
I631: Foundation of Computational Geometry

(10) Polytopes II

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

November 9, 2011

”Last updated: 2011/11/16 10:05”

Y. Okamoto (JAIST) I631 (10) 2011-11-09 1 / 46

Goal of this lecture

Goal of this lecture

Look at the intrinsic difficulty of the convex hull computation

Look at important concepts: Polarity, Cyclic polytopes, ...
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2 Convex hull computation: What does it mean?

3 Cyclic polytopes: Polytopes with many faces

4 The upper bound theorem
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Polarity

Polar sets

The polar of a set

The polar of a set S ⊆ Rd is defined as

S∗ = {y ∈ Rd | x · y ≤ 1 ∀ x ∈ S}
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Polarity

Example

Let S = [−1, 1]2 ⊆ R2, then

S∗ = {y | y1 + y2 ≤ 1, y1 − y2 ≤ 1,−y1 + y2 ≤ 1,−y1 − y2 ≤ 1}

−y1 − y2 ≤ 1
−y1 + y2 ≤ 1

y1 − y2 ≤ 1

y1 + y2 ≤ 1

Proof of ⊆:

S ′ = {(1, 1), (1,−1), (−1, 1), (−1,−1)} ⊆ S
RHS = {y | x · y ≤ 1 ∀ x ∈ S ′} ⊇ {y | x · y ≤ 1 ∀ x ∈ S}

Y. Okamoto (JAIST) I631 (10) 2011-11-09 5 / 46

Polarity

Example

Let S = [−1, 1]2 ⊆ R2, then

S∗ = {y | y1 + y2 ≤ 1, y1 − y2 ≤ 1,−y1 + y2 ≤ 1,−y1 − y2 ≤ 1}

Proof of ⊇:

Let y ∈ RHS and x ∈ S

To prove: x · y = x1y1 + x2y2 ≤ 1

Case 1: y1 ≥ 0 and y2 ≥ 0

x1y1 + x2y2 ≤ y1 + y2 (∵ x1 ≤ 1, x2 ≤ 1)
y1 + y2 ≤ 1 (∵ y ∈ RHS)

Case 2: y1 ≥ 0 and y2 ≤ 0

Case 3: y1 ≤ 0 and y2 ≥ 0

Case 4: y1 ≤ 0 and y2 ≤ 0 (Exercise)
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Polarity

The polar of any set is convex

Proposition

S ⊆ Rd ⇒ S∗ convex

Proof: Check S∗ satisfies the condition in the def of convex sets

Let y1, y2 ∈ S∗ and λ ∈ [0, 1]

To prove: λy1 + (1− λ)y2 ∈ S∗

A calculation follows...
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Polarity

The polar of a convex set is convex (cont’d)

x · y1 ≤ 1 for all x ∈ S (∵ y1 ∈ S∗)

x · y2 ≤ 1 for all x ∈ S (∵ y2 ∈ S∗)

Hence, for all x ∈ S

x · (λy1 + (1− λ)y2) = λx · y1 + (1− λ)x · y2
≤ λ + (1− λ)

= 1

∴ λy1 + (1− λ)y2 ∈ S∗
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Polarity

The polar of a polytope is a polyhedron

Fact

P ⊆ Rd a d-dimensional polytope
⇒ P∗ ⊆ Rd a d-dimensional polyhedron (not necessarily bounded)
Moreover, 0 ∈ P in its interior
⇒ P∗ bounded

−y1 − y2 ≤ 1
−y1 + y2 ≤ 1

y1 − y2 ≤ 1

y1 + y2 ≤ 1
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Polarity

A V-representation of P gives an H-representation of P∗

Fact

P ⊆ Rd a d-dimensional polytope, 0 ∈ P in its interior,
P = conv(V ) for some finite point set V = {v1, . . . , vn} ⊆ Rd

⇒ P∗ = {x | vi · x ≤ 1 ∀ i ∈ {1, . . . , n}}

−y1 − y2 ≤ 1
−y1 + y2 ≤ 1

y1 − y2 ≤ 1

y1 + y2 ≤ 1

(1, 1)

(1,−1)(−1,−1)

(−1, 1)
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Polarity

An H-representation of P gives a V-representation of P∗

Fact

P ⊆ Rd a d-dimensional polytope, 0 ∈ P in its interior,
P = {x | ai · x ≤ 1 ∀ i ∈ {1, . . . , n}} for some a1, . . . , an ∈ Rd

⇒ P∗ = conv({a1, . . . , an})

−y1 − y2 ≤ 1
−y1 + y2 ≤ 1

y1 − y2 ≤ 1

y1 + y2 ≤ 1

(1, 1)

(1,−1)(−1,−1)

(−1, 1)
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Polarity

The polar of the polar of a polytope gives the polytope back

Corollary of the two facts above

P ⊆ Rd a d-dimensional polytope, 0 ∈ P in its interior

⇒ (P∗)∗ = P

−y1 − y2 ≤ 1
−y1 + y2 ≤ 1

y1 − y2 ≤ 1

y1 + y2 ≤ 1

(1, 1)

(1,−1)(−1,−1)

(−1, 1)
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Polarity

The polar polytope has the reverse face lattice

Fact

P ⊆ Rd a d-dimensional polytope, 0 ∈ P in its interior

⇒
{

The face lattice of P∗ is isomorphic to
the reverse of the face lattice of P

∅

1 2 3 4 5 6

12 13 14 15 23 25 26 34 36 45 46 56

123 125 134 145 236 256 346 456

12345612345678

1234 14581256 2367 3478 5678

12 14 15 23 26 34 37 48 56 58 67 78

1 2 3 4 5 6 7 8

∅

The face lattice of a 3-dim cube P The face lattice of a 3-dim crosspolytope P∗
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Polarity

Simple polytopes and simplicial polytopes

Corollary

P ⊆ Rd a d-dimensional polytope, 0 ∈ Rd in its interior

P simple ⇒ P∗ simplicial

P simplicial ⇒ P∗ simple

∅

1 2 3 4 5 6

12 13 14 15 23 25 26 34 36 45 46 56

123 125 134 145 236 256 346 456

12345612345678

1234 14581256 2367 3478 5678

12 14 15 23 26 34 37 48 56 58 67 78

1 2 3 4 5 6 7 8

∅

The face lattice of a 3-dim cube P The face lattice of a 3-dim crosspolytope P∗
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Convex hull computation: What does it mean?

1 Polarity

2 Convex hull computation: What does it mean?

3 Cyclic polytopes: Polytopes with many faces

4 The upper bound theorem
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Convex hull computation: What does it mean?

Convex hull computation in the plane

Input: A set of points in R2

Output: The vertices of its convex hull in the clockwise order

1 2

3

4

5

6

7 8

Output: 1–2–6–8–7–3
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Convex hull computation: What does it mean?

Basic facts for convex hulls in the plane

Facts

V a set of n points in R2

conv(V ) has at most n vertices

conv(V ) has at most n facets (or edges)

1 2

3

4

5

6

7 8
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Convex hull computation: What does it mean?

Convex hull computation in Rd : From V to H

Problem: Convex hull computation (from V to H)

Input: A V-representation of a polytope P

Output: An H-representation of P

Typically

Input: the set of vertices of P

Output: the set of facets of P
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Convex hull computation: What does it mean?

Convex hull computation in Rd : From H to V

Problem: Convex hull computation (from H to V)

Input: An H-representation of a polytope P

Output: A V-representation of P

Typically

Input: the set of facets of P

Output: the set of vertices of P
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Convex hull computation: What does it mean?

A use of polarity

We have two kinds of convex hull computation problems,
but if you can solve one problem, you can solve the other...

A V-representation of P

An H-representation of P

Polarity
An H-representation of P∗

A V-representation of P∗
Polarity

An algorithm

from V to H

An algorithm

from H to V
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Convex hull computation: What does it mean?

Intrinsic difficulty is determined by the number of faces

Consider the convex hull computation from V to H

Let n be the number of given points

How many facets can P have?

This determines the time complexity that every algorithm for the
convex hull computation problem from V to H needs to spend

Trivial upper bound:
(
n
d

)
Each facet contains at least d points from the input

What is the correct order of magnitude?
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Convex hull computation: What does it mean?

The f -vector of a polytope

P a d-dimensional polytope

The f -vector of a polytope

The f -vector of P is a vector
f (P) = (f−1(P), f0(P), f1(P), . . . , fd(P)) such that

fi(P) = the number of i -dimensional faces of P

for all i ∈ {1, 0, 1, . . . , d}

Remark

f−1(P) = 1

f0(P) = the number of vertices of P

f1(P) = the number of edges of P

fd−1(P) = the number of facets of P

fd(P) = 1
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Convex hull computation: What does it mean?

Question

P a d-dimensional polytope

f0(P) = n

Question

How large can fd−1(P) be?

We had a trivial upper bound fd−1(P) ≤
(
n
d

)
= O(nd) if d const
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Convex hull computation: What does it mean?

The rest of this lecture

d is constant

We look at polytopes with many facets

Cyclic polytopes
They have Ω(nbd/2c) facets

We look at the so-called “Upper Bound Theorem”

Saying “Cyclic polytopes have the largest number of facets”
We prove the asymptotics: Every polytope has O(nbd/2c) facets
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Cyclic polytopes: Polytopes with many faces

1 Polarity

2 Convex hull computation: What does it mean?

3 Cyclic polytopes: Polytopes with many faces

4 The upper bound theorem

Y. Okamoto (JAIST) I631 (10) 2011-11-09 25 / 46

Cyclic polytopes: Polytopes with many faces

The moment curve

The moment curve

The moment curve is a curve in Rd , d ≥ 2, defined as

{γ(t) = (t, t2, . . . , td) ∈ Rd | t ∈ R}

When d = 2: x1 = t, x2 = t2, so the curve is determined by x2 = x21
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Cyclic polytopes: Polytopes with many faces

Every hyperplane intersects the moment curve with ≤ d pts

d ≥ 2 a natural number

Observation

The intersection of the moment curve and every hyperplane in Rd

consists of at most d points;
If it is exactly d , then the moment curve is not tangent to the
hyperplane at the intersections

Proof of the 1st part: Let a · x = b defines a hyperplane in Rd

γ(t) lies on the hyperplane ⇔ a · γ(t) = b

Then a1t + a2t
2 + · · ·+ adt

d = b

This is a degree-d polynomial in t

Thus, it has at most d real solutions

Each real solution corresponds to a point in the intersection
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Cyclic polytopes: Polytopes with many faces

Every hyperplane intersects the moment curve with ≤ d pts (cont’d)

d ≥ 2 a natural number

Observation

The intersection of the moment curve and every hyperplane in Rd

consists of at most d points;
If it is exactly d , then the moment curve is not tangent to the
hyperplane at the intersections

Proof of the 2nd part: Let a · x = b defines a hyperplane in Rd

The polynomial has d distinct sol’ns ⇒ they are simple roots

Thus, not tangent at the corresponding intersections

Corollary (Exercise)

Every cyclic polytope is simplicial
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Cyclic polytopes: Polytopes with many faces

Cyclic polytopes

d ≥ 2 a natural number, n ≥ d + 1 a natural number

Cyclic polytope

A cyclic polytope is the conv hull of n points on the moment curve:
Let t1 < t2 < · · · < tn, and a cyclic polytope is defined as

conv({γ(ti) | i ∈ {1, . . . , n}}) ⊆ Rd

γ(t1)

γ(t2)

γ(t3)

γ(t4)
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Cyclic polytopes: Polytopes with many faces

Gale’s evenness criterion

P = conv({γ(t1), γ(t2), . . . , γ(tn)}) ⊆ Rd a cyclic polytope

Theorem (Gale ’63)

F = conv({γ(ti1), γ(ti2), . . . , γ(tid )})

F a facet of P ⇔ # indices in i1, . . . , id between j & k is even
∀ j , k 6∈ {i1, . . . , id}

The theorem characterizes the facets of a cyclic polytope
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Cyclic polytopes: Polytopes with many faces

Gale’s evenness criterion: An example

γ(t1)

γ(t2)

γ(t3)

γ(t4)

1 2 3 4
12 * *
23 * *
34 * *
14 * *
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Cyclic polytopes: Polytopes with many faces

Gale’s evenness criterion: Another example

Consider a 4-dimensional cyclic polytope with 8 vertices

The following table shows the list of its facets

1 2 3 4 5 6 7 8
1678 * * * *
1568 * * * *
1458 * * * *
1348 * * * *
1238 * * * *
1234 * * * *
1245 * * * *
1256 * * * *
1267 * * * *
1278 * * * *

1 2 3 4 5 6 7 8
2345 * * * *
2356 * * * *
2367 * * * *
2378 * * * *
3456 * * * *
3467 * * * *
3478 * * * *
4567 * * * *
4578 * * * *
5678 * * * *
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Cyclic polytopes: Polytopes with many faces

Consequences of Gale’s evenness criterion

Completely determines the facet of a cyclic polytope

The number of facets can easily be calculated

Implies that all d-dim cyclic polytopes with n vertices are
combinatorially equivalent (having isomorphic face lattices)
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Cyclic polytopes: Polytopes with many faces

Proof of Gale’s evenness criterion

H the hyperplane containing F

γ(ti) ∈ H for all i ∈ {i1, . . . , id}
H partitions the moment curve into d + 1 pieces (why d + 1?)

F a facet ⇔ γ(ti) lies on the same side of H ∀ i 6∈ {i1, . . . , id}

F a facet

⇔ γ(ti) lies only on the even-numbered pieces

F a facet ⇔ γ(ti) lies

or only on the odd-numbered pieces

F a facet

⇔ Gale’s evenness criterion is satisfied

H

s1

s2

s3

s4

s5

s6

γ(ti1)
γ(ti2)

γ(ti3)

γ(ti4)
γ(ti5)
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Cyclic polytopes: Polytopes with many faces

Asymptotic lower bound on the number of facets of a cyclic polytope

Observation

C (d , n) a d-dimensional cyclic polytope with n vertices
d ≥ 2 constant, n ≥ d + 1

⇒ fd−1(C (d , n)) = Ω(nbd/2c)

The proof strategy

Describe a way to choose d indices such that

they satisfy Gale’s evenness criterion
we can choose sufficiently many (Ω(nbd/2c))

Idea: Pair adjacent indices
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Cyclic polytopes: Polytopes with many faces

Asymptotic lower bound: d even

Indices {1, . . . , n}
Construction

Make pairs (1, 2), (3, 4), . . . , (i , i + 1), . . . , (n − 1, n)
(or (1, 2), (3, 4), . . . , (i , i + 1), . . . , (n − 2, n − 1) if n odd)
Choose d/2 pairs
(This satisfies Gale’s evenness criterion)

The number of choices

Choosing d/2 pairs among bn/2c pairs

The number =
(bn/2c

d/2

)
≥

(
bn/2c
d/2

)d/2
= Ω(nd/2)

1 2 3 4 5 6 7 8 9 10 11

* * * *
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Cyclic polytopes: Polytopes with many faces

Asymptotic lower bound: d odd

Indices {1, . . . , n}
Construction

Make pairs (1, 2), (3, 4), . . . , (i , i + 1), . . . , (n − 2, n − 1)
(or (1, 2), (3, 4), . . . , (i , i + 1), . . . , (n − 3, n − 2) if n even)
Choose the index n and (d − 1)/2 pairs
(This satisfies Gale’s evenness criterion)

The number of choices

Choosing (d − 1)/2 pairs among b(n − 1)/2c pairs
The number = Ω(nd/2) (with a similar calculation)

1 2 3 4 5 6 7 8 9 10 11

* * * * *
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The upper bound theorem

1 Polarity

2 Convex hull computation: What does it mean?

3 Cyclic polytopes: Polytopes with many faces

4 The upper bound theorem

Y. Okamoto (JAIST) I631 (10) 2011-11-09 38 / 46

The upper bound theorem

The upper bound theorem

Fact (McMullen ’70)

P a d-dimensional polytope with n vertices
C (d , n) a d-dimensional cyclic polytope with n vertices

⇒ fd−1(P) ≤ fd−1(C (d , n))

Namely, cyclic polytopes maximize the number of facets among all
polytopes with the same number of vertices in the same dimension
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The upper bound theorem

The asymptotic upper bound theorem

The upper bound theorem is difficult to prove,
so we prove its asymptotic version, which is easier to prove

Theorem

P a d-dimensional simplicial polytope with n vertices
d ≥ 2 constant, n ≥ d + 1

⇒ fd−1(P) = O(nbd/2c)
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The upper bound theorem

The asymptotic upper bound theorem: Proof (1)

Proof strategy (Seidel ’95)

Consider P∗, which is a simple polytope

To prove

f0(P∗) ≤ 2fdd/2e(P
∗) for any d-dim simple polytope P∗

If done, then we get fd−1(P) ≤ 2fbd/2c−1(P)

Easy: fbd/2c−1(P) ≤
(

n
bd/2c

)
Therefore,

fd−1(P) ≤ 2

(
n

bd/2c

)
= O(nbd/2c)
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The upper bound theorem

The asymptotic upper bound theorem: Proof (2)

To prove

f0(P∗) ≤ 2fdd/2e(P
∗) for any d-dim simple polytope P∗

WLOG: All vertices of P∗ have distinct xd -coordinates

WLOG:

(by tiny rotation)

We double-count the pairs (v ,F ) of

vertices v of P∗ and
dd/2e-dim faces F of P∗ such that
v is the highest (or the lowest) vertex of F

Each dd/2e-dim face F has exactly one highest vertex and
exactly one lowest vertex
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The upper bound theorem

The asymptotic upper bound theorem: Proof (3)

To prove

f0(P∗) ≤ 2fdd/2e(P
∗) for any d-dim simple polytope P∗

Each vertex v is incident to d edges (∵ P∗ simple)

At least dd/2e edges going up from v , or
at least dd/2e edges going down from v (∵ pigeonhole principle)

The former case: These dd/2e edges determine a dd/2e-dim
face of P∗ that has v as the lowest pt (c.f. Exer 9.17)

The latter case: Similar

Therefore,

f0(P∗) ≤ # pairs to count = 2fdd/2e(P
∗)
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Summary

Polarity

Definition

A use of polarity: Convex hull computation

The number of facets

The number of facets of a d-dim polytope with n vertices
= O(nbd/2c) (Upper bound theorem)

Cyclic polytopes show this bound is tight

This shows an intrinsic difficulty of the convex hull computation
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Further reading

Matoušek: Lectures on Discrete Geometry

Chapter 5

Ziegler: Lectures on Polytopes

Lectures 0, 1, 2, 8

Edelsbrunner: Algorithms in Combinatorial Geometry

Chapters 1, 8
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