1631: Foundation of Computational Geometry (13) Envelopes and Levels I

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

November 16, 2011

"Last updated: 2011/11/16 10:15"

l631 (13)

Goal of this lecture

Background

- A hyperplane arrangement has abundant information
- Often, we're interested in substructures of a hyperplane arrangement
- Envelopes and levels are examples of such structures

Goal of this lecture

- Learn the relevant notions for envelopes and levels
- Learn the connection with Voronoi diagrams

Y. Okamoto (JAIST) I631 (13)	2011-11-16 1 / 45	Y. Okamoto (JAIST)	l631 (13) 2011-:
Voronoi diagrams		Voronoi e	lingenme
voloioi diagrans		Nearest neighbors	liggians
		${\it P}=\{{\it p}_1,\ldots,{\it p}_n\}\subseteq \mathbb{R}^d$ a fini	te point set
D Voronoi diagrams		Def.: Nearest neighbor	
		A nearest neighbor of a point $p \in P$ such that	int $q \in \mathbb{R}^d$ in P is
Envelopes and levels		$d(p,q) \leq$	$\leq d(p',q) \forall \; p' \in P$

3 Relationship with Voronoi diagrams

Voronoi diagrams

 $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ a finite point set, $n \ge 2$

Def.: Voronoi diagram

The **Voronoi diagram** of *P* is a partition of \mathbb{R}^d by the regions

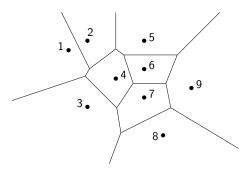
$$\operatorname{vor}(S) = \{q \in \mathbb{R}^d \mid S = ext{ the nearest neighbors of } q ext{ in } P\}$$

for all $S \subseteq P$, $|S| \ge 1$

Y. Okamoto (JAIST)

- Denote the Voronoi diagram of *P* by Vor(*P*)
- Each non-empty vor(S) is called the **Voronoi region** of S

Voronoi diagrams Example: Voronoi diagrams



Y. Okamoto (JAIST)	1631 (13)	2011-11-16 5 / 45	Y. Okamoto (JAIST)	1631 (13)	2011-11
	Voronoi diagrams			Voronoi diagrams	
Dimension of Voronoi	regions		Special Voronoi regior	าร	
Def Dimension of a	Mananai wawian		Voronoi regions have	names according to their o	dimensions
Def.: Dimension of a Voronoi region		0	-dimensional Voronoi regi		
The dimension of $vor(S)$ is			•		
he dimension of a mi	inimal affine subspace con	taining $vor(S)$	0	dimensional Voronoi regior	
			Voronoi ridge: d-	–2-dimensional Voronoi re	egion

2 • • 5 •6 • 4 •9 •7 3. 8•

l631 (13)

• Voronoi facet: d-1-dimensional Voronoi region

■ Voronoi cell: *d*-dimensional Voronoi region

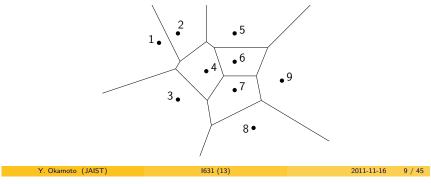
The number of Voronoi cells

Question

How many Voronoi cells can there be in the Voronoi diagram of a set of *n* points in \mathbb{R}^d ?

Voronoi diagrams

This determines the intrinsic difficulty of the problem of computing the Voronoi diagram of a given point set



 $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ a finite point set

Def.: 2-Nearest neighbor

A 2-nearest neighbor of a point $q \in \mathbb{R}^d$ in P is a point $p \in P$ such that there exists a set X with $|X| \le 1$ and

Voronoi diagrams

 $d(p,q) \leq d(p',q) \quad \forall \ p' \in P \setminus X$

Y. Okamoto (JAIST) 1631 (13) 2011-11-16 10				
	Y. Okamoto (JAIST)	l631 (13)	2011-11-16	10 / 45

Order-2 Voronoi diagrams

 $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ a finite point set, $n \ge 3$

Voronoi diagrams

Def.: Order-2 Voronoi diagram

The order-2 Voronoi diagram of P is a partition of \mathbb{R}^d by the regions

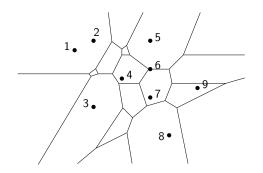
$$\operatorname{vor}^{(2)}(S) = \{ q \in \mathbb{R}^d \mid S = \text{ the 2-nearest neighbors of } q \text{ in } P \}$$

for all $S \subseteq P$, $|S| \ge 2$

- Denote the order-2 Voronoi diagram of P by $Vor^{(2)}(P)$
- Each non-empty $vor^{(2)}(S)$ is called the **Voronoi region** of S

I631 (13)

Dimensions and special names are defined similarly



 $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ a finite point set

Def.: k-Nearest neighbor

A *k*-nearest neighbor of a point $q \in \mathbb{R}^d$ in *P* is a point $p \in P$ such that there exist a set $X \subseteq P$ with $|X| \le k-1$ and

Voronoi diagrams

 $d(p,q) \leq d(p',q) \quad \forall \ p' \in P \setminus X$

l631 (13)

Order-*k* Voronoi diagrams

 $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ a finite point set, $n \geq k{+}1$

Voronoi diagrams

Def.: Order-*k* Voronoi diagram

The order-k Voronoi diagram of P is a partition of \mathbb{R}^d by the regions

$$\operatorname{vor}^{(k)}(S) = \{q \in \mathbb{R}^d \mid S = \text{ the } k \text{-nearest neighbors of } q \text{ in } P\}$$

for all $S \subseteq P$, $|S| \ge k$

- Denote the Voronoi diagram of P by $Vor^{(k)}(P)$
- Each non-empty $vor^{(k)}(S)$ is called the Voronoi region of S
 - Dimensions and special names are defined similarly

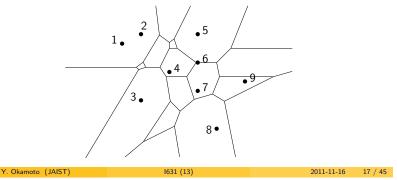
Y. Okamoto (JAIST)	l631 (13)	2011-11-16 13	3 / 45	Y. Okamoto (JAIST)	l631 (13)	2011-11-16 14 / 45
Example: Order-3 Vord	Voronoi diagrams onoi diagrams			Example: Farthest-poin	^{Voronoi diagrams} t Voronoi diagrams	
					2 • 5 • • 6 • • 6 • • 6 • • 7 • • 9 3 • • 7 • • 9 8 •	
				The order- $(n-1)$ Voron	oi diagram is usually calle	d

The number of Voronoi cells in $\operatorname{Vor}^{(k)}(P)$

Question

How many can Voronoi cells there be in the order-k Voronoi diagram of a set of n points in \mathbb{R}^d ?

This determines the intrinsic difficulty of the problem of computing the order-k Voronoi diagram of a given point set



The rest of today's lecture

We will see

Voronoi diagrams and order-k Voronoi diagrams are closely related to envelopes and levels of hyperplane arrangements

Voronoi diagrams

The rest of the lecture

- Definition of envelopes and levels
- Relationship with Voronoi diagrams

Y. Okamoto (JAIST)	l631 (13)	2011-11-16	18 / 45

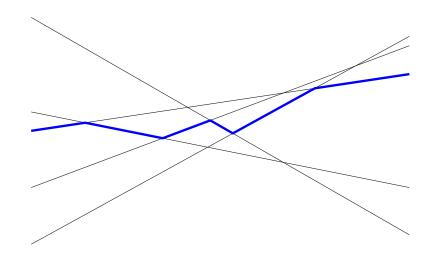
Envelopes and levels

l631 (13)

• Voronoi diagrams

2 Envelopes and levels

③ Relationship with Voronoi diagrams



Levels of a point in a hyperplane arrangement

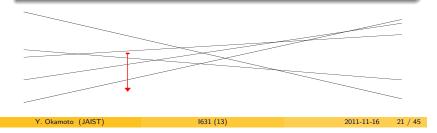
Envelopes and levels

 $\mathcal{A} = \{H_1, \dots, H_n\} \text{ a hyperplane arrangement in } \mathbb{R}^d \text{ where } \\ H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\}, a_i \in \mathbb{R}^d \setminus \{0\} \text{ } (a_i \cdot e_d > 0), b_i \in \mathbb{R}$

Level of a point

The **level** of a point $p \in \mathbb{R}^d$ in \mathcal{A} is the number of hyperplanes in \mathcal{A} below p; Alternatively, the level of p is k if

 $k = |\{i \in \{1, \ldots, n\} \mid a_i \cdot p < b_i\}|$



Levels of a point in a hyperplane arrangement

 $\mathcal{A} = \{H_1, \dots, H_n\} \text{ a hyperplane arrangement in } \mathbb{R}^d \text{ where } \\ H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\}, a_i \in \mathbb{R}^d \setminus \{0\} \text{ } (a_i \cdot e_d > 0), b_i \in \mathbb{R}$

Envelopes and levels

Observation Every point in the same face in the arrangement has the same level

Y. Okamoto (JAIST) 1631 (13) 2011-11-16 22 / 45

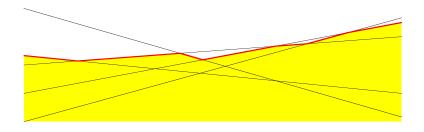
Levels of a hyperplane arrangement

 $\mathcal{A} = \{H_1, \dots, H_n\} \text{ a hyperplane arrangement in } \mathbb{R}^d \text{ where} \\ H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\}, a_i \in \mathbb{R}^d \setminus \{0\} \text{ } (a_i \cdot e_d > 0), b_i \in \mathbb{R}$

Envelopes and levels

Def.: Levels of a hyperplane arrangement

The *k*-level of \mathcal{A} is the boundary of the set of all points of level at most k



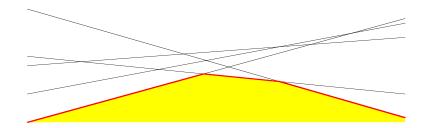
I631 (13)

Envelopes and levels Lower envelope of a hyperplane arrangement

 $\mathcal{A} = \{H_1, \dots, H_n\} \text{ a hyperplane arrangement in } \mathbb{R}^d \text{ where} \\ H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\}, a_i \in \mathbb{R}^d \setminus \{0\} \text{ } (a_i \cdot e_d > 0), b_i \in \mathbb{R}$

Def.: Lower envelope of a hyperplane arrangement

The **lower envelope** of \mathcal{A} is the 0-level of \mathcal{A}



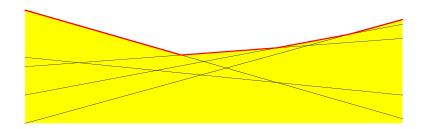
Upper envelope of a hyperplane arrangement

 $\mathcal{A} = \{H_1, \ldots, H_n\} \text{ a hyperplane arrangement in } \mathbb{R}^d \text{ where } \\ H_i = \{x \in \mathbb{R}^d \mid a_i \cdot x = b_i\}, a_i \in \mathbb{R}^d \setminus \{0\} \text{ } (a_i \cdot e_d > 0), b_i \in \mathbb{R}$

Def.: Upper envelope of a hyperplane arrangement

The **upper envelope** of A is the (n-1)-level of A

Envelopes and levels



Y. Okamoto (JAIST)	l631 (13)	2011-11-16	25 / 45

Relationship with Voronoi diagrams

• Voronoi diagrams

2 Envelopes and levels

3 Relationship with Voronoi diagrams

l631 (13)

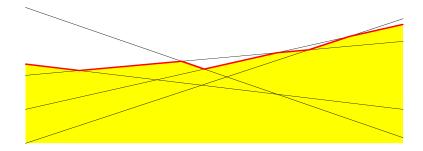
Structures of levels

The k-level of a hyperplane arrangement is a collection of polyhedra

• They are faces of the hyperplane arrangements

Envelopes and levels

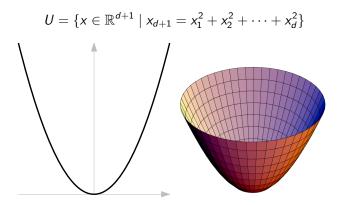
■ In particular, they are convex



Y. Okamoto (JAIST)	l631 (13)	2011-11-16	26 / 45

Relationship with Voronoi diagrams

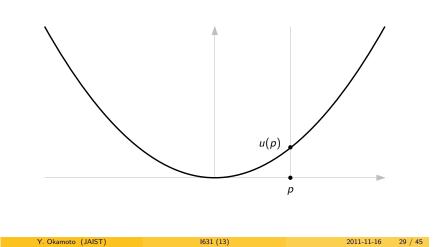
Define the **unit paraboloid** in \mathbb{R}^{d+1} as



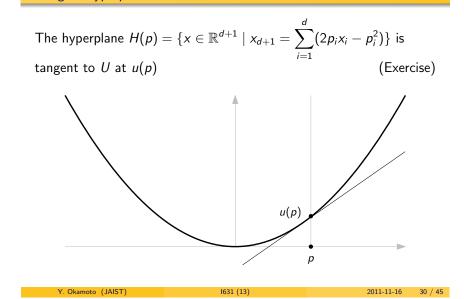
http://en.wikipedia.org/wiki/Paraboloid

Relationship with Voronoi diagrams Lifting up a point set to the unit paraboloid

For
$$p \in \mathbb{R}^d$$
, let $u(p) = (p, p_1^2 + p_2^2 + \dots + p_d^2) \in \mathbb{R}^{d+1}$



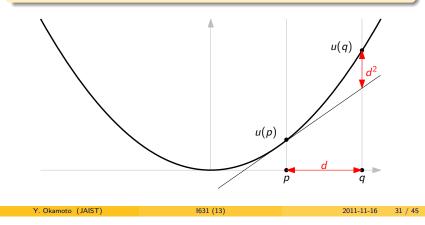
	Relationship with Voronoi diagrams	
Tangent	hyperplanes	



Relationship with Voronoi diagrams Relationship with distances

Observation

For points $p,q \in \mathbb{R}^d$, the vertical distance from q to H(p) is $d(p,q)^2$



Relationship with Voronoi diagrams Proof of the observation

$$d(p,q)^2 = \sum_{i=1}^{d} (p_i - q_i)^2$$

• The vertical distance from q to H(p) is

$$= u(q) - \sum_{i=1}^{d} (2p_iq_i - p_i^2)$$

$$= \sum_{i=1}^{d} q_i^2 - \sum_{i=1}^{d} (2p_iq_i - p_i^2)$$

$$= \sum_{i=1}^{d} (q_i^2 - 2p_iq_i + p_i^2) = \sum_{i=1}^{d} (p_i - q_i)^2$$

I631 (13)

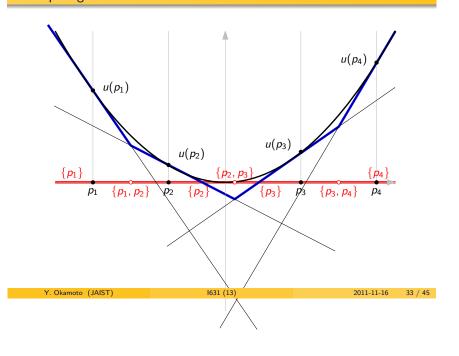
These two are equal

Y. Okamoto (JAIST)

32 / 45

2011-11-16

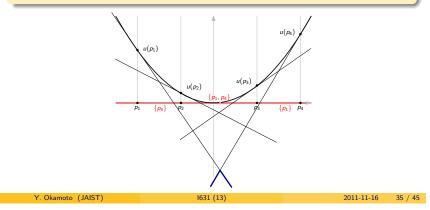
Relationship with Voronoi diagrams Comparing distances



Relationship with Voronoi diagrams Relationship with farthest-point Voronoi diagrams

Proposition

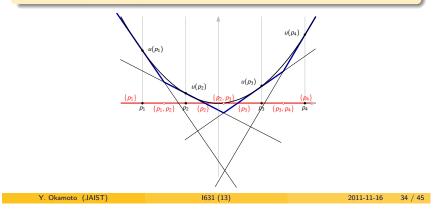
The farthest-point Voronoi diagram of *P* is the projection of the lower envelope of the hyperplane arrangement $\{H(p) \mid p \in P\}$ to the hyperplane $\{x \in \mathbb{R}^{d+1} \mid x_{d+1} = 0\}$



Relationship with Voronoi diagrams Relationship with Voronoi diagrams

Proposition

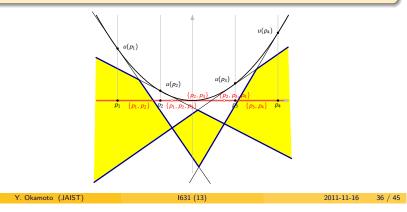
The Voronoi diagram of *P* is the projection of the upper envelope of the hyperplane arrangement $\{H(p) \mid p \in P\}$ to the hyperplane $\{x \in \mathbb{R}^{d+1} \mid x_{d+1} = 0\}$



Relationship with Order-2 Voronoi diagrams

Fact

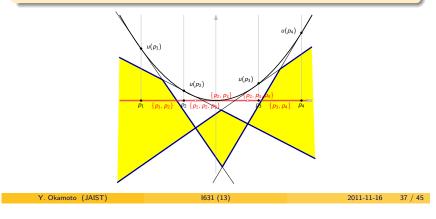
The order-2 Voronoi diagram of *P* is the projection of the part of the hyperplane arrangement $\{H(p) \mid p \in P\}$ between the (n-2)-level and the (n-3)-level to the hyperplane $\{x \in \mathbb{R}^{d+1} \mid x_{d+1} = 0\}$



Relationship with Order-k Voronoi diagrams

Fact

The order-*k* Voronoi diagram of *P* is the projection of the part of the hyperplane arrangement $\{H(p) \mid p \in P\}$ between the (n-k)-level and the (n-k-1)-level to the hyperplane $\{x \in \mathbb{R}^{d+1} \mid x_{d+1} = 0\}$



Relationship with Voronoi diagrams The number of Voronoi cells in Voronoi diagrams

Consequence

The Voronoi diagram of a set of n points in \mathbb{R}^d has

- at most *n* Voronoi cells
- at most $O(n^{\lceil d/2 \rceil})$ vertices

This is a consequence of the facts that

- The upper envelope is the boundary of a polyhedron with at most n facets
- The number of vertices of a *d*-dim polytope with *n* facets is
 O(n^[d/2]) (Upper bound theorem)

Y. Okamoto (JAIST)

l631 (13)

2011-11-16 38 / 45

Relationship with Voronoi diagrams The number of Voronoi cells in farthest-point Voronoi diagrams

Consequence

The farthest-point Voronoi diagram of a set of *n* points in \mathbb{R}^d has

- at most *n* Voronoi cells
- at most $O(n^{\lceil d/2 \rceil})$ vertices

This is a consequence of the facts that

- The lower envelope is the boundary of a polyhedron with at most n facets
- The number of vertices of a *d*-dim polytope with *n* facets is
 O(n^[d/2]) (Upper bound theorem)

I631 (13)

Relationship with Voronoi diagrams Convexity of Voronoi regions

Consequence

Every Voronoi region of the order-k Voronoi diagram of a point set in \mathbb{R}^d is convex

This is a consequence of the facts that

- Each face of the hyperplane arrangement is convex
- The projection of a convex set is convex

(Exercise)

Summary

Voronoi diagrams

- Def.: A partition of \mathbb{R}^d with respect to the distances to a given point set
- Terms: Voronoi regions, Voronoi cells, ...

Levels and Envelopes

- Level of a point: the number of hyperplanes below the point
- k-Level: the boundary of the set of points with level at most k
- Lower envelope: 0-level
- Upper envelope: (n-1)-level

Connection to Voronoi diagrams: Lift up to the unit paraboloid, and consider the hyperplane arrangement induced by tangents

l631 (13)

Y. Okamoto (JAIST)

2011-11-16 41 / 45

A remark

Fact	(Lee	'82)
The order-k Voronoi diagram of a set of n points in \mathbb{R}^2 has		
O(k(n-k)) Voronoi cells; This bound is tight		

Not much is known for the number of Voronoi cells in the order- k Voronoi diagrams when $d\geq 3$

Y. Okamoto (JAIST)

l631 (13)

2011-11-16 42 / 45

Next lecture

■ Even in ℝ², determining the maximum number of edges in the *k*-level of a line arrangement is a difficult problem

1631 (13)

• We'll look at an argument that gives some upper bound

Further reading

- Matoušek: Lectures on Discrete Geometry
 - 4, 5, 11
- Edelsbrunner: Algorithms in Combinatorial Geometry
 - Chapters 1, 13