1631: Foundation of Computational Geometry(8) Order Types of Points

Yoshio Okamoto

Japan Advanced Institute of Science and Technology

November 2, 2011

"Last updated: 2011/11/09 10:36"

1631 (8)

2011-11-02 1 / 69

Schedule

Y. Okamoto (JAIST)

Lectures: Mon 9:20–10:30, Wed 11:00–12:30 Office hours: Mon 13:30–15:00

Organization of the second half

8 Order types of points		Nov 2 (Wed) 11:00–12:30
9 Polytopes 1		Nov 7 (Mon) 9:20–10:30
 (Office hour) 		Nov 7 (Mon) 13:30–15:00
Polytopes 2		Nov 9 (Wed) 11:00-12:30
Hyperplane arrangements 3	1	Nov 14 (Mon) 9:20–10:30
Hyperplane arrangements 2	2	Nov 14 (Mon) 13:30–15:00
Envelopes and Levels 1		Nov 16 (Wed) 11:00-12:30
• (Canceled)		Nov 21 (Mon) 9:20–10:30
Envelopes and Levels 2		Nov 28 (Mon) 9:20–10:30
• (Office hour)		Nov 28 (Mon) 13:30-15:00
🖪 Exam		Nov 30 (Wed) 11:00-12:30
Y. Okamoto (JAIST)	l631 (8)	2011-11-02 3 / 69

- ① Organization of the second half
- Ontents of the second half
- **3** Basic objects
- A quick tour: Interesting geometric theorems for points

I631 (8)

- **(**) Order type of a point set
- 6 Signed covectors and signed cocircuits

Exercises

Y. Okamoto (JAIST)

Each exercise set consists of three types:

- Recital Exercises: Repeating the contents of lectures
- Complementary Exercises:
 Filling the gaps in the contents of lectures

Organization of the second half

Supplementary Exercises:
 Enhancing the understanding of lectures

The exam will be based on the exercises,

so the easiest way to prepare for the exam is to work on them

2011-11-02 2 / 69

Organization of the second half

Office Hours

- Discuss over some exercises in Office Hours
- Students should come to the lecture room
- In advance, students should solve at least one complementary or supplementary exercise, and summarize the solution as a report
- Students should submit the report at Office Hours

Remark: Reports will be graded

Schedule Nov 7 (Mon) 13:30–15:00 Exercises from Lectures 8–9 Nov 28 (Mon) 13:30–15:00 Exercises from Lectures 10–14

l631 (8)

Exam

- Nov 30 (Wed) 11:00-12:30
- Six problems: three from Prof. Asano, three from me

Organization of the second half

■ Solve two problems from Prof. Asano and two from me

Problem types (from me)

Identical to Complementary or Supplementary Exercises

Y. Okamoto (JAIST)	l631 (8)	2011-11-02 5 / 69
Contents o	f the second half	
Organization of the set	cond half	
Ontents of the second	l half	
Basic objects		
		- · ·
A quick tour: Interesti	ng geometric theorems f	for points
6 Order type of a point s	set	

$\mathsf{Dimension} = \mathsf{The} \mathsf{ number} \mathsf{ of } \mathsf{ attributes} \mathsf{ for } \mathsf{ data}$

ID	Sepal length	Sepal width	Petal length	Petal width	Class
	(cm)	(cm)	(cm)	(cm)	
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3.0	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5.0	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5.0	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
÷	:	÷	÷	÷	:

(Fisher's Iris Data '36)

		Contents	s of the second half
Nhv	high	dimension?:	Optimization

Dimension = The number of decision variables

Status	Name	Sets	С	Rows	Cols	NZs	Ir
	30_70_45_095_100	Р	MBP	12526	10976	46640	
	30n20b8	в	IP	576	18380	109706	734
٠	50v-10	С	MIP	233	2013	2745	18
	a1c1s1	С	MBP	3312	3648	10178	
	acc-tight4	PR	BP	3285	1620	17073	
	acc-tight5	BPR	BP	3052	1339	<mark>1613</mark> 4	
	acc-tight6	PR	BP	3047	1335	16 <mark>1</mark> 08	
٠	aflow40b	в	MBP	1442	2728	6783	
	air04	в	BP	823	8904	72965	
	ann1-2	в	MRP	53467	26871	199175	

http://miplib.zib.de/miplib2010.php

Y. Okamoto (JAIST)	l631 (8)	2011-11-02 9 / 69	Y. Okamoto (JAIST)	l631 (8)	2011-11-02

Contents of the second half Why high dimension?: Robotics

Dimension = The degrees of freedom

Contents of the second half A general strategy for computational geometry

Characteristic of problems in computational geometry A search space is **continuous**

General strategy: Combinatorialization

Reduce the problem to a **discrete problem**

http://www.processonline.com.au/articles/36410-Packaging-automation-trends-using-small-assembly-robots-in-upstream-stre

l631 (8)

packaging-processes

2011-11-02 11 / 69

Contents of the second half Example 1: A shortest path problem

Given two points on the plane with polygonal obstacles, find a shortest path connecting the two points

Crucial observation			
A shortest path makes	turns only at corners of	obstacles	
Y. Okamoto (JAIST)	l631 (8)	2011-11-02	13 / 69

Given two points on the plane with polygonal obstacles, find a shortest path connecting the two points

Approach			
Build a "visibility graph	" and run a graph algor	ithm	
Y. Okamoto (JAIST)	l631 (8)	2011-11-02	14 / 69

Contents of the second half Example 2: Smallest enclosing disk problem

Given a finite set P of points on the plane, find a smallest disk that encloses all of them

Crucial observation

 \exists three points p, q, r such that the smallest encl. disk of P = the smallest encl. disk of $\{p, q, r\}$

I631 (8)

Contents of the second half Example 2: Smallest enclosing disk problem: Combinatorialization

Given a finite set P of points on the plane, find a smallest disk that encloses all of them

Approach

Going through all triples of points, and find the smallest enclosing disks of each of them

Y. Okamoto (JAIST)

Contents of the second half Focus on the second half of the course

Main topic

- How to describe high-dimensional objects in terms of combinatorics
- How to extract the essential combinatorial information
- What is essential?

• Organization of the second half

② Contents of the second half

Basic objects

A quick tour: Interesting geometric theorems for points

l631 (8)

Basic objects

6 Order type of a point set

Y. Okamoto (JAIST)

6 Signed covectors and signed cocircuits

Y. Okamoto (JAIST)	l631 (8)	2011-11-02	17 / 69

Ambient space

$d \geq 1$ a natural number

Ambient space

We work on the space \mathbb{R}^d (with Euclidean metric)

- d = 1: \mathbb{R}^1 is a line
- d = 2: \mathbb{R}^2 is a plane
- $d \geq 3$: We don't have a particular name for \mathbb{R}^d

In the sequel,

 $d \geq 1$ always represents the dimension of the ambient space

l631 (8)

Basic objects

Points

Definition: PointA point is an element of \mathbb{R}^d

2011-11-02

18 / 69

Hyperplanes

Definition: Hyperplane

A hyperplane is a subset of \mathbb{R}^d that can be represented as

Basic objects

$$\{x \in \mathbb{R}^d \mid a \cdot x = b\}$$

for some $a \in \mathbb{R}^d \setminus \{0\}$ and $b \in \mathbb{R}$

Hyperplane: A fact

A fact

Any hyperplane in \mathbb{R}^d partitions \mathbb{R}^d into three regions:

Basic objects

- $\{x \in \mathbb{R}^d \mid a \cdot x > b\}$ (open halfspace)
- { $x \in \mathbb{R}^d \mid a \cdot x = b$ } (hyperplane)
- $\{x \in \mathbb{R}^d \mid a \cdot x < b\}$ (open halfspace)

This can be proved via the intermediate value theorem

Y. Okamoto (JAIST)	l631 (8)	2011-11-02	22 / 69

Affine subspaces

Definition: Affine subspace An affine subspace of \mathbb{R}^d is a subset of \mathbb{R}^d that can be represented as $\{x \in \mathbb{R}^d \mid Ax = b\}$ for some natural number $k \leq d$, $A \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$ When d = 3: $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 + x_2 + x_3 = 2, x_2 = 1\}$

Basic objects

Points, lines, planes are affine subspaces in \mathbb{R}^d $(d \ge 2)$ Y. Okamoto (JAIST) 1631 (8) 2011-11-02 23 / 69

Closed halfspaces

Y. Okamoto (JAIST

Definition: Closed halfspace

A closed **halfspace** is a subset of \mathbb{R}^d that can be represented as

Basic objects

 $\{x \in \mathbb{R}^d \mid a \cdot x \le b\}$

for some $a \in \mathbb{R}^d \setminus \{0\}$ and $b \in \mathbb{R}$

When
$$d = 2$$
: $\{(x_1, x_2) \in \mathbb{R}^2 \mid 2x_1 - 3x_2 \le 6\}$

I631 (8)

2011-11-02 24 / 69

Open halfspaces

Definition: Open halfspace An open halfspace is a subset of \mathbb{R}^d that can be represented as $\{x \in \mathbb{R}^d \mid a \cdot x < b\}$ for some $a \in \mathbb{R}^d \setminus \{0\}$ and $b \in \mathbb{R}$ When d = 2: $\{(x_1, x_2) \in \mathbb{R}^2 \mid 2x_1 - 3x_2 < 6\}$

Basic objects

<section-header><text><text><text><equation-block><equation-block>

Basic objects

Properties of convex sets Properties of convex sets A closed halfspace and an open halfspace are convex (Exercise) The intersection of two convex sets is convex Proof of (2): Let S, T be convex, and will prove $S \cap T$ is convex To prove: $x, y \in S \cap T \Rightarrow \forall \lambda \in [0, 1]: \lambda x + (1 - \lambda)y \in S \cap T$ Fix $\lambda \in [0, 1]$ arbitrarily. Then $\lambda x + (1 - \lambda)y \in S$ (since $x, y \in S \cap T \subseteq S$) $\lambda x + (1 - \lambda)y \in T$ (since $x, y \in S \cap T \subseteq T$) $\therefore \lambda x + (1 - \lambda)y \in S \cap T$

l631 (8)

	Basic objects
onvex hull	

$X\subseteq \mathbb{R}^d$ a set

C

A quick tour: Interesting geometric theorems for points

- Organization of the second half
- Ontents of the second half
- Basic objects
- **4** A quick tour: Interesting geometric theorems for points

l631 (8)

- **6** Order type of a point set
- **6** Signed covectors and signed cocircuits

A quick tour: Interesting geometric theorems for points Goal of this section

- Look at geometric phenomena around finite point sets (without proofs)
- Look at some open problems in discrete geometry

Y. Okamoto (JAIST)	1631 (8)	2011-11-02 29 / 69	Y. Okamoto (JAIST)	1631 (8)	2011-11-02 30
A quick tour: Interesting geometric	theorems for points		A quick tour: Interesting geometric the	eorems for points	
Median of a 1-dimension	onal point set		Centerpoint theorem		
• $P \subseteq \mathbb{R}$ a finite po	int set on the line		Centerpoint theorem		(Rado '47
• $I \subseteq \mathbb{R}$ an interval			$\forall d \geq 1$ a natural number	er	
I doesn't contain	the median of $P \Rightarrow I \cap P $	$\leq n/2$	$\forall n \geq 0$ a natural number	er, $P\subseteq \mathbb{R}^d$ (with $ P =$	n)
		11	$\exists x \in \mathbb{R}^d$		
		n = 11	\forall convex set $S \subseteq \mathbb{R}^d$:		
	_	_			d
• ••	• • • <mark>• • •</mark>	•	$S \cap \{x\}$ =	$= \emptyset \Rightarrow S \cap P \leq -$	$\frac{d}{d+1}n$
					• • •
How can the "median"	be generalized when $d > 2$	2?	• •		

If a convex set needs to be smaller, then it should avoid more points

Weak ε -net theorem	(Alon, Bárány, Füredi, Kleitman '92)	
$ \begin{array}{l} \forall \ d \geq 1 \ \text{a natural number}, \ \varepsilon > 0 \ \text{a real number} \\ \exists \ f(d, \varepsilon) > 0 \\ \forall \ n \geq 0 \ \text{a natural number}, \ P \subseteq \mathbb{R}^d \ (\text{with } P = n) \\ \exists \ X \subseteq \mathbb{R}^d \ (\text{with } X = f(d, \varepsilon)) \\ \forall \ \text{convex set} \ S \subseteq \mathbb{R}^d: \end{array} $		
$S \cap X = \emptyset$	$\emptyset \Rightarrow S \cap P \le \varepsilon n$	
Open problem		
Determine $f(2, \varepsilon)$		
Best upper bound: $O(\frac{1}{\varepsilon^2})$	z) (Alon, Bárány, Füredi, Kleitman '92)	
Best lower bound: $\Omega(\frac{1}{\varepsilon})$	$\log \frac{1}{\varepsilon}$) (Bukh, Matoušek, Nivasch '11)	
Y. Okamoto (IAIST)	l631 (8) 2011-11-02 33 / 69	

A quick tour: Interesting geometric theorems for points Radon's lemma

A quick tour: Interesting geometric theorems for points	
Tverberg's theorem	

Tverberg's theorem	(Tverberg	'66)
$\forall d \ge 1, r \ge 2$ natural numbers		,
$\forall n \ge (d+1)(r-1)+1$ a natural number, $P \subseteq \mathbb{R}^{d}$ \exists an <i>r</i> -partition P_1, \ldots, P_r of P :	(with $ P =$	n)
p		

 $\operatorname{conv}(P_1) \cap \cdots \cap \operatorname{conv}(P_r) \neq \emptyset$

I631 (8)

Erdős–Szekeres theorem (Erdős, Szekeres '35)
$orall k \geq 1$ a natural number	
$\exists \ n \geq 1$ a natural number	
$\forall P \subseteq \mathbb{R}^2$ with $ P = n$, no three points collinear	
$\exists X \subseteq P \text{ with } X = k$:	
$x \in X \Rightarrow x ot \in \operatorname{conv}(X \setminus \{x\})$	

$$k = 5, n = 11$$

Y. Okamoto (JAIST)

Y. Okamoto (JAIST)

l631 (8)

2011-11-02 36 / 69

A quick tour: Interesting geometric theorems for points Erdős–Szekeres theorem: Open problem

Question

How small can *n* be?

Let

n(k) = smallest *n* for which Erdős–Szekeres theorem is true

Open problem	
Determine $n(k)$	
• Best upper bound: $n(k) \leq \binom{2k-5}{k-2} + 1$	(Tóth, Valtr '04)
• Best lower bound: $n(k) \ge 2^{k-2} + 1$	(Erdős, Szekeres '35)

l631 (8)

- Organization of the second half
- ② Contents of the second half
- **Basic objects**
- A quick tour: Interesting geometric theorems for points
- **③** Order type of a point set

Y. Okamoto (JAIST)

6 Signed covectors and signed cocircuits

Order type of a point set Goal of this section

Y. Okamoto (JAIST)

Understand an idea to extract combinatorial information of a finite point set

l631 (8)

Especially, the order type of a point set

- Answers don't change by rotation and scaling
- Answers only depend on "relative positions" of the points

l631 (8)

Question

- What is a relative position?
- Can we formalize what a relative position means?

2011-11-02 37 / 69

Y. Okamoto (JAIST)

2011-11-02 38 / 69

Order type of a point set Three points on the plane

- 3 points $p_1 = (p_{11}, p_{12})$, $p_2 = (p_{21}, p_{22})$, $p_3 = (p_{31}, p_{32})$ on the plane \mathbb{R}^2
- One of the following three (and exactly one of them) occurs
 - **•** p_3 lies "above" the line spanned by p_1 and p_2
 - p_3 lies "on" the the line spanned by p_1 and p_2
 - p_3 lies "below" the line spanned by p_1 and p_2

Y. Okamoto (JAIST)	l631 (8)	2011-11-02	41 / 69
. ,			

Order type of a point set Three points on the plane: Determination by a determinant

Let

$$\Delta(p_1, p_2, p_3) = egin{bmatrix} 1 & p_{11} & p_{12} \ 1 & p_{21} & p_{22} \ 1 & p_{31} & p_{32} \end{bmatrix}$$

Then

l631 (8)

Namely, we're only interested in the sign of $\Delta(p_1, p_2, p_3)!$

Order type of a point set The line spanned by p_1 and p_2 ...

Remember: We seek for a property that is invariant of rotation

Thus, we consider a "directed line"

Y. Okamoto (JAIST)	l631 (8)	2011-11-02	42 / 69

Order type of a point set

Sign

■ sgn(0) = 0

l631 (8)

2011-11-02 43 / 69

Order type of a planar point set

 $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^2 \text{ a finite point set}$ Order type (when d = 2) (Goodman, Pollack '83) The order type of P is a map χ : $\{1, \dots, n\}^3 \rightarrow \{+, -, 0\}$ such that $\chi(i_1, i_2, i_3) = \operatorname{sgn} \Delta(p_{i_1}, p_{i_2}, p_{i_3})$

The order type of P is also called the **chirotope** of P

Example

	•	
0	$p_3 p_4 \bullet \bullet$	• p ₅
ρ_1	•	
$\chi(1,2,3) = -,$	$\chi(1,2,4)=-$,	$\chi(1,2,5)=-$,
$\chi(1,3,4)=-,$	$\chi(1,3,5)=-$,	$\chi(1,4,5)=-$,
$\chi(2,3,4) = +,$	$\chi(2,3,5)=+$,	$\chi(2,4,5)=+$,
$\chi(3,4,5)=0$		

Order type of a point set

n.

Note			
The values not appearing	g here can be easily deriv	ved,	
e.g., $\chi(i_1, i_2, i_3) = -\chi(i_1, i_2)$, <i>i</i> ₃ , <i>i</i> ₂)		
Y. Okamoto (JAIST)	l631 (8)	2011-11-02	46 / 69

Order type of a point set Four points in \mathbb{R}^3

Y. Okamoto (JAIST)

- Four points $p_1 = (p_{11}, p_{12}, p_{13})$, $p_2 = (p_{21}, p_{22}, p_{23})$, $p_3 = (p_{31}, p_{32}, p_{33})$, $p_4 = (p_{41}, p_{42}, p_{43})$ in \mathbb{R}^3
- One of the following three (and exactly one of them) occurs

I631 (8)

- **•** p_4 lies "above" the plane spanned by p_1 , p_2 , p_3
- **•** p_4 lies "on" the plane spanned by p_1 , p_2 , p_3
- **•** p_4 lies "below" the plane spanned by p_1 , p_2 , p_3

I631 (8)

Order type of a point set The plane spanned by p_1 , p_2 , p_3

With an ordering p_1, p_2, p_3 , we can canonically find a normal vector of the plane by

 $(p_2-p_1) imes (p_3-p_1)$

This is invariant under rotation, scaling, ...

A care should be taken if p_1 , p_2 , p_3 are collinear

2011-11-02 45 / 69

Let

$$\Delta(p_1,p_2,p_3,p_4) = egin{bmatrix} 1 & p_{11} & p_{12} & p_{13} \ 1 & p_{21} & p_{22} & p_{23} \ 1 & p_{31} & p_{32} & p_{33} \ 1 & p_{41} & p_{42} & p_{43} \ \end{pmatrix}$$

Then

Order type of a point set Order type of a point set in \mathbb{R}^3

 $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^3$ a finite point set

Order type (when $d = 3$)	(Goodman, Pollack '83)
The order type of <i>P</i> is a map χ : $\{1, \ldots$	$,n\}^4 ightarrow \{+,-,0\}$ such that
$\chi(i_1,i_2,i_3,i_4) = \operatorname{sgn} \Delta(p_{i_1})$	$(, p_{i_2}, p_{i_3}, p_{i_4})$

The order type of P is also called the **chirotope** of P

Y. Okamoto (JAIST)	l631 (8)	2011-11-02	50 / 69

Order type of a point set Example: A regular octahedron

I631 (8)

Note

The values not appearing here can be easily derived, e.g., $\chi(i_1, i_2, i_3, i_4) = -\chi(i_1, i_2, i_4, i_3)$

Y. Okamoto (JAIST)

2011-11-02 51 / 69

Order type of a point set d+1 points in \mathbb{R}^d

- d+1 points $p_1, p_2, \ldots, p_{d+1}$ in \mathbb{R}^d
- We employ a similar approach to the case d = 3, but we don't have a cross product when d > 3
- We may employ Exterior Algebra for our purpose (and we do!), but a formal treatment is far beyond the scope of this lecture

Let

$$\Delta(p_1, p_2, \dots, p_{d+1}) = \begin{vmatrix} 1 & p_{11} & p_{12} & \cdots & p_{1d} \\ 1 & p_{21} & p_{22} & \cdots & p_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & p_{d+1,1} & p_{d+1,2} & \cdots & p_{d+1,d} \end{vmatrix}$$

l631 (8)

Order type of a point set in \mathbb{R}^d

 $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ a finite point set

Order type	(Goodman, Pollack '83)
The order type of P is a map χ : $\{1, \ldots, n\}$	$n\}^{d+1} ightarrow \{+,-,0\}$ s.t.
$\chi(i_1, i_2, \ldots, i_{d+1}) = \operatorname{sgn} \Delta(p_{i_1}, \ldots, i_{d+1})$	$p_{i_2},\ldots,p_{i_{d+1}})$

The order type of P is also called the **chirotope** of P

Y. Okamoto (JAIST)

l631 (8)

A bit of thought

The signed covectors are redundant

For example, ...

Y. Okamoto (JAIST)

- $(+, 0, +, -, -), (+, 0, 0, -, -), (+, 0, +, 0, -) \in \mathcal{V}^*(P)$
- But, "(+,0,0,-,-), (+,0,+,0,-) $\in \mathcal{V}^*(P)$ " tells you "(+,0,+,-,-) $\in \mathcal{V}^*(P)$ "
- So (+, 0, +, -, -) is redundant

Can we get rid of such redundancy? \rightsquigarrow Signed cocircuits $C^*(P)$

I631 (8)

- $\begin{aligned} \mathcal{V}^{*}(P) &= \{(\pm,\pm,\pm,\pm,\pm), (\mp,\pm,\pm,\pm,\pm), (\pm,\mp,\pm,\pm,\pm), (\pm,\pm,\pm,\pm,\mp), \\ (\mp,\mp,\pm,\pm,\pm), (\mp,\pm,\pm,\pm,\pm), (\mp,\pm,\pm,\pm,\pm), (\mp,\pm,\pm,\pm,\mp), (\pm,\mp,\mp,\pm,\pm), \\ (\pm,\mp,\pm,\pm,\pm), (\pm,\pm,\pm,\mp,\mp), (0,\pm,\pm,\pm,\mp), (0,\mp,\pm,\pm,\pm), \\ (0,\mp,\mp,\pm,\pm), (0,\pm,\pm,\pm,\mp), (\pm,0,\pm,\pm,\pm), (0,\mp,\pm,\pm), \\ (0,\mp,\mp,\pm,\pm), (0,\pm,\pm,\pm,\mp), (\pm,0,\pm,\pm,\pm), (\mp,0,\pm,\pm,\pm), \\ (\mp,0,\mp,\pm,\pm), (\pm,0,\pm,\pm,\mp), (\mp,\pm,0,\pm,\pm), (\pm,0,\pm,\pm), \\ (\mp,\mp,0,\pm,\pm), (\pm,\pm,0,\mp), (\mp,\pm,0,\pm), (\pm,\pm,0,\pm,\pm), \\ (\mp,\pm,0,\pm,\pm), (\pm,\pm,\pm,0,\mp), (\mp,\pm,0,\pm), (\pm,\pm,\pm,0), \\ (\mp,\pm,\pm,\pm,0), (\pm,\pm,\pm,0,\mp), (\mp,0,\pm,\pm), (0,\pm,0,\mp,\mp), \\ (0,\pm,\pm,0,\mp), (0,\pm,\pm,\pm,0), (0,0,\pm,\pm), (0,\pm,0,\mp,\mp), \\ (0,\pm,\pm,0,\mp), (0,\pm,\pm,0), (0,0,0,\pm,\pm), (0,\pm,0,\pm), \\ (\mp,0,\mp,\pm,0), (0,\pm,\pm,0), (0,0,0,0)\} \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned}$
- $\begin{array}{lll} \mathcal{C}^{*}(P) & = & \{(0,0,\pm,\pm,\pm),(0,\pm,0,\mp,\mp),(0,\pm,\pm,0,\mp),(0,\pm,\pm,\pm,0), \\ & & (\mp,0,0,\pm,\pm),(\mp,0,\mp,0,\pm),(\mp,0,\mp,\mp,0),(\mp,\pm,0,0,0)\} \end{array}$

Y. Okamoto (JAIST) I631 (8) 2011-11-02

Signed covectors and signed cocircuits A partial order on the set of signs

I631 (8)

- $(+, -, +, 0, -) \leq (+, -, +, +, -)$
- $(+, -, 0, 0, 0) \leq (+, -, +, +, -)$
- $\bullet (0, -, -, 0, +) \not\leq (+, -, +, +, -)$

Signed covectors and signed cocircuits

$$P = \{p_1, p_2, \dots, p_n\} \subseteq \mathbb{R}^2$$
 a point set

Signed cocircuits (when d = 2)

The signed cocircuits of *P* are the minimal elements in $\mathcal{V}^*(P) \setminus \{0\}$; The set of signed cocircuits of *P* is denoted by $\mathcal{C}^*(P)$

$$\begin{split} \mathcal{V}^*(P) &= \{(\pm,\pm,\pm,\pm,\pm),(\mp,\pm,\pm,\pm,\pm),(\pm,\mp,\pm,\pm,\pm),(\pm,\pm,\pm,\pm,\pm),(\pm,\pm,\pm,\pm,\mp),\\ (\mp,\mp,\pm,\pm,\pm),(\mp,\pm,\mp,\pm,\pm),(\mp,\pm,\pm,\pm,\pm),(\pm,\pm,\pm,\pm),(\pm,\mp,\mp,\pm,\pm),\\ (\pm,\mp,\pm,\pm,\pm),(\pm,\pm,\pm,\pm),((0,\pm,\pm,\pm,\pm),(0,\mp,\pm,\pm),(0,\mp,\pm,\pm,\pm),(0,\mp,\pm,\pm,\pm),(0,\mp,\pm,\pm,\pm),(0,\mp,\pm,\pm,\pm),(0,\pm,\pm,\pm),(0,\pm,\pm,\pm),(0,\pm,\pm,\pm),(0,\pm,\pm,\pm),(0,\pm,\pm,\pm),(0,\pm,\pm,\pm),(0,\pm,\pm,\pm),(0,\pm,\pm,\pm),((\pm,0,\pm,\pm,\pm),((\pm,0,\pm,\pm,\pm),((\pm,0,\pm,\pm,\pm),((\pm,0,\pm,\pm,\pm),((\pm,\pm,0,\pm,\pm),(\pm,\pm,0,\pm),(\pm,\pm,\pm,0),((\pm,\pm,\pm,\pm,0),((\pm,\pm,\pm,\pm,0),((\pm,\pm,\pm,\pm,0),((\pm,\pm,\pm,\pm,0),((\pm,\pm,\pm,\pm,0),((\pm,\pm,\pm,\pm,0),((\pm,\pm,\pm,\pm,0),((0,\pm,\pm,\pm,0),((0,0,\pm,\pm),((\pm,0,\pm,\pm),((0,\pm,\pm,\pm,0),((0,\pm,\pm,\pm),(0,\pm,\pm,0,\pm),((\pm,0,\pm,\pm,0,0,(0,0,\pm),\pm),((\pm,0,\pm,0,\pm),((\pm,0,\pm,\pm,0,0,((\pm,\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,\pm),((\pm,0,0,0,0),((\pm,0,0,\pm,0,0,0),((\pm,0,0,\pm,0,0,0,0)))) \end{split}$$

2011-11-02

61 / 69

62 / 69

Summary

Three ways of extracting combinatorics of point sets

- Order type
- Signed covectors
- Signed cocircuits

Remarks

- It's known (but we don't prove in the lecture) that these three objects carry the same information
 - We can transform one to another, without passing through coordinates of the points
- Such combinatorial descriptions motivate us to study "oriented matroids"
 - Interface between combinatorics, topology, and geometry

I631 (8)

Further reading

- Ziegler: Lectures on Polytopes
 - Lecture 6
- Matoušek: Lectures on Discrete Geometry
 - Chapters 1, 3, 8, 10
- Edelsbrunner: Algorithms in Combinatorial Geometry
 - Chapter 1
- Björner, Las Vergnas, Sturmfels, White, Ziegler: Oriented Matroids
- Bokowski: Computational Oriented Matroids