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@ Hyperplane arrangements

® Duality

©® Signed covectors and signed cocircuits

m A hyperplane arrangement is another central concept in discrete
and computational geometry (and also in other fields of
mathematics)

m It has a close relationship with other objects as finite point sets
and polytopes

m Learn the relevant notions for hyperplane arrangements

m Learn connections with finite point sets via duality

d > 1 a natural number

A hyperplane arrangement is a finite set A = {Hi,..., H,} of
hyperplanes in R

Hi={xeR|a x=b}

for some a; € R?\ {0} and b; € R
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Hyperplane arrangements

Assigning a sign vector to a point

Hyperplane arrangements

Faces of a hyperplane arrangement

m A= {Hy,...,H,} ahyperplane arrangement,
H,':{XERd|a,"X:b;}
m To a point z € R?, assign the sign vector o(z) € {+, —,0}":

+ ifa,--z>b,-7
0(2)i=<0 ifa-z=0b;, forallie{l,... n}
— ifa-z<b

—0—+-+

Y. Okamoto (JAIST) 1631 (11) 2011-11-14  5/30

Hyperplane arrangements

Dimension of a face

A ={Hy,...,H,} a hyperplane arrangement

Def.: Face
A face of A is a set defined as

{zeR?|o(z) = s}

for some sign vector s € {+, —,0}"

—0—++

Y. Okamoto (JAIST) 1631 (11)

Hyperplane arrangements

Vertices, edges, ridges, facets, cells
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Dimension
The dimension of a face F of a hyperplane arrangement is the
dimension of a minimal affine subspace containing F
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A face has a name according to its dimension

m Vertex: O-dimensional face

m Edge: 1-dimensional face

m Ridge: d—2-dimensional face
m Facet: d—1-dimensional face
[

Cell: d-dimensional face
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A cell is sometimes called a region or a chamber

A face (more precisely, the closure of a face) is a polyhedron
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This arrangement has seven vertices

This arrangement has fourteen cells;
Among them, four are bounded and ten are unbounded

This arrangement has twenty edges;
Among them, ten are bounded and ten are unbounded

H; Hs Hy
H

Edges are also facets in this arrangement

A hyperplane arrangement A in R? is simple if
the intersection of k hyperplanes in A is of dimension d — k
forall k € {2,3,...,d + 1}

In R?, the condition says
m The intersection of any two lines is a point, and
m The intersection of any three lines is empty

Ha Hs H, H, Hs/ H,

H1 H; 1
Hs Hs

Oy 0y



Hyperplane arrangements Hyperplane arrangements

Simple arrangements in R3 The number of cells in simple hyperplane arrangements

3 .
In R>, the condition says Proposition

m The intersection of any two planes is a line, The # of cells of a simple arrangement of n hyperplanes in RY is

m The intersection of any three planes is a point, and
. . . d
m The intersection of any four planes is empty n
a(n) = >

. ]
i=0

« Proof: by induction on n+ d
Base case: n+d =1,2 (then n=0or (n,d) = (1,1))

!
\
|
L,,,k,,, m When n=10: The # of cells =1

al m When n=0: &4(n) = 4(0) =37, (%) =1

m When (n,d) = (1,1): The # of cells = 2

m When (n,d) = (1,1): ®4(n) =1 (1) = () +(}) =1+1=2
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Hyperplane arrangements Duality

Proof continued

Induction step: Assume the statement holds for all n +d’ < n+d

m Consider adding one hyperplane to the arrangement of n—1
hyperplanes in R?
m Addition partitions several cells into two cells
m # partitioned cells = ®4_1(n — 1) (by simplicity) @ Duality
m Hence
dy(n) =dg(n—1)+ dy_1(n—1)
m This recurrence has a unique solution, and Z;.j:o (7) satisfies the

i

recurrence (exercise) O
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Duality

Point—hyperplane duality

Duality

Incidence is preserved under duality

m For a hyperplane H = {x € R? | a- x = 1} where a € R?\ {0}
its dual is a point
D(H) =ac R’
m For a point p € RY\ {0}
its dual is a hyperplane

D(p)={xeR’|p-x=1}

WP
D(p)
.9
D(q)
H JD(H)
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Duality

Proof of Proposition

For a hyperplane H = {x e RY | a- x = 1},

let H- ={xeR¥|a-x <1}

Proposition

For a point p € R4\ {0} and

a hyperplane H={x e RY | a- x = 1} with a € R\ {
p € H < D(p) > D(H)
pe€ H < D(p) >D(H)

0}

D(H,)

Proposition

For a point p € R?\ {0} and

a hyperplane H = {x € RY | a- x = 1} with a € R?\ {0}
p € H < D(p) > D(H)
pe€ H < D(p) >D(H)

Proof of (1): (Proof of (2) is left as an exercise)
mpeHsa-p=1
a D(p) = {x R [ p-x =1}
mD(H)=a
mD(p)>DH) < p-a=1 O
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D(q)
r . D(r)
D(Hy)
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Duality
The (one-way) correspondence of a signed covector and a face
P=1{pi,...,p,} CR?\ {0} a set of n points
Fact
The arrangement A = {D(p;) | i € {1,...,n}} has a face
with a sign vector s € {+, —,0}"
= s € {+,—,0}" is a signed covector of P
.Pl
o P2
P3|
P o ——++
Y. Okamoto (JAIST) 1631 (11) 2011-11-14 20 / 30



Duality

The converse doesn’t hold

Duality

The (two-way) correspondence of a signed covector and a face
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Signed covectors and signed cocircuits

© Signed covectors and signed cocircuits

Y. Okamoto (JAIST) 1631 (11) 2011-11-14 23 /30

P={pi,...,pn} CR?\ {0} a set of n points

Fact

The arrangement A = {D(p;) | i € {1,...,n}} has a face
with a sign vector s € {+, —,0}"

< +s e {+,—,0}"\ {0} are signed covectors of P

p1

p3

o P4 o« FFEF
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Signed covectors and signed cocircuits

Goal of this section

m The facts above propose definitions of signed covectors and
signed cocircuits of a hyperplane arrangement

m They encode combinatorial structures of a hyperplane
arrangement
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Signed covectors and signed cocircuits

Signed covectors of a hyperplane arrangement

Signed covectors and signed cocircuits

Signed cocircuits of a hyperplane arrangement

A= {Hi,...,H,} a hyperplane arrangement in R?
H; ={x € RY| a; - x = b;} where a; € R? and b; € R

Signed covectors
The signed covectors of A are the vectors in {4, —,0}" defined as

V*(A) = {*(sgn(ay - x — by), . ..,sgn(a, - x — b,)) | x € R} U {0}

Each non-zero signed covector corresponds to a face

—0—++
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Signed covectors and signed cocircuits

Duality and signed covectors and cocircuits

A= {Hi,...,H,} a hyperplane arrangement in R?
H; ={x € R | a; - x = b;} where a; € R? and b; € R

Signed cocircuits

The signed cocircuits of A are the minimal elements in V*(.A)\{0};
The set of signed cocircuits of A is denoted by C*(.A)

Each signed cocircuit corresponds to a face of minimum dimension

—0—++
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Summary

P:{pl,...,pn}ng\{O}

Fact

Let A be the arrangement of n hyperplanes Hy, ..., H,,
where H; = D(p;)

Vi(P)=V'(A), C(P)=C"(A)

A= {Hy,...,H,} a hyperplane arrangement in RY,
where H; = {x € R? | a;- x = 1} for a; € RY \ {0}

Fact
Let P C RY be a set of n points D(H,), ..., D(H,)

Vi(A)=V'(P),  C(A)=C"(P)
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Hyperplane arrangements
m Def.: a finite set of hyperplanes in RY
m Concepts: faces, cells, signed covectors, signed cocircuits

m # cells in a simple arrangement of n hyperplanes in R?
= 0(n?) (d constant)

Duality
m A point p # 0 — a hyperplane {x | p-x =1}
m A hyperplane {x | a- x = 1} with a # 0 > a point a
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Further reading

m Matousek: Lectures on Discrete Geometry
m Chapters 5, 6

m Ziegler: Lectures on Polytopes
m Lecture 7

m Edelsbrunner: Algorithms in Combinatorial Geometry
m Chapters 1, 7
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