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@ Polarity

® Convex hull computation: What does it mean?

© Cyclic polytopes: Polytopes with many faces

O The upper bound theorem

m Look at the intrinsic difficulty of the convex hull computation

m Look at important concepts: Polarity, Cyclic polytopes, ...

The polar of a set S C RY is defined as

S*={yeR?|x-y<1 VxeS}




Polarity Polarity

Example Example
Let S =[—1,1]* C R? then Let S =[—1,1]* C R? then

= <lL,yy—yp<I1 — <l,—-yy—w»m<l1 .
SElintrsla-pshoatnslon-pcl S={yInt+tr<lyn-p<l-n+tp<l-pn-yp<1}

>%‘ Proof of D:
< N-2= mletyeRHSand xe S

m Toprove: x -y =x1y1 +xy <1
mCasel: yy >0and y» >0
By +xey2 <yt ye (Fx1<1xp<1)
By +)y <1 (. y € RHS)
Case 2: yy > 0and y» <0

m Case3: yy <0and y», >0
Proof of C: C 4 <0and v <0 E .
m S = {(17 1)) (17 _1)7 (_1a 1)7 (_17 _1)} cs wesem s ANt s ( XerCISe)
mRHS ={y|x-y<1Vxe S} DO{y|x-y<1VxeS} O s
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Polarity Polarity
The polar of any set is convex The polar of a convex set is convex (cont'd)
[ mx-yy<lforallxe$ (yeS)
$ CRY = S* convex J mx-y<lforallxe$§ (. y2€SY)

m Hence, forall xe S

Proof: Check S* satisfies the condition in the def of convex sets
m Let y5,y, € S* and A € [0,1]
m To prove: A\y; + (1 — )y, € §*

m A calculation follows...

x-(M+1=Ay2)) = M-+ (1=XN)x-y
A+ (1=
1

IN

I /\y1 + (1 — /\)y2 € S5 ]
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Polarity

The polar of a polytope is a polyhedron

Polarity

A V-representation of P gives an H-representation of P*

Fact
P C RY a d-dimensional polytope
= P* C RY a d-dimensional polyhedron (not necessarily bounded)

Moreover, 0 € P in its interior
= P* bounded

: —yn+y<1
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Polarity

An H-representation of P gives a V-representation of P*

Fact

P C RY a d-dimensional polytope, 0 € P in its interior,
P = conv(V) for some finite point set V = {v,...,v,} CR?

N P*:{X|Vi‘xsl Vi€{17~--an}}

A L %

(-1,-1) (1,-1)
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Polarity

The polar of the polar of a polytope gives the polytope back

Fact

P C RY a d-dimensional polytope, 0 € P in its interior,
P={x|a-x<1 Vie{l,...,n}} for some ai,...,a, € R?

= P* = conv({a1,...,a,})

(-1.1) (1) : vty <1

(-1,-1) (1,-1)
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Corollary of the two facts above

P C R9 a d-dimensional polytope, 0 € P in its interior

= (P =P

N L %

(-1.-1) (1.-1)
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Polarity

The polar polytope has the reverse face lattice

Fact

P C RY a d-dimensional polytope, 0 € P in its interior
The face lattice of P* is isomorphic to
the reverse of the face lattice of P

12345678

The face lattice of a 3-dim cube P The face lattice of a 3-dim crosspolytope P*
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Convex hull computation: What does it mean?

® Convex hull computation: What does it mean?
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Polarity

Simple polytopes and simplicial polytopes

Corollary

P C RY a d-dimensional polytope, 0 € R? in its interior
m P simple = P* simplicial
m P simplicial = P* simple

12345678

The face lattice of a 3-dim cube P The face lattice of a 3-dim crosspolytope P*
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Convex hull computation: What does it mean?

Convex hull computation in the plane

m Input: A set of points in R?
m Output: The vertices of its convex hull in the clockwise order

6

Output: 1-2-6-8-7-3
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Convex hull computation: What does it mean?

Basic facts for convex hulls in the plane

Facts
V a set of n points in R?
m conv(V) has at most n vertices

m conv (V) has at most n facets (or edges)
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Convex hull computation: What does it mean?

Convex hull computation in RY: From H to V
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Convex hull computation: What does it mean?

Convex hull computation in RY: From V to H

Problem: Convex hull computation (from H to V)
m Input: An H-representation of a polytope P
m Output: A V-representation of P

Typically
m Input: the set of facets of P
m Output: the set of vertices of P
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Problem: Convex hull computation (from V to H)
m Input: A V-representation of a polytope P
m Output: An H-representation of P

Typically
m Input: the set of vertices of P
m Output: the set of facets of P
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Convex hull computation: What does it mean?
A use of polarity
We have two kinds of convex hull computation problems,
but if you can solve one problem, you can solve the other...
- Polarity -
A V-representation of P An H-representation of P*
An algorithm An algorithm
from V to H from H to V
An H-representation of P - A V-representation of P*
Polarity
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Convex hull computation: What does it mean?

Intrinsic difficulty is determined by the number of faces

Convex hull computation: What does it mean?

The f-vector of a polytope

Consider the convex hull computation from V to H
m Let n be the number of given points

m How many facets can P have?

m This determines the time complexity that every algorithm for the
convex hull computation problem from V to H needs to spend

m Trivial upper bound: (Z)
m Each facet contains at least d points from the input

m What is the correct order of magnitude?
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Convex hull computation: What does it mean?

Question

P a d-dimensional polytope

The f-vector of a polytope

The f-vector of P is a vector
f(P) = (f-1(P), fo(P), fi(P), ..., f4(P)) such that

f;(P) = the number of i-dimensional faces of P

forallie {1,0,1,...,d}

Remark
mf(P)=1
m fo(P) = the number of vertices of P
m f1(P) = the number of edges of P
m fy_1(P) = the number of facets of P
mfy(P)=1
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Convex hull computation: What does it mean?

The rest of this lecture

22 /46

m P a d-dimensional polytope

mf(P)=n
Question
How large can fy_1(P) be? J

We had a trivial upper bound fy_1(P) < (§}) = O(n?) if d const
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d is constant
m We look at polytopes with many facets
m Cyclic polytopes
m They have Q(nl9/2)) facets
m We look at the so-called “Upper Bound Theorem”
m Saying “Cyclic polytopes have the largest number of facets”

m We prove the asymptotics: Every polytope has O(nl9/2]) facets
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© Cyclic polytopes: Polytopes with many faces

Cyclic polytopes: Polytopes with many faces
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Cyclic polytopes: Polytopes with many faces

Every hyperplane intersects the moment curve with < d pts
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Cyclic polytopes: Polytopes with many faces

The moment curve

The moment curve

The moment curve is a curve in RY, d > 2, defined as

{y(t) = (t,£2,...,t9) e R? | t € R}

When d = 2: x; = t,xo = t2, so the curve is determined by xo = x?
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Cyclic polytopes: Polytopes with many faces

Every hyperplane intersects the moment curve with < d pts (cont'd)

d > 2 a natural number

Observation

The intersection of the moment curve and every hyperplane in R¢
consists of at most d points;

If it is exactly d, then the moment curve is not tangent to the

hyperplane at the intersections

Proof of the 1st part: Let a- x = b defines a hyperplane in RY

v(t) lies on the hyperplane < a-~(t) = b

Then ajt + apt> + -+ + agt! = b

This is a degree-d polynomial in t

Thus, it has at most d real solutions

Each real solution corresponds to a point in the intersection

Y. Okamoto (JAIST)
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d > 2 a natural number

Observation

The intersection of the moment curve and every hyperplane in R
consists of at most d points;

If it is exactly d, then the moment curve is not tangent to the
hyperplane at the intersections

Proof of the 2nd part: Let a- x = b defines a hyperplane in R?

m The polynomial has d distinct sol'ns = they are simple roots
m Thus, not tangent at the corresponding intersections O

Corollary (Exercise)

Every cyclic polytope is simplicial
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Cyclic polytopes: Polytopes with many faces

Cyclic polytopes

d > 2 a natural number, n > d + 1 a natural number

Cyclic polytope

A cyclic polytope is the conv hull of n points on the moment curve:
Let t; < th < --- < t,, and a cyclic polytope is defined as

conv({y(t;) | i€ {1,...,n}}) CR?
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Cyclic polytopes: Polytopes with many faces

Gale's evenness criterion: An example

Cyclic polytopes: Polytopes with many faces

Gale's evenness criterion

|1 2 3 4
12 | * *
23 * ok
34 *
14 | *
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P = conv({v(t1),¥(t2),...,v(ta)}) € RY a cyclic polytope
Theorem (Gale '63)
F = COIIV({’}/(t,'l),’y(t;2), s 77(t"d)})

# indices in iy, ..., iy between j & k is even
vjakg{ila"'7id}

The theorem characterizes the facets of a cyclic polytope

F a facet of P &
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Cyclic polytopes: Polytopes with many faces

Gale's evenness criterion: Another example

m Consider a 4-dimensional cyclic polytope with 8 vertices
m The following table shows the list of its facets

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1678 * * * * 2345 * * * *
1568 | * * * 2356 *oox
1458 | * * 2367 *oox *
1348 | * * 2378 *oox *oox
1238 | * * * 3456 ook ok
1234 | ¥ * 3467 *oox *
1245 | ¥ * 3478 *oox *oox
1256 | *  * *oox 4567 * *oox
1267 | * * * ook 4578 * *ox
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Cyclic polytopes: Polytopes with many faces

Consequences of Gale's evenness criterion

Cyclic polytopes: Polytopes with many faces

Proof of Gale's evenness criterion

m Completely determines the facet of a cyclic polytope
m The number of facets can easily be calculated

m Implies that all d-dim cyclic polytopes with n vertices are
combinatorially equivalent (having isomorphic face lattices)
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Cyclic polytopes: Polytopes with many faces

Asymptotic lower bound on the number of facets of a cyclic polytope

H the hyperplane containing F
m () € Hforallie{i,...,iq}
m H partitions the moment curve into d + 1 pieces (why d + 17)
m F afacet & 7(t;) lies on the same side of H Y i & {iy,...,iq}
< 7(t;) lies only on the even-numbered pieces
or only on the odd-numbered pieces
< Gale's evenness criterion is satisfied [
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Cyclic polytopes: Polytopes with many faces

Asymptotic lower bound: d even

Observation
C(d, n) a d-dimensional cyclic polytope with n vertices
d > 2 constant, n > d +1

= f;_1(C(d,n)) = Q(nl¥/?)

The proof strategy
m Describe a way to choose d indices such that

m they satisfy Gale's evenness criterion
m we can choose sufficiently many (Q(nl9/2)))

m Idea: Pair adjacent indices
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Indices {1,...,n}
m Construction
m Make pairs (1,2),(3,4),...,(i,i+1),...,(n—1,n)
(or (1,2),(3,4),...,(i,i+1),...,(n—2,n—1) if n odd)
m Choose d/2 pairs
m (This satisfies Gale's evenness criterion)
m The number of choices

m Choosing d/2 pairs among |n/2]| pairs
d/2
m The number = (LZ@J) > (%) = Q(n?/?)

(1 2 3456 7 891011

[ o
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Cyclic polytopes: Polytopes with many faces

Asymptotic lower bound: d odd

Indices {1,...,n}
m Construction
m Make pairs (1,2),(3,4),...,(i,i+1),...,(n—=2,n—1)
(or (1,2),(3,4),...,(i,i+1),....,(n—3,n—2) if neven)
m Choose the index n and (d — 1)/2 pairs
m (This satisfies Gale's evenness criterion)
m The number of choices
m Choosing (d — 1)/2 pairs among |(n — 1)/2] pairs
m The number = Q(n?/?) (with a similar calculation) O

(1 2 3456 7 8 91011

[ o
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The upper bound theorem

The upper bound theorem

The upper bound theorem

® The upper bound theorem

Fact (McMullen '70)

P a d-dimensional polytope with n vertices
C(d, n) a d-dimensional cyclic polytope with n vertices

= fy_1(P) < f4_1(C(d, n))

Namely, cyclic polytopes maximize the number of facets among all
polytopes with the same number of vertices in the same dimension
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The upper bound theorem
The asymptotic upper bound theorem
The upper bound theorem is difficult to prove,
so we prove its asymptotic version, which is easier to prove
Theorem
P a d-dimensional simplicial polytope with n vertices
d > 2 constant, n > d +1
= fy_1(P) = O(nl¥/3))
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The upper bound theorem

The asymptotic upper bound theorem: Proof (1)

The upper bound theorem

The asymptotic upper bound theorem: Proof (2)

Proof strategy (Seidel '95)
m Consider P*, which is a simple polytope

To prove
fo(P*) < 2ftq/21(P*) for any d-dim simple polytope P~ }

m If done, then we get fy_1(P) < 2f|4/2)-1(P)
m Easy: flaj2)-1(P) < (14)s))
m Therefore,

P <2, ) = 01
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The upper bound theorem

The asymptotic upper bound theorem: Proof (3)

To prove
fo(P*) < 2frq/21(P*) for any d-dim simple polytope P*

WLOG: All vertices of P* have distinct x4-coordinates
(by tiny rotation)
m We double-count the pairs (v, F) of
m vertices v of P* and
m [d/2]-dim faces F of P* such that
m v is the highest (or the lowest) vertex of F
m Each [d/2]-dim face F has exactly one highest vertex and
exactly one lowest vertex

To prove
fo(P*) < 2frq/21(P*) for any d-dim simple polytope P*

m Each vertex v is incident to d edges (. P* simple)
m At least [d/2] edges going up from v, or
at least [d/2] edges going down from v (:.: pigeonhole principle)
m The former case: These [d/2] edges determine a [d/2]-dim
face of P* that has v as the lowest pt (c.f. Exer 9.17)

m The latter case: Similar

Therefore,
fo(P*) < # pairs to count = 2f;4/2)(P")

O
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Summary
Polarity
m Definition
m A use of polarity: Convex hull computation
The number of facets
m The number of facets of a d-dim polytope with n vertices
= O(nl9/2l) (Upper bound theorem)
m Cyclic polytopes show this bound is tight
This shows an intrinsic difficulty of the convex hull computation
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Further reading

m Matousek: Lectures on Discrete Geometry
m Chapter 5

m Ziegler: Lectures on Polytopes
m Lectures 0, 1, 2, 8

m Edelsbrunner: Algorithms in Combinatorial Geometry
m Chapters 1, 8
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