $|I_n| = \binom{n}{2}$

Solving the recursion (1)

$$\begin{aligned} |I_{i}| &\leq \frac{2i}{2i+1}|I_{i+1}| + i \\ &\leq \frac{2i}{2i+1}\left(\frac{2(i+1)}{2(i+1)+1}|I_{i+2}| + (i+1)\right) + i \\ &= \frac{2i}{2i+1}\frac{2(i+1)}{2(i+1)+1}|I_{i+2}| + \frac{2i}{2i+1}(i+1) + i \end{aligned}$$

Upper bound

$$\begin{aligned} |I_{i}| &\leq \frac{2i}{2i+1} \frac{2(i+1)}{2(i+1)+1} |I_{i+2}| + \frac{2i}{2i+1} (i+1) + i \\ &\leq \frac{2i}{2i+1} \frac{2(i+1)}{2(i+1)+1} \left(\frac{2(i+2)}{2(i+2)+1} |I_{i+3}| + (i+2) \right) \\ &+ \frac{2i}{2i+1} (i+1) + i \\ &= \frac{2i}{2i+1} \frac{2(i+1)}{2(i+1)+1} \frac{2(i+2)}{2(i+2)+1} |I_{i+3}| \\ &+ \frac{2i}{2i+1} \frac{2(i+1)}{2(i+1)+1} (i+2) + \frac{2i}{2i+1} (i+1) + i \\ &= \prod_{j=i}^{i+2} \frac{2j}{2j+1} |I_{i+3}| + \sum_{j=i}^{i+1} \prod_{h=i}^{j} \frac{2h}{2h+1} (j+1) + i \end{aligned}$$

Upper bound

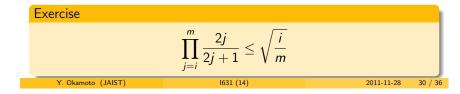
$$|I_{i}| \leq \prod_{j=i}^{i+2} \frac{2j}{2j+1} |I_{i+3}| + \sum_{j=i}^{i+1} \prod_{h=i}^{j} \frac{2h}{2h+1} (j+1) + i$$

$$\vdots$$

$$= \prod_{j=i}^{n-1} \frac{2j}{2j+1} |I_{n}| + \sum_{j=i}^{n-2} \prod_{h=i}^{j} \frac{2h}{2h+1} (j+1) + i$$

$$\leq \sqrt{\frac{i}{n-1}} \frac{n^{2}}{2} + \sum_{j=i}^{n-2} \sqrt{\frac{i}{j}} (j+1) + i$$

Upper bound



Solving the recursion (4)

$$\begin{aligned} |I_i| &\leq \sqrt{\frac{i}{n-1}} \frac{n^2}{2} + \sum_{j=i}^{n-2} \sqrt{\frac{i}{j}} (j+1) + i \\ &\leq O(n^{3/2} i^{1/2}) + \sum_{j=i}^{n-2} O(\sqrt{j} \sqrt{i}) \\ &\leq O(n^{3/2} i^{1/2}) + \sum_{j=1}^n O(\sqrt{n} \sqrt{i}) \\ &\leq O(n^{3/2} i^{1/2}) + O(n^{3/2} i^{1/2}) \\ &= O(n^{3/2} i^{1/2}) \end{aligned}$$

l631 (14)

For any *k*

$$e_k(\mathcal{A}) = |I_2| = O(n^{3/2});$$

Upper bound

In particular

$$e_{\lfloor n/2 \rfloor}(\mathcal{A}) = O(n^{3/2})$$

Summary

 $e(n) = \max \#$ of vert's in the med level of the arrangement of n lines

We have proved	
• $e(n) \geq 2n-3$	
$\bullet e(n) = O(n^{3/2})$	

State of the art

• $e(n) = n \exp(\Omega(\sqrt{\log n}))$

• $e(n) = O(n^{4/3})$

Determining e(n) is a notorious problem

Further reading

- Matoušek: Lectures on Discrete Geometry
 - Chapter 11
- Edelsbrunner: Algorithms in Combinatorial Geometry
 - Chapter 3
- Chan: On levels in arrangements of curves II: A simple inequality and its consequences
 - Discrete & Computational Geometry 34 (2005) 11–24

Y. Okamoto (JAIST)	l631 (14)	2011-11-28 33 / 36	Y. Okamoto (JAIST)	l631 (14)	2011-11-28

Survey sheet

Today, please submit the survey sheet for the latter half of this course