# I631: Foundation of Computational Geometry (10) Polytopes II

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

November 9, 2011

# "Last updated: 2011/11/16 10:05"

l631 (10)

# Goal of this lecture

- Look at the intrinsic difficulty of the convex hull computation
- Look at important concepts: Polarity, Cyclic polytopes, ...

| Y. Okamoto (JAIST) 1631 (10)              | 2011-11-09 1 / 46 | Y. Okamoto (JAIST) I631 (10)                                           |
|-------------------------------------------|-------------------|------------------------------------------------------------------------|
|                                           |                   |                                                                        |
|                                           |                   |                                                                        |
| Detailes                                  |                   | Delaster                                                               |
| i Gariy                                   |                   | Polar sets                                                             |
|                                           |                   |                                                                        |
| Polarity                                  |                   | The polar of a set                                                     |
|                                           |                   | The <b>polar</b> of a set $S \subseteq \mathbb{R}^d$ is defined as     |
| Convex hull computation: What does it m   | ean?              | $S^* = \{ y \in \mathbb{R}^d \mid x \cdot y < 1  orall \; x \in S \}$ |
| onvex nun computation. What does it mi    |                   |                                                                        |
|                                           |                   |                                                                        |
| Cyclic polytopes: Polytopes with many fac | .es               |                                                                        |
|                                           |                   |                                                                        |
| The upper bound theorem                   |                   |                                                                        |

## Example

#### Let $S = [-1, 1]^2 \subseteq \mathbb{R}^2$ , then $S^* = \{y \mid y_1 + y_2 \le 1, y_1 - y_2 \le 1, -y_1 + y_2 \le 1, -y_1 - y_2 \le 1\}$ $(-y_1 - y_2 \le 1)$ $(-y_1 - y_2 \le 1)$ $(y_1 - y_2 \le 1)$ $(y_2 - y_2 \le 1)$ $(y_1 - y_2$

Polarity

# Example

Let  $S = [-1, 1]^2 \subseteq \mathbb{R}^2$ , then  $S^* = \{ y \mid y_1 + y_2 \le 1, y_1 - y_2 \le 1, -y_1 + y_2 \le 1, -y_1 - y_2 \le 1 \}$ Proof of  $\supseteq$ : • Let  $y \in \mathsf{RHS}$  and  $x \in S$ • To prove:  $x \cdot y = x_1y_1 + x_2y_2 \le 1$ • Case 1:  $y_1 \ge 0$  and  $y_2 \ge 0$  $(:: x_1 \leq 1, x_2 \leq 1)$  $x_1y_1 + x_2y_2 \le y_1 + y_2$ (::  $y \in RHS$ ) ■  $y_1 + y_2 \le 1$ • Case 2:  $y_1 \ge 0$  and  $y_2 \le 0$ • Case 3:  $y_1 \leq 0$  and  $y_2 \geq 0$ • Case 4:  $y_1 \leq 0$  and  $y_2 \leq 0$ (Exercise) I631 (10) 2011-11-09 6 / 46 Y. Okamoto (JAIST)

Polarity

# The polar of any set is convex

### Proposition

 $S \subseteq \mathbb{R}^d \Rightarrow S^*$  convex

<u>Proof</u>: Check  $S^*$  satisfies the condition in the def of convex sets

I631 (10)

Polarity

- Let  $y_1, y_2 \in S^*$  and  $\lambda \in [0, 1]$
- To prove:  $\lambda y_1 + (1-\lambda)y_2 \in S^*$
- A calculation follows...

| Polarity The polar of a convex set is convex (cont'd)                                                                                              |                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| • $x \cdot y_1 \leq 1$ for all $x \in S$<br>• $x \cdot y_2 \leq 1$ for all $x \in S$<br>• Hence, for all $x \in S$                                 | $(\because y_1 \in S^*) \ (\because y_2 \in S^*)$ |
| $egin{array}{rcl} x \cdot (\lambda y_1 + (1-\lambda)y_2) &=& \lambda x \cdot y_1 + (1-\lambda) \ &\leq& \lambda + (1-\lambda) \ &=& 1 \end{array}$ | $(1-\lambda)x \cdot y_2$                          |
| $\blacksquare \mathrel{\dot{\ldots}} \lambda y_1 + (1-\lambda) y_2 \in S^*$                                                                        |                                                   |

The polar of a polytope is a polyhedron

#### Fact

 $P \subseteq \mathbb{R}^d$  a *d*-dimensional polytope  $\Rightarrow P^* \subseteq \mathbb{R}^d$  a *d*-dimensional *polyhedron* (not necessarily bounded) Moreover,  $0 \in P$  in its interior



A V-representation of P gives an H-representation of  $P^*$ 

# Fact

 $P \subseteq \mathbb{R}^d$  a *d*-dimensional polytope,  $0 \in P$  in its interior,  $P = \operatorname{conv}(V)$  for some finite point set  $V = \{v_1, \dots, v_n\} \subseteq \mathbb{R}^d$ 

$$\Rightarrow \qquad P^* = \{x \mid v_i \cdot x \leq 1 \quad \forall i \in \{1, \ldots, n\}\}$$



An H-representation of P gives a V-representation of  $P^*$ 



The polar of the polar of a polytope gives the polytope back



Polarity The polar polytope has the reverse face lattice Simple polytopes and simplicial polytopes Fact Corollary  $P \subseteq \mathbb{R}^d$  a *d*-dimensional polytope,  $0 \in P$  in its interior  $P \subseteq \mathbb{R}^d$  a *d*-dimensional polytope,  $0 \in \mathbb{R}^d$  in its interior The face lattice of  $P^*$  is isomorphic to the reverse of the face lattice of P• P simple  $\Rightarrow$   $P^*$  simplicial • P simplicial  $\Rightarrow P^*$  simple 12345678 123456 12345678 123456 The face lattice of a 3-dim cube PThe face lattice of a 3-dim crosspolytope  $P^*$ The face lattice of a 3-dim cube PThe face lattice of a 3-dim crosspolytope  $P^*$ Y. Okamoto (JAIST) I631 (10) 2011-11-09 13 / 46 I631 (10) 2011-11-09 14 / 46 Y. Okamoto (JAIST) Convex hull computation: What does it mean? Convex hull computation: What does it mean? Convex hull computation in the plane • Input: A set of points in  $\mathbb{R}^2$ Polarity • Output: The vertices of its convex hull in the clockwise order 6 **2** Convex hull computation: What does it mean? **3** Cyclic polytopes: Polytopes with many faces

**④** The upper bound theorem

Output: 1-2-6-8-7-3

l631 (10)

# Facts

- *V* a set of *n* points in  $\mathbb{R}^2$ 
  - $\operatorname{conv}(V)$  has at most *n* vertices
  - $\operatorname{conv}(V)$  has at most *n* facets (or edges)



l631 (10)

Convex hull computation: What does it mean? Convex hull computation in  $\mathbb{R}^d$ : From V to H

# Problem: Convex hull computation (from V to H)

- Input: A V-representation of a polytope *P*
- Output: An H-representation of P

# Typically

- Input: the set of vertices of P
- Output: the set of facets of P

| Convex hull computation: What does it mean?<br>Convex hull computation in $\mathbb{R}^d$ : From H to V<br>Problem: Convex hull computation (from H to V)<br>Input: An H-representation of a polytope P<br>Qutput: A V-representation of P<br>A use of polarity<br>We have two kinds of convex hull computation problems,<br>but if you can solve one problem, you can solve the other<br>A V-representation of P<br>A use of polarity<br>A n H-representation of P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y. Okamoto (JAIST)              | l631 (10)                       | 2011-11-09 | 17 / 46 | Y. Okamoto (JAIST)       | l631 (10)              | 2011-11-09                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|------------|---------|--------------------------|------------------------|---------------------------------|
| Convex hull computation: What does it mean?<br>Convex hull computation in $\mathbb{R}^d$ : From H to V<br>Problem: Convex hull computation (from H to V)<br>Input: An H-representation of a polytope P<br>Output: A V-representation of P<br>A Use of polarity<br>We have two kinds of convex hull computation problems,<br>but if you can solve one problem, you can solve the other<br>A V-representation of P<br>An H-representation of P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                 |            |         |                          |                        |                                 |
| Convex hull computation: What does it mean?<br>Onvex hull computation in $\mathbb{R}^d$ : From H to V<br>roblem: Convex hull computation (from H to V)<br>Input: An H-representation of a polytope P<br>Output: A V-representation of P<br>A use of polarity<br>We have two kinds of convex hull computation problems,<br>but if you can solve one problem, you can solve the other<br>A V-representation of P<br>A V-representation of P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                 |            |         |                          |                        |                                 |
| <ul> <li>Convex hull computation in R<sup>d</sup>: From H to V</li> <li>Problem: Convex hull computation (from H to V)</li> <li>Input: An H-representation of a polytope P</li> <li>Output: A V-representation of P</li> <li>A V-representation of P</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Convex hull computation: What o | does it mean?                   |            |         | Convex hull computation: | What does it mean?     |                                 |
| <ul> <li>Problem: Convex hull computation (from H to V)</li> <li>Input: An H-representation of a polytope P</li> <li>Output: A V-representation of P</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Convex hull computation i       | in $\mathbb{R}^d$ : From H to V |            |         | A use of polarity        |                        |                                 |
| Problem: Convex hull computation (from H to V)<br>Input: An H-representation of a polytope $P$<br>Output: A V-representation of $P$<br>A V-representation of $P$<br>An H-representation of $P$<br>An H-representation of $P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                 |            |         |                          |                        |                                 |
| <ul> <li>Input: An H-representation of a polytope P</li> <li>Output: A V-representation of P</li> <li>A V-representation of P</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Problem: Convex hull com        | putation (from H to V)          |            |         | We have two kinds of     | convex hull computati  | ion problems,                   |
| • Output: A V-representation of P An H-representation of P An H-repres | Input: An H-represent           | tation of a polytope P          |            |         | but if you can solve on  | ne problem, you can sc | live the other                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Output: A V-representation      | itation of P                    |            |         | A V-representation c     | of P A                 | An H-representation of <i>I</i> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Typically                       |                                 |            |         | An algo                  | orithm Ar              | n algorithm                     |
| Typically An algorithm An algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Input: the set of face          | ts of P                         |            |         | ↓ from V                 | to H fro               | om H to V                       |

• Output: the set of vertices of *P* 

An H-representation of P  $\triangleleft$  Polarity  $\land$  V-representation of  $P^*$ 

#### Convex hull computation: What does it mean? Intrinsic difficulty is determined by the number of faces

Consider the convex hull computation from V to H

- Let *n* be the number of given points
- How many facets can P have?
  - This determines the time complexity that every algorithm for the convex hull computation problem from V to H needs to spend
- Trivial upper bound:  $\binom{n}{d}$ 
  - $\blacksquare$  Each facet contains at least d points from the input
- What is the correct order of magnitude?

| Y. Okamoto (JAIST) | l631 (10) | 2011-11-09 | 21 / 46 |
|--------------------|-----------|------------|---------|
|                    |           |            |         |
|                    |           |            |         |

Convex hull computation: What does it mean? Question

- *P* a *d*-dimensional polytope
- $\bullet f_0(P) = n$

#### Question

How large can  $f_{d-1}(P)$  be?

We had a trivial upper bound  $f_{d-1}(P) \leq \binom{n}{d} = O(n^d)$  if d const

I631 (10)

# Convex hull computation: What does it mean? The f-vector of a polytope

# *P* a *d*-dimensional polytope

# The *f*-vector of a polytope

The *f*-vector of *P* is a vector  $f(P) = (f_{-1}(P), f_0(P), f_1(P), \dots, f_d(P))$  such that

 $f_i(P)$  = the number of *i*-dimensional faces of P

1631 (10)

for all  $i \in \{1, 0, 1, \dots, d\}$ 

Remark



- $f_0(P)$  = the number of vertices of P
- $f_1(P)$  = the number of edges of P
- $f_{d-1}(P)$  = the number of facets of P
- $f_d(P) = 1$ Y. Okamoto (JAIST)

2011-11-09 22 / 46

Convex hull computation: What does it mean? The rest of this lecture

d is constant

- We look at polytopes with many facets
  - Cyclic polytopes
  - They have  $\Omega(n^{\lfloor d/2 \rfloor})$  facets
- We look at the so-called "Upper Bound Theorem"
  - Saying "Cyclic polytopes have the largest number of facets"
  - We prove the asymptotics: Every polytope has  $O(n^{\lfloor d/2 \rfloor})$  facets

### Polarity

Onvex hull computation: What does it mean?

#### **3** Cyclic polytopes: Polytopes with many faces

#### **④** The upper bound theorem

Cyclic polytopes: Polytopes with many faces The moment curve

#### The moment curve

The **moment curve** is a curve in  $\mathbb{R}^d$ ,  $d \ge 2$ , defined as

$$\{\gamma(t)=(t,t^2,\ldots,t^d)\in \mathbb{R}^d\mid t\in \mathbb{R}\}$$



Every hyperplane intersects the moment curve with  $\leq d$  pts

#### $d \geq 2$ a natural number

Y. Okamoto (JAIST)

#### Observation

The intersection of the moment curve and every hyperplane in  $\mathbb{R}^d$  consists of at most d points;

I631 (10)

If it is exactly d, then the moment curve is not tangent to the hyperplane at the intersections

Proof of the 1st part: Let  $a \cdot x = b$  defines a hyperplane in  $\mathbb{R}^d$ 

- $\gamma(t)$  lies on the hyperplane  $\Leftrightarrow a \cdot \gamma(t) = b$
- Then  $a_1t + a_2t^2 + \cdots + a_dt^d = b$
- This is a degree-d polynomial in t
- Thus, it has at most *d* real solutions
- $\blacksquare$  Each real solution corresponds to a point in the intersection  $\hfill\square$

I631 (10)

# Every hyperplane intersects the moment curve with $\leq d$ pts (cont'd)

#### $d \ge 2$ a natural number

#### Observation

The intersection of the moment curve and every hyperplane in  $\mathbb{R}^d$  consists of at most d points; If it is exactly d, then the moment curve is not tangent to the

hyperplane at the intersections

Proof of the 2nd part: Let  $a \cdot x = b$  defines a hyperplane in  $\mathbb{R}^d$ 

- The polynomial has d distinct sol'ns  $\Rightarrow$  they are simple roots
- Thus, not tangent at the corresponding intersections

# Corollary (Exercise)

# Every cyclic polytope is simplicial

Y. Okamoto (JAIST)

2011-11-09

27 / 46

2011-11-09 25 / 46

Y. Okamoto (JAIST)

# $d \geq 2$ a natural number, $n \geq d+1$ a natural number

# Cyclic polytope

A **cyclic polytope** is the conv hull of *n* points on the moment curve: Let  $t_1 < t_2 < \cdots < t_n$ , and a cyclic polytope is defined as



# Cyclic polytopes: Polytopes with many faces Gale's evenness criterion

$$P = \operatorname{conv}(\{\gamma(t_1), \gamma(t_2), \dots, \gamma(t_n)\}) \subseteq \mathbb{R}^d$$
 a cyclic polytope

Theorem (Gale '63)  

$$F = \operatorname{conv}(\{\gamma(t_{i_1}), \gamma(t_{i_2}), \dots, \gamma(t_{i_d})\})$$

$$F \text{ a facet of } P \Leftrightarrow \begin{array}{l} \# \text{ indices in } i_1, \dots, i_d \text{ between } j \& k \text{ is even} \\ \forall j, k \notin \{i_1, \dots, i_d\} \end{array}$$

The theorem characterizes the facets of a cyclic polytope

| Y. Okamoto (JAIST) I631 (10) 2011-11-09 30 / 46 |                    |           |            |         |
|-------------------------------------------------|--------------------|-----------|------------|---------|
|                                                 | Y. Okamoto (JAIST) | l631 (10) | 2011-11-09 | 30 / 46 |

#### Cyclic polytopes: Polytopes with many faces Gale's evenness criterion: An example



l631 (10)

Cyclic polytopes: Polytopes with many faces Gale's evenness criterion: Another example

- Consider a 4-dimensional cyclic polytope with 8 vertices
- The following table shows the list of its facets

|      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|------|---|---|---|---|---|---|---|---|------|---|---|---|---|---|---|---|---|
| 1678 | * |   |   |   |   | * | * | * | 2345 |   | * | * | * | * |   |   |   |
| 1568 | * |   |   |   | * | * |   | * | 2356 |   | * | * |   | * | * |   |   |
| 1458 | * |   |   | * | * |   |   | * | 2367 |   | * | * |   |   | * | * |   |
| 1348 | * |   | * | * |   |   |   | * | 2378 |   | * | * |   |   |   | * | * |
| 1238 | * | * | * |   |   |   |   | * | 3456 |   |   | * | * | * | * |   |   |
| 1234 | * | * | * | * |   |   |   |   | 3467 |   |   | * | * |   | * | * |   |
| 1245 | * | * |   | * | * |   |   |   | 3478 |   |   | * | * |   |   | * | * |
| 1256 | * | * |   |   | * | * |   |   | 4567 |   |   |   | * | * | * | * |   |
| 1267 | * | * |   |   |   | * | * |   | 4578 |   |   |   | * | * |   | * | * |
| 1278 | * | * |   |   |   |   | * | * | 5678 |   |   |   |   | * | * | * | * |

#### Cyclic polytopes: Polytopes with many faces Consequences of Gale's evenness criterion

- Completely determines the facet of a cyclic polytope
- The number of facets can easily be calculated
- Implies that all *d*-dim cyclic polytopes with *n* vertices are combinatorially equivalent (having isomorphic face lattices)

#### Cyclic polytopes: Polytopes with many faces Proof of Gale's evenness criterion

H the hyperplane containing F

- $\gamma(t_i) \in H$  for all  $i \in \{i_1, \ldots, i_d\}$
- *H* partitions the moment curve into d + 1 pieces (why d + 1?)
- *F* a facet  $\Leftrightarrow \gamma(t_i)$  lies on the same side of  $H \forall i \notin \{i_1, \ldots, i_d\}$ 
  - $\Leftrightarrow \gamma(t_i)$  lies only on the even-numbered pieces

or only on the odd-numbered pieces

 $\Leftrightarrow$  Gale's evenness criterion is satisfied



1631 (10)

| Y. Okamoto (JAIST) | l631 (10) | 2011-11-09 | 33 / 46 |
|--------------------|-----------|------------|---------|
|                    |           |            |         |

Cyclic polytopes: Polytopes with many faces Asymptotic lower bound on the number of facets of a cyclic polytope

#### Observation

C(d, n) a *d*-dimensional cyclic polytope with *n* vertices  $d \ge 2$  constant,  $n \ge d + 1$ 

$$\Rightarrow f_{d-1}(C(d,n)) = \Omega(n^{\lfloor d/2 \rfloor})$$

I631 (10)

The proof strategy

- Describe a way to choose d indices such that
  - they satisfy Gale's evenness criterion
  - we can choose sufficiently many  $(\Omega(n^{\lfloor d/2 \rfloor}))$
- Idea: Pair adjacent indices

Cvclic polytopes: Polytopes with many faces Asymptotic lower bound: *d* even

# Indices $\{1, \ldots, n\}$

Construction

Y. Okamoto (JAIST)

- Make pairs (1,2), (3,4), ..., (i, i + 1), ..., (n 1, n) (or (1,2), (3,4), ..., (i, i + 1), ..., (n - 2, n - 1) if n odd)
- Choose d/2 pairs
- (This satisfies Gale's evenness criterion)
- The number of choices
  - Choosing d/2 pairs among  $\lfloor n/2 \rfloor$  pairs
  - The number  $= \binom{\lfloor n/2 \rfloor}{d/2} \ge \binom{\lfloor n/2 \rfloor}{d/2}^{d/2} = \Omega(n^{d/2})$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|---|---|---|---|---|---|----|----|
|   |   | * | * |   |   |   |   | * | *  |    |

Y. Okamoto (JAIST)

34 / 46

2011-11-09

#### Cyclic polytopes: Polytopes with many faces Asymptotic lower bound: d odd

| T | he u | pper b | ound t | heor |
|---|------|--------|--------|------|
|   |      |        |        |      |



- Oconvex hull computation: What does it mean?
- **3** Cyclic polytopes: Polytopes with many faces

### The upper bound theorem

The upper bound theorem The upper bound theorem



1631 (10)

I631 (10)

The upper bound theorem

The asymptotic upper bound theorem

2011-11-09

38 / 46

#### The asymptotic upper bound theorem: Proof (1)

The upper bound theorem

Proof strategy (Seidel '95)

• Consider  $P^*$ , which is a simple polytope

#### To prove

 $f_0(P^*) \leq 2f_{\lceil d/2 \rceil}(P^*)$  for any *d*-dim simple polytope  $P^*$ 

If done, then we get  $f_{d-1}(P) \leq 2f_{\lfloor d/2 \rfloor - 1}(P)$ 

The asymptotic upper bound theorem: Proof (3)

 $f_0(P^*) \leq 2f_{\left\lfloor d/2 \right\rfloor}(P^*)$  for any *d*-dim simple polytope  $P^*$ 

• Each vertex v is incident to d edges

• At least  $\lceil d/2 \rceil$  edges going up from v, or

face of  $P^*$  that has v as the lowest pt

- Easy:  $f_{\lfloor d/2 \rfloor 1}(P) \leq \binom{n}{\lfloor d/2 \rfloor}$
- Therefore,

Y. Okamoto (JAIST)

To prove

Therefore.

$$f_{d-1}(P) \leq 2 \binom{n}{\lfloor d/2 \rfloor} = O(n^{\lfloor d/2 \rfloor})$$

I631 (10)

The asymptotic upper bound theorem: Proof (2)

The upper bound theorem

# To prove

 $f_0(P^*) \leq 2f_{\lceil d/2 \rceil}(P^*)$  for any *d*-dim simple polytope  $P^*$ 

WLOG: All vertices of  $P^*$  have distinct  $x_d$ -coordinates (by tiny rotation)

- We double-count the pairs (v, F) of
  - vertices v of  $P^*$  and
  - $\lceil d/2 \rceil$ -dim faces *F* of *P*<sup>\*</sup> such that
  - v is the highest (or the lowest) vertex of F
- Each [d/2]-dim face *F* has exactly one highest vertex and exactly one lowest vertex

| Y. Okamoto (JAIST) | l631 (10) | 2011-11-09 | 42 / 46 |
|--------------------|-----------|------------|---------|
|                    |           |            |         |

#### Summary

### Polarity

- Definition
- A use of polarity: Convex hull computation

#### The number of facets

- The number of facets of a *d*-dim polytope with *n* vertices  $= O(n^{\lfloor d/2 \rfloor})$  (Upper bound theorem)
- Cyclic polytopes show this bound is tight

This shows an intrinsic difficulty of the convex hull computation

$$f_0(P^*) \leq \#$$
 pairs to count  $= 2f_{\lceil d/2 \rceil}(P^*)$ 

I631 (10)

at least  $\lceil d/2 \rceil$  edges going down from v (: pigeonhole principle)

• The former case: These  $\lceil d/2 \rceil$  edges determine a  $\lceil d/2 \rceil$ -dim

43 / 46

2011-11-09 41 / 46

Y. Okamoto (JAIST)

The latter case: Similar

(:  $P^*$  simple)

(c.f. Exer 9.17)

Y. Okamoto (JAIST)

# Further reading

- Matoušek: Lectures on Discrete Geometry
  - Chapter 5
- Ziegler: *Lectures on Polytopes* 
  - Lectures 0, 1, 2, 8
- Edelsbrunner: Algorithms in Combinatorial Geometry
  - Chapters 1, 8

| Y. Okamoto (JAIST) | l631 (10) | 2011-11-09 45 / 46 |
|--------------------|-----------|--------------------|