1631: Foundation of Computational Geometry (9) Polytopes I

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

November 7, 2011

"Last updated: 2011/11/07 8:39"

l631 (9)

Goal of this lecture

Background

- Convex polygons are basic objects in computational geometry
- Convex polytopes are analogues of convex polygons in high dimensions

Goal of this lecture

- Learn the relevant notions for convex polytopes
- Acquaint yourself with some intuitions for convex polytopes

Y. Okamoto (JAIST)	l631 (9)	2011-11-07	1 / 54
	Polytopes		
 Polytopes 			
Examples			
3 Faces			
4 Face lattices			

V-polytopes: Another example

V-polytopes

Y. Okamoto (JAIST)

A set $P \subseteq \mathbb{R}^d$ is a **V-polytope** if P is the convex hull of some finite point set

l631 (9)

Polytopes

H-polytopes

Y. Okamoto (JAIST)

A set $P \subseteq \mathbb{R}^d$ is an **H-polytope** if *P* is the intersection of a finite number of halfspaces, and *bounded*

Polytopes

l631 (9)

2011-11-07 8 / 54

Y. Okamoto (JAIST)	l631 (9) 2011	11-07 5 / 54	54	Y. Okamoto (JAIST)	l631 (9)	2011-11-07	6 / 54
Polyte	opes				Polytopes		
H-polytopes: Another example			_	Reminder: Boundedness	5		
H nalutanas				Roundodnoss (romindor)			
n-polytopes				Boundedness (reminder)			
A set $P \subseteq \mathbb{R}^d$ is an H -polytop	e if			A set $S \subseteq \mathbb{R}^d$ is bound	ed if \exists a real number $r \in \mathbb{R}$	R such that	
P is the intersection of a finite	number of halfspaces, and bo	unded	J		for all y C S		
					$\ 2 \leq I \qquad \text{for all } x \in J$		
					s r		

2011-11-07 7 / 54

Equivalence of V-polytopes and H-polytopes

Facts

- Every V-polytope is an H-polytope
 - If P is a V-polytope, then there exists a finite number of halfspaces such that P is their intersection
- Every H-polytope is a V-polytope
 - If *P* is an H-polytope, then there exists a finite point set such that *P* is its convex hull

Polytopes

Def.: Polytopes

A **polytope** is a V-polytope or an H-polytope

V-representation and H-representation

P a polytope

 A V-representation of P is the description of P as the convex hull of a finite point set

Polytopes

An H-representation of P is the description of P as the intersection of a finite number of halfspaces

Remark: H-polyhedra

H-polyhedra

A set $P \subseteq \mathbb{R}^d$ is an **H-polyhedron** if P is the intersection of a finite number of halfspaces

Polytopes

Namely, an H-polyhedron can be unbounded

I631 (9)

Dimension of an affine subspace

- To define the dimension of a polytope, we first define the dimension of an affine subspace
- Let S be an affine subspace of \mathbb{R}^d defined by

$$\{x \in \mathbb{R}^d \mid Ax = Ab'\}$$

for some natural number $k \leq d, \ A \in \mathbb{R}^{k imes d}$ and $b' \in \mathbb{R}^d$

Dimension of an affine subspace

S is r-dimensional if

the linear subspace $\{x \in \mathbb{R}^d \mid Ax = 0\}$ of \mathbb{R}^d is *r*-dimensional; Denote by dim(S) = r

Y. Okamoto (JAIST)

Dimension of an affine subspace: Example

 $S = \{x \in \mathbb{R}^d \mid Ax = Ab'\}$ for some $k \leq d$, $A \in \mathbb{R}^{k \times d}$ and $b' \in \mathbb{R}^d$

Dimension of an affine subspace

S is *r*-dimensional if the linear subspace $\{x \in \mathbb{R}^d \mid Ax = 0\}$ of \mathbb{R}^d is *r*-dimensional

Polytopes

The dimension of a red	line is 1
Y Okamoto (IAIST)	1631 (9)

Examples

l631 (9)

20	11-11-07 13	8 / 54

$P \subseteq \mathbb{R}^d$ a polytope

Polytopes

Closed intervals

A closed interval $I = [a, b] \subseteq \mathbb{R}$ is a polytope $(a \le b)$

Examples

Face lattices
 A Face lattices

Polytopes

2 Examples

B Faces

	Examples	
Cubes		

A *d*-dimensional cube C_d is $[-1,1]^d$

Y. Okamoto (JAIST)	l631 (9)	2011-11-07	17 / 54

Cubes: V-representations

Y. Okamoto (JAIST)

A *d*-dimensional cube C_d is $[-1, 1]^d$

l631 (9)

2011-11-07

18 / 54

Examples

Examples Cubes: H-representations

A *d*-dimensional cube C_d is $[-1, 1]^d$

H-representation:

$$C_d = \{x \in \mathbb{R}^d \mid -1 \le x_i \le 1 \text{ for all } i \in \{1, \dots, d\}\}$$

Y. Okamoto (JAIST)

2011-11-07 19 / 54

Examples Cubes: Dimensions

A *d*-dimensional cube C_d is $[-1,1]^d$

Y. Okamoto (JAIST)

l631 (9)

2011-11-07

22 / 54

Examples

Affine independence

To define a simplex, we first define affine independence

Examples

l631 (9)

2011-11-07 27 / 54

Y. Okamoto (JAIST)

Examples

Simplices

Valid inequalities

Faces

Faces

Faces A face of a polytope $P \subseteq \mathbb{R}^d$ is a set $P \cap \{x \mid a \cdot x = b\},\$ where $a \cdot x \leq b$ is a valid inequality for P

Faces

Y. Okamoto (JAIST)	l631 (9)	2011-11-07	30 / 54

Faces

Special faces

- $P \subseteq \mathbb{R}^d$ any polytope
 - P is a face of P
 - Let a = 0 and b = 0, then $\{x \mid a \cdot x = b\} = \mathbb{R}^d$, and so

Faces

$$P \cap \{x \mid a \cdot x = b\} = P \cap \mathbb{R}^d = P$$

- $\bullet \emptyset \text{ is a face of } P$
 - Let a = 0 and b = 1, then $\{x \mid a \cdot x = b\} = \emptyset$, and so

l631 (9)

$$P \cap \{x \mid a \cdot x = b\} = P \cap \emptyset = \emptyset$$

Faces of polytopes are polytopes

Observation

A face of a polytope is a polytope

<u>Proof</u>: Let *P* be a polytope and $F \subseteq P$ a face of *P*

- Let $F = P \cap \{x \mid a \cdot x = b\}$ = $P \cap \{x \mid a \cdot x \le b\} \cap \{x \mid a \cdot x \ge b\}$
- We know: P is the intersection of a finite number of halfspaces
- \therefore *F* is also the intersection of a finite number of halfspaces
- ∴ F is a polytope

Vertices, Edges, Ridges, Facets

Since faces are polytopes, the dimension of a face is naturally defined

Faces

Faces with special names
<i>P</i> a <i>d</i> -dimensional polytope
• \emptyset : (-1)-dimensional face
Vertex: 0-dimensional face
■ Edge: 1-dimensional face
Ridge: $(d-2)$ -dimensional face
Facet: $(d-1)$ -dimensional face
■ <i>P</i> : <i>d</i> -dimensional face

The 3-dim cube has eight vertices

l631 (9)

Faces

Y. Okamoto (JAIST)	l631 (9)	2011-11-07	33 / 54

	Faces	
Example: Edges		

The 3-dim cube has twelve edges

l631 (9)

In 3-dimensional polytopes, edges = ridges

		Faces
xample:	Facets	

The 3-dim cube has six facets

Y. Okamoto (JAIST)

2011-11-07 34 / 54

A face of a face of a polytope is a face of the polytope

Faces

Face lattices

l631 (9)

A polytope is the convex hull of its vertices

Faces

Polytopes

Examples

B Faces

4 Face lattices

Relationship of faces	

Fact (recap)			
$P \text{ a polytope} \\ F \subseteq P \text{ a face of } P \\ F' \subseteq F \text{ a face of } F \end{cases}$	\rightarrow \Rightarrow	F' a face of P	

Consequence

- Consider the relation "F' is a face of F" on all faces of P
- The fact above implies that this relation is transitive
- This relation is also reflexive
 - P is a face of P

Y. Okamoto (JAIST)

- This relation is also anti-symmetric
 - F is a face of F' and F' is a face of $F \Rightarrow F = F'$ (Exercise)

l631 (9)

• ... this relation defines a partial order

2011-11-07 40 / 54

Face lattices
Face lattices
Face lattices
The face lattice of a polytope P is the partially ordered set (\mathcal{F}, \leq)
where
• \mathcal{F} is the family of all faces of P
• $\forall F, F' \in \mathcal{F}$ $\cdot F' \leq F$ iff F' is a face of F

As the name suggests, this partially ordered set is actually a lattice, but this is not important in this lecture

l631 (9)

The right figure shows a Hasse diagram of the face lattice
For example, "1256" means "conv({1,2,5,6})"

Y. Okamoto (JAIST)	l631 (9)	2011-11-07 41 / 54	Y. Okamoto (JAIST)	l631 (9)	2011-11-07
Example: The 3-dimens	Face lattices sional crosspolytope C_3^*		Example: A 3-dimension	Face lattices nal simplex	
	123456			1234	
	123 125 134 145 23	256 346 456	4	3	34 2/34
2 3 4	$\begin{array}{c} 12 \\ 12 \\ 1 \\ 2 \\ 3 \\ 4 \\ \end{array}$	5 6	2	12 13 14 23 1 2 3	4
	Ø			Ø	

l631 (9)

Face lattices

Combinatorial equivalence

Isomorphism of partially ordered sets

Two partially ordered sets (X_1, \leq_1) and (X_2, \leq_2) are **isomorphic** if \exists a bijection $\varphi: X_1 \to X_2$ such that

Face lattices

$$x_1 \leq_1 x'_1 \qquad \Leftrightarrow \qquad \varphi(x_1) \leq_2 \varphi(x'_1)$$

Combinatorial equivalence of polytopes Two polytopes P and Q are **combinatorially equivalent** if their face lattices are isomorphic

Simple polytopes

opes

Face lattices

Simplicial polytopes

Simplicial polytopes

A *d*-dimensional polytope P is **simplicial** if every facet is incident to *d* ridges

Face lattices

Summary

Polytopes

- V-polytopes and H-polytopes
- Equivalence of V-polytopes and H-polytopes
- Examples: Cubes, Crosspolytopes, Simplices
- Simple polytopes and simplicial polytopes

Faces

■ Def: Intersection of the polytope and a supporting hyperplane

l631 (9)

- Vertices, edges, ..., ridges, facets
- Face lattices and combinatorial equivalence

Remarks

Equivalence of V-polytopes and H-polytopes

- They are mathematically identical objects
- However, we don't know they are computationally (or algorithmically) identical
 - We don't know an efficient algorithm to transform a V-representation of a polytope to an H-representation, and vice versa

Further reading

- Matoušek: Lectures on Discrete Geometry
 - Chapter 5
- Ziegler: Lectures on Polytopes
 - Lectures 0, 1, 2
- Edelsbrunner: Algorithms in Combinatorial Geometry
 - Chapters 1, 8

Y. Okamoto (JAIST)	l631 (9)	2011-11-07	53 / 54