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Goal of this lecture

Background

Convex polygons are basic objects in computational geometry

Convex polytopes are analogues of convex polygons in high
dimensions

Goal of this lecture

Learn the relevant notions for convex polytopes

Acquaint yourself with some intuitions for convex polytopes
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Polytopes

V-polytopes

V-polytopes

A set P ⊆ Rd is a V-polytope if
P is the convex hull of some finite point set
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Polytopes

V-polytopes: Another example

V-polytopes

A set P ⊆ Rd is a V-polytope if
P is the convex hull of some finite point set
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Polytopes

H-polytopes

H-polytopes

A set P ⊆ Rd is an H-polytope if
P is the intersection of a finite number of halfspaces, and bounded
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Polytopes

H-polytopes: Another example

H-polytopes

A set P ⊆ Rd is an H-polytope if
P is the intersection of a finite number of halfspaces, and bounded
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Polytopes

Reminder: Boundedness

Boundedness (reminder)

A set S ⊆ Rd is bounded if ∃ a real number r ∈ R such that

‖x‖2 ≤ r for all x ∈ S

S

O

r
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Polytopes

Equivalence of V-polytopes and H-polytopes

Facts

Every V-polytope is an H-polytope

If P is a V-polytope, then there exists a finite number of
halfspaces such that P is their intersection

Every H-polytope is a V-polytope

If P is an H-polytope, then there exists a finite point set such
that P is its convex hull
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Polytopes

Polytopes

Def.: Polytopes

A polytope is a V-polytope or an H-polytope

V-representation and H-representation

P a polytope

A V-representation of P is the description of P as
the convex hull of a finite point set

An H-representation of P is the description of P as
the intersection of a finite number of halfspaces
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Polytopes

Remark: H-polyhedra

H-polyhedra

A set P ⊆ Rd is an H-polyhedron if
P is the intersection of a finite number of halfspaces

Namely, an H-polyhedron can be unbounded

Y. Okamoto (JAIST) I631 (9) 2011-11-07 11 / 54

Polytopes

Dimension of an affine subspace

To define the dimension of a polytope,
we first define the dimension of an affine subspace

Let S be an affine subspace of Rd defined by

{x ∈ Rd | Ax = Ab′}

for some natural number k ≤ d , A ∈ Rk×d and b′ ∈ Rd

Dimension of an affine subspace

S is r-dimensional if
the linear subspace {x ∈ Rd | Ax = 0} of Rd is r -dimensional;
Denote by dim(S) = r
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Polytopes

Dimension of an affine subspace: Example

S = {x ∈ Rd | Ax = Ab′} for some k ≤ d , A ∈ Rk×d and b′ ∈ Rd

Dimension of an affine subspace

S is r-dimensional if
the linear subspace {x ∈ Rd | Ax = 0} of Rd is r -dimensional

x3

x2

x1

The dimension of a red line is 1
Y. Okamoto (JAIST) I631 (9) 2011-11-07 13 / 54

Polytopes

Dimension of a polytope

P ⊆ Rd a polytope

Dimension of a polytope

dim(P) = dim(
⋂

S affine: S⊇P

S)

Namely, P is r-dimensional if
the minimal affine subspace containing P is r -dimensional

dim(P) = 2 dim(P) = 3
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Examples

1 Polytopes

2 Examples
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4 Face lattices
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Examples

Closed intervals

A closed interval I = [a, b] ⊆ R is a polytope (a ≤ b)

a b

V-representation: I = conv({a, b})
H-representation: I = {x ∈ R | x ≥ a, x ≤ b}

dim(I ) =

{
1 if a < b,

0 if a = b
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Examples

Cubes

A d-dimensional cube Cd is [−1, 1]d
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Examples

Cubes: V-representations

A d-dimensional cube Cd is [−1, 1]d

(1, 1)

(1,−1)(−1,−1)

(−1, 1)

(1, 1,−1)

(−1, 1, 1)(−1,−1, 1)

V-representation:

Cd = conv({x ∈ Rd | xi ∈ {−1, 1} for all i ∈ {1, . . . , d}})
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Examples

Cubes: H-representations

A d-dimensional cube Cd is [−1, 1]d

x2 ≥ −1

x1 ≥ −1
x2 ≤ 1

x1 ≤ 1 x2 ≥ −1

H-representation:

Cd = {x ∈ Rd | −1 ≤ xi ≤ 1 for all i ∈ {1, . . . , d}}
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Examples

Cubes: Dimensions

A d-dimensional cube Cd is [−1, 1]d

Dimension:
dim(Cd) = d
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Examples

Crosspolytopes

A d-dimensional crosspolytope C ∗d is

{
x ∈ Rd |

d∑
i=1

|xi | ≤ 1

}
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Examples

Crosspolytopes: V-representations

A d-dimensional crosspolytope C ∗d is

{
x ∈ Rd |

d∑
i=1

|xi | ≤ 1

}

(0, 1)

(0,−1)

(1, 0)(−1, 0)

(0, 0, 1)

(0, 0,−1)

(−1, 0, 0)

(0, 1, 0)

(0,−1, 0)

(1, 0, 0)

V-representation: If ei denotes the ith standard basis vector

C ∗d = conv({ei | i ∈ {1, . . . , d}} ∪ {−ei | i ∈ {1, . . . , d}})
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Examples

Crosspolytopes: H-representations

A d-dimensional crosspolytope C ∗d is

{
x ∈ Rd |

d∑
i=1

|xi | ≤ 1

}

x1 + x2 ≤ 1

x1 − x2 ≤ 1

−x1 + x2 ≤ 1
−x1 − x2 ≤ 1

−x1 − x2 + x3 ≤ 1

H-representation:

C ∗d =

{
x ∈ Rd |

d∑
i=1

sixi ≤ 1, si ∈ {−1, 1} for all i ∈ {1, . . . , d}
}
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Examples

Crosspolytopes: Dimension

A d-dimensional crosspolytope C ∗d is

{
x ∈ Rd |

d∑
i=1

|xi | ≤ 1

}

Dimension:
dim(C ∗d ) = d
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Examples

Affine independence

To define a simplex, we first define affine independence

Affine independence

A set P = {p1, p2, . . . , pn} ⊆ Rd of points is affinely independent if
the vectors p1 − pn, p2 − pn, . . . , pn−1 − pn are linearly independent

p3 p1

p2

p3
p2

p1

affinely independent affinely dependent

Property (Exercise)

P ⊆ Rd is affinely independent ⇒ |P | ≤ d + 1
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Examples

Simplices

Simplex

A d-dimensional simplex is the convex hull of a set of d + 1
affinely independent points
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Examples

Simplices: A canonical construction

A d-dimensional regular simplex

∆d = conv({ei ∈ Rd+1 | i ∈ {1, . . . , d+1}})

Note: ∆d lives in Rd+1 but dim(∆d) = d
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Faces

1 Polytopes

2 Examples

3 Faces

4 Face lattices
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Faces

Valid inequalities

Valid inequalities

A valid inequality for a polytope P ⊆ Rd is an inequality

a · x ≤ b

for some a ∈ Rd and b ∈ R such that

∀ z ∈ P : a · z ≤ b

P
a · x ≤ b

The halfspace {x ∈ Rd | a · x ≤ b} contains P (when a 6= 0)
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Faces

Faces

Faces

A face of a polytope P ⊆ Rd is a set

P ∩ {x | a · x = b},

where a · x ≤ b is a valid inequality for P

P
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Faces

Special faces

P ⊆ Rd any polytope

P is a face of P

Let a = 0 and b = 0, then {x | a · x = b} = Rd , and so

P ∩ {x | a · x = b} = P ∩ Rd = P

∅ is a face of P

Let a = 0 and b = 1, then {x | a · x = b} = ∅, and so

P ∩ {x | a · x = b} = P ∩ ∅ = ∅
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Faces

Faces of polytopes are polytopes

Observation

A face of a polytope is a polytope

Proof: Let P be a polytope and F ⊆ P a face of P

Let F = P ∩ {x | a · x = b}

Let F

= P ∩ {x | a · x ≤ b} ∩ {x | a · x ≥ b}
We know: P is the intersection of a finite number of halfspaces

∴ F is also the intersection of a finite number of halfspaces

∴ F is a polytope
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Faces

Vertices, Edges, Ridges, Facets

Since faces are polytopes, the dimension of a face is naturally defined

Faces with special names

P a d-dimensional polytope

∅: (−1)-dimensional face

Vertex: 0-dimensional face

Edge: 1-dimensional face

Ridge: (d−2)-dimensional face

Facet: (d−1)-dimensional face

P : d-dimensional face
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Faces

Example: Vertices

The 3-dim cube has eight vertices
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Faces

Example: Edges

The 3-dim cube has twelve edges

In 3-dimensional polytopes, edges = ridges
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Faces

Example: Facets

The 3-dim cube has six facets
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Faces

A face of a face of a polytope is a face of the polytope

Fact

P a polytope
F ⊆ P a face of P
F ′ ⊆ F a face of F

 ⇒ F ′ a face of P
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Faces

A polytope is the convex hull of its vertices

Fact

P a polytope
V the set of vertices of P

}
⇒ P = conv(V )
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Face lattices

1 Polytopes

2 Examples

3 Faces

4 Face lattices
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Face lattices

Relationship of faces

Fact (recap)

P a polytope
F ⊆ P a face of P
F ′ ⊆ F a face of F

 ⇒ F ′ a face of P

Consequence

Consider the relation “F ′ is a face of F” on all faces of P

The fact above implies that this relation is transitive

This relation is also reflexive

P is a face of P

This relation is also anti-symmetric

F is a face of F ′ and F ′ is a face of F ⇒ F = F ′ (Exercise)

∴ this relation defines a partial order

Y. Okamoto (JAIST) I631 (9) 2011-11-07 40 / 54



Face lattices

Face lattices

Face lattices

The face lattice of a polytope P is the partially ordered set (F ,≤)
where

F is the family of all faces of P

∀ F ,F ′ ∈ F : F ′ ≤ F iff F ′ is a face of F

As the name suggests, this partially ordered set is actually a lattice,
but this is not important in this lecture
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Face lattices

Example: The 3-dimensional cube C3

1 2

34

5 6

78

12345678

1234 14581256 2367 3478 5678

12 14 15 23 26 34 37 48 56 58 67 78

1 2 3 4 5 6 7 8

∅

The right figure shows a Hasse diagram of the face lattice

For example, “1256” means “conv({1, 2, 5, 6})”
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Face lattices

Example: The 3-dimensional crosspolytope C ∗3

1

2
3

4

5

6

∅

1 2 3 4 5 6

12 13 14 15 23 25 26 34 36 45 46 56

123 125 134 145 236 256 346 456

123456
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Face lattices

Example: A 3-dimensional simplex

1
2

3

4

∅

1 2 3 4

12 13 14 23 24 34

123 124 134 234

1234
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Face lattices

Example: A 4-dimensional simplex

∅

1 2 3 4 5

12 13 14 15 23 24 25 34 35 45

123

124

125

134

135

145

234

235

245

345
1234

1235

1245

1345

2345

12345
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Face lattices

Combinatorial equivalence

Isomorphism of partially ordered sets

Two partially ordered sets (X1,≤1) and (X2,≤2) are isomorphic if
∃ a bijection ϕ : X1 → X2 such that

x1 ≤1 x ′1 ⇔ ϕ(x1) ≤2 ϕ(x ′1)

Combinatorial equivalence of polytopes

Two polytopes P and Q are combinatorially equivalent if
their face lattices are isomorphic
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Face lattices

Example 1: Combinatorial equivalence

1 2

34

5 6

78

5′ 6′

7′8′

1′ 2′
3′4′
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Face lattices

Example 2: Combinatorial equivalence

1

2
3

4

5

6

1′

2′

3′
4′

5′

6′

Note: The order types of the vertices are different
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Face lattices

Simple polytopes

Simple polytopes

A d-dimensional polytope P is simple if
every vertex is incident to d edges

1 2

34

5 6

78

12345678

1234 14581256 2367 3478 5678

12 14 15 23 26 34 37 48 56 58 67 78

1 2 3 4 5 6 7 8

∅

Cubes are simple
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Face lattices

Simplicial polytopes

Simplicial polytopes

A d-dimensional polytope P is simplicial if
every facet is incident to d ridges

1

2
3

4

5

6

∅

1 2 3 4 5 6

12 13 14 15 23 25 26 34 36 45 46 56

123 125 134 145 236 256 346 456

123456

Crosspolytopes are simplicial
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Summary

Polytopes

V-polytopes and H-polytopes

Equivalence of V-polytopes and H-polytopes

Examples: Cubes, Crosspolytopes, Simplices

Simple polytopes and simplicial polytopes

Faces

Def: Intersection of the polytope and a supporting hyperplane

Vertices, edges, ..., ridges, facets

Face lattices and combinatorial equivalence
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Remarks

Equivalence of V-polytopes and H-polytopes

They are mathematically identical objects

However, we don’t know they are computationally (or
algorithmically) identical

We don’t know an efficient algorithm to transform a
V-representation of a polytope to an H-representation, and vice
versa
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Further reading

Matoušek: Lectures on Discrete Geometry

Chapter 5

Ziegler: Lectures on Polytopes

Lectures 0, 1, 2

Edelsbrunner: Algorithms in Combinatorial Geometry

Chapters 1, 8
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