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Organization of the second half

Schedule

Lectures: Mon 9:20–10:30, Wed 11:00–12:30
Office hours: Mon 13:30–15:00

8 Order types of points Nov 2 (Wed) 11:00–12:30

9 Polytopes 1 Nov 7 (Mon) 9:20–10:30

• (Office hour) Nov 7 (Mon) 13:30–15:00

10 Polytopes 2 Nov 9 (Wed) 11:00–12:30

11 Hyperplane arrangements 1 Nov 14 (Mon) 9:20–10:30

12 Hyperplane arrangements 2 Nov 14 (Mon) 13:30–15:00

13 Envelopes and Levels 1 Nov 16 (Wed) 11:00–12:30

• (Canceled) Nov 21 (Mon) 9:20–10:30

14 Envelopes and Levels 2 Nov 28 (Mon) 9:20–10:30

• (Office hour) Nov 28 (Mon) 13:30–15:00

15 Exam Nov 30 (Wed) 11:00–12:30
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Organization of the second half

Exercises

Each exercise set consists of three types:

Recital Exercises:
Repeating the contents of lectures

Complementary Exercises:
Filling the gaps in the contents of lectures

Supplementary Exercises:
Enhancing the understanding of lectures

The exam will be based on the exercises,
so the easiest way to prepare for the exam is to work on them
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Organization of the second half

Office Hours

Discuss over some exercises in Office Hours

Students should come to the lecture room

In advance, students should solve at least one complementary or
supplementary exercise, and summarize the solution as a report

Students should submit the report at Office Hours

Remark: Reports will be graded

Schedule

Nov 7 (Mon) 13:30–15:00

Exercises from Lectures 8–9

Nov 28 (Mon) 13:30–15:00

Exercises from Lectures 10–14
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Organization of the second half

Exam

Nov 30 (Wed) 11:00–12:30

Six problems: three from Prof. Asano, three from me

Solve two problems from Prof. Asano and two from me

Problem types (from me)

Identical to Complementary or Supplementary Exercises
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Contents of the second half
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Contents of the second half

Computational Geometry in High Dimension

What’s “high” dimension?

The dimension is arbitrary (and typically more than three)

Why high dimension?

Many problems are intrinsically high-dimensional

Data analysis

Optimization

Robotics

...
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Contents of the second half

Why high dimension?: Data analysis

Dimension = The number of attributes for data

ID Sepal length Sepal width Petal length Petal width Class
(cm) (cm) (cm) (cm)

1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5.0 3.6 1.4 0.2 Iris-setosa
6 5.4 3.9 1.7 0.4 Iris-setosa
7 4.6 3.4 1.4 0.3 Iris-setosa
8 5.0 3.4 1.5 0.2 Iris-setosa
9 4.4 2.9 1.4 0.2 Iris-setosa
...

...
...

...
...

...

(Fisher’s Iris Data ’36)
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Contents of the second half

Why high dimension?: Optimization

Dimension = The number of decision variables

http://miplib.zib.de/miplib2010.php
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Contents of the second half

Why high dimension?: Robotics

Dimension = The degrees of freedom

http://www.processonline.com.au/articles/36410-Packaging-automation-trends-using-small-assembly-robots-in-upstream-

packaging-processes
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Contents of the second half

A general strategy for computational geometry

Characteristic of problems in computational geometry

A search space is continuous

General strategy: Combinatorialization

Reduce the problem to a discrete problem
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Contents of the second half

Example 1: A shortest path problem

Given two points on the plane with polygonal obstacles,
find a shortest path connecting the two points

Crucial observation

A shortest path makes turns only at corners of obstacles
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Contents of the second half

Example 1: A shortest path problem: Combinatorialization

Given two points on the plane with polygonal obstacles,
find a shortest path connecting the two points

Approach

Build a “visibility graph” and run a graph algorithm
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Contents of the second half

Example 2: Smallest enclosing disk problem

Given a finite set P of points on the plane,
find a smallest disk that encloses all of them

Crucial observation

∃ three points p, q, r such that
the smallest encl. disk of P = the smallest encl. disk of {p, q, r}
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Contents of the second half

Example 2: Smallest enclosing disk problem: Combinatorialization

Given a finite set P of points on the plane,
find a smallest disk that encloses all of them

Approach

Going through all triples of points,
and find the smallest enclosing disks of each of them
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Contents of the second half

Focus on the second half of the course

Main topic

How to describe high-dimensional objects in terms of
combinatorics

How to extract the essential combinatorial information

What is essential?
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Basic objects

Ambient space

d ≥ 1 a natural number

Ambient space

We work on the space Rd (with Euclidean metric)

d = 1: R1 is a line

d = 2: R2 is a plane

d ≥ 3: We don’t have a particular name for Rd

In the sequel,
d ≥ 1 always represents the dimension of the ambient space
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Basic objects

Points

Definition: Point

A point is an element of Rd
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Basic objects

Hyperplanes

Definition: Hyperplane

A hyperplane is a subset of Rd that can be represented as

{x ∈ Rd | a · x = b}

for some a ∈ Rd \ {0} and b ∈ R

When d = 2: {(x1, x2) ∈ R2 | 2x1 − 3x2 = 6}When d = 3:
{(x1, x2, x3) ∈ R3 | 2x1 + x2 + x3 = 2}

x1

x2

x3

x2

x1
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Basic objects

Hyperplane: A fact

A fact

Any hyperplane in Rd partitions Rd into three regions:

{x ∈ Rd | a · x > b} (open halfspace)

{x ∈ Rd | a · x = b} (hyperplane)

{x ∈ Rd | a · x < b} (open halfspace)

x1

x2

This can be proved via the intermediate value theorem
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Basic objects

Affine subspaces

Definition: Affine subspace

An affine subspace of Rd is a subset of Rd that can be represented
as

{x ∈ Rd | Ax = b}
for some natural number k ≤ d , A ∈ Rk×d and b ∈ Rk

When d = 3: {(x1, x2, x3) ∈ R3 | 2x1 + x2 + x3 = 2, x2 = 1}
x3

x2

x1

Points, lines, planes are affine subspaces in Rd (d ≥ 2)
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Basic objects

Closed halfspaces

Definition: Closed halfspace

A closed halfspace is a subset of Rd that can be represented as

{x ∈ Rd | a · x ≤ b}

for some a ∈ Rd \ {0} and b ∈ R

When d = 2: {(x1, x2) ∈ R2 | 2x1 − 3x2 ≤ 6}

x1

x2
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Basic objects

Open halfspaces

Definition: Open halfspace

An open halfspace is a subset of Rd that can be represented as

{x ∈ Rd | a · x < b}

for some a ∈ Rd \ {0} and b ∈ R

When d = 2: {(x1, x2) ∈ R2 | 2x1 − 3x2 < 6}

x1

x2
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Basic objects

Convex sets

Definition: Convex set

A set S ⊆ Rd is convex if it satisfies the following condition

x , y ∈ S ⇒ ∀λ ∈ [0, 1] : λx + (1− λ)y ∈ S

x

y
x

y
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Basic objects

Properties of convex sets

Properties of convex sets

1 A closed halfspace and an open halfspace are convex (Exercise)

2 The intersection of two convex sets is convex

Proof of (2): Let S ,T be convex, and will prove S ∩ T is convex

To prove: x , y ∈ S ∩ T ⇒ ∀λ ∈ [0, 1]: λx + (1− λ)y ∈ S ∩ T

Fix λ ∈ [0, 1] arbitrarily. Then

λx + (1− λ)y ∈ S (since x , y ∈ S ∩ T ⊆ S)
λx + (1− λ)y ∈ T (since x , y ∈ S ∩ T ⊆ T )
∴ λx + (1− λ)y ∈ S ∩ T
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Basic objects

Convex hull

X ⊆ Rd a set

Definition: Convex hull

The convex hull of X is the intersection of all convex sets
containing X :

conv(X ) =
⋂

S convex,X⊆S

S
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A quick tour: Interesting geometric theorems for points
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A quick tour: Interesting geometric theorems for points

Goal of this section

Look at geometric phenomena around finite point sets
(without proofs)

Look at some open problems in discrete geometry
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A quick tour: Interesting geometric theorems for points

Median of a 1-dimensional point set

P ⊆ R a finite point set on the line

I ⊆ R an interval

I doesn’t contain the median of P ⇒ |I ∩ P | ≤ n/2

n = 11

How can the “median” be generalized when d ≥ 2?
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A quick tour: Interesting geometric theorems for points

Centerpoint theorem

Centerpoint theorem (Rado ’47)

∀ d ≥ 1 a natural number
∀ n ≥ 0 a natural number, P ⊆ Rd (with |P | = n)
∃ x ∈ Rd

∀ convex set S ⊆ Rd :

S ∩ {x} = ∅ ⇒ |S ∩ P | ≤ d

d + 1
n

d = 2,
n = 18,

d
d+1

n = 12
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A quick tour: Interesting geometric theorems for points

Weak ε-net theorem

If a convex set needs to be smaller, then it should avoid more points

Weak ε-net theorem (Alon, Bárány, Füredi, Kleitman ’92)

∀ d ≥ 1 a natural number, ε > 0 a real number
∃ f (d , ε) > 0
∀ n ≥ 0 a natural number, P ⊆ Rd (with |P | = n)
∃ X ⊆ Rd (with |X | = f (d , ε))
∀ convex set S ⊆ Rd :

S ∩ X = ∅ ⇒ |S ∩ P | ≤ εn

Open problem

Determine f (2, ε)

Best upper bound: O( 1
ε2

) (Alon, Bárány, Füredi, Kleitman ’92)

Best lower bound: Ω(1
ε

log 1
ε
) (Bukh, Matoušek, Nivasch ’11)
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A quick tour: Interesting geometric theorems for points

Radon’s lemma

Radon’s lemma (Radon ’21)

∀ d ≥ 1 a natural number
∀ n ≥ d + 2 a natural number, P ⊆ Rd (with |P | = n)
∃ a bipartition P1,P2 of P (P = P1 ∪ P2 and P1 ∩ P2 = ∅):

conv(P1) ∩ conv(P2) 6= ∅

d = 2, n = 6
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A quick tour: Interesting geometric theorems for points

Tverberg’s theorem

Tverberg’s theorem (Tverberg ’66)

∀ d ≥ 1, r ≥ 2 natural numbers
∀ n ≥ (d + 1)(r − 1) + 1 a natural number, P ⊆ Rd (with |P | = n)
∃ an r -partition P1, . . . ,Pr of P :

conv(P1) ∩ · · · ∩ conv(Pr ) 6= ∅

d = 2, r = 3, n = 7
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A quick tour: Interesting geometric theorems for points

Erdős–Szekeres theorem

Erdős–Szekeres theorem (Erdős, Szekeres ’35)

∀ k ≥ 1 a natural number
∃ n ≥ 1 a natural number
∀ P ⊆ R2 with |P | = n, no three points collinear
∃ X ⊆ P with |X | = k :

x ∈ X ⇒ x 6∈ conv(X \ {x})

k = 5, n = 11
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A quick tour: Interesting geometric theorems for points

Erdős–Szekeres theorem: Open problem

Question

How small can n be?

Let

n(k) = smallest n for which Erdős–Szekeres theorem is true

Open problem

Determine n(k)

Best upper bound: n(k) ≤
(
2k−5
k−2

)
+ 1 (Tóth, Valtr ’04)

Best lower bound: n(k) ≥ 2k−2 + 1 (Erdős, Szekeres ’35)
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Order type of a point set

Goal of this section

Understand an idea to extract combinatorial information of a
finite point set

Especially, the order type of a point set
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Order type of a point set

Common features of the theorems we saw

Answers don’t change by rotation and scaling

Answers only depend on “relative positions” of the points

Question

What is a relative position?

Can we formalize what a relative position means?
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Order type of a point set

Three points on the plane

3 points p1 = (p11, p12), p2 = (p21, p22), p3 = (p31, p32)
on the plane R2

One of the following three (and exactly one of them) occurs

p3 lies “above” the line spanned by p1 and p2
p3 lies “on” the the line spanned by p1 and p2
p3 lies “below” the line spanned by p1 and p2

p1

p2

p3

p1

p2

p3

p1

p2
p3
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Order type of a point set

The line spanned by p1 and p2...

Remember: We seek for a property that is invariant of rotation

p1

p2
p3

p1

p2

p3

p1

p2
p3

p1

p2

p3

Thus, we consider a “directed line”
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Order type of a point set

Three points on the plane: Determination by a determinant

Let

∆(p1, p2, p3) =

∣∣∣∣∣∣
1 p11 p12
1 p21 p22
1 p31 p32

∣∣∣∣∣∣
Then

p3 lies


above

on
below

 the directed line spanned by p1 and p2

m

∆(p1, p2, p3)


>
=
<

 0

Namely, we’re only interested in the sign of ∆(p1, p2, p3)!
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Order type of a point set

Sign

Sign

The sign of a real number x ∈ R is
a symbol sgn(x) ∈ {+,−, 0} defined as

sgn(x) =


+
0
−

⇔ x


>
=
<

 0

sgn(3.4) = +

sgn(−4) = −
sgn(0) = 0
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Order type of a point set

Order type of a planar point set

P = {p1, . . . , pn} ⊆ R2 a finite point set

Order type (when d = 2) (Goodman, Pollack ’83)

The order type of P is a map χ : {1, . . . , n}3 → {+,−, 0} such that

χ(i1, i2, i3) = sgn ∆(pi1 , pi2 , pi3)

The order type of P is also called the chirotope of P
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Order type of a point set

Example

p1

p2

p3 p4

p5

χ(1, 2, 3) = −, χ(1, 2, 4) = −, χ(1, 2, 5) = −,
χ(1, 3, 4) = −, χ(1, 3, 5) = −, χ(1, 4, 5) = −,
χ(2, 3, 4) = +, χ(2, 3, 5) = +, χ(2, 4, 5) = +,
χ(3, 4, 5) = 0

Note

The values not appearing here can be easily derived,
e.g., χ(i1, i2, i3) = −χ(i1, i3, i2)
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Order type of a point set

Four points in R3

Four points p1 = (p11, p12, p13), p2 = (p21, p22, p23),
p3 = (p31, p32, p33), p4 = (p41, p42, p43) in R3

One of the following three (and exactly one of them) occurs

p4 lies “above” the plane spanned by p1, p2, p3
p4 lies “on” the plane spanned by p1, p2, p3
p4 lies “below” the plane spanned by p1, p2, p3

p1 p2

p3

p1 p2

p3

p1 p2

p3

p4

p4

p4
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Order type of a point set

The plane spanned by p1, p2, p3

With an ordering p1, p2, p3,
we can canonically find a normal vector of the plane by

(p2 − p1)× (p3 − p1)

This is invariant under rotation, scaling, ...

p1 p2

p3

p4

(p2−p1)× (p3−p1)

A care should be taken if p1, p2, p3 are collinear
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Order type of a point set

Four points in R3: Determination by a determinant

Let

∆(p1, p2, p3, p4) =

∣∣∣∣∣∣∣∣
1 p11 p12 p13
1 p21 p22 p23
1 p31 p32 p33
1 p41 p42 p43

∣∣∣∣∣∣∣∣
Then

p4 lies


above

on
below

 the plane spanned by p1, p2, p3

m

∆(p1, p2, p3, p4)


>
=
<

 0

(Exercise)
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Order type of a point set

Order type of a point set in R3

P = {p1, . . . , pn} ⊆ R3 a finite point set

Order type (when d = 3) (Goodman, Pollack ’83)

The order type of P is a map χ : {1, . . . , n}4 → {+,−, 0} such that

χ(i1, i2, i3, i4) = sgn ∆(pi1 , pi2 , pi3 , pi4)

The order type of P is also called the chirotope of P
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Order type of a point set

Example: A regular octahedron

p1

p2
p3

p4

p5

p6

χ(1, 2, 3, 4) = −, χ(1, 2, 3, 5) = −, χ(1, 2, 3, 6) = −,
χ(1, 2, 4, 5) = −, χ(1, 2, 4, 6) = 0, χ(1, 2, 5, 6) = +,
χ(1, 3, 4, 5) = −, χ(1, 3, 4, 6) = −, χ(1, 3, 5, 6) = 0,
χ(1, 4, 5, 6) = −, χ(2, 3, 4, 5) = 0, χ(2, 3, 4, 6) = −,
χ(2, 3, 5, 6) = −, χ(2, 4, 5, 6) = −, χ(3, 4, 5, 6) = −

Note

The values not appearing here can be easily derived,
e.g., χ(i1, i2, i3, i4) = −χ(i1, i2, i4.i3)
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Order type of a point set

d + 1 points in Rd

d + 1 points p1, p2, . . . , pd+1 in Rd

We employ a similar approach to the case d = 3, but we don’t
have a cross product when d > 3

We may employ Exterior Algebra for our purpose (and we do!),
but a formal treatment is far beyond the scope of this lecture
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Order type of a point set

d + 1 points in Rd : Determination by a determinant

Let

∆(p1, p2, . . . , pd+1) =

∣∣∣∣∣∣∣∣∣
1 p11 p12 · · · p1d
1 p21 p22 · · · p2d
...

...
...

. . .
...

1 pd+1,1 pd+1,2 · · · pd+1,d

∣∣∣∣∣∣∣∣∣
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Order type of a point set

Order type of a point set in Rd

P = {p1, . . . , pn} ⊆ Rd a finite point set

Order type (Goodman, Pollack ’83)

The order type of P is a map χ : {1, . . . , n}d+1 → {+,−, 0} s.t.

χ(i1, i2, . . . , id+1) = sgn ∆(pi1 , pi2 , . . . , pid+1
)

The order type of P is also called the chirotope of P
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Signed covectors and signed cocircuits

Goal of this section

Understand another (but essentially identical) idea to extract
combinatorial information of a finite point set

Especially, the signed covectors and the signed cocircuits of a
point set
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Signed covectors and signed cocircuits

A line and a point in R2

A line {x ∈ R2 | a1x1 + a2x2 = b} and a point p ∈ R2

One of the following three (and exactly one of them) occurs

a1p1 + a2p2 > b (p lies above the line)
a1p1 + a2p2 = b (p lies on the line)
a1p1 + a2p2 < b (p lies below the line)

p

p

p
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Signed covectors and signed cocircuits

Separation of a point set by lines in R2

p1

p2

p3 p4

p5
`

p2, p4, p5 lie above `

p3 lies on `

p1 lies below `

 a sign vector (−,+, 0,+,+)
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Signed covectors and signed cocircuits

Signed covectors of a point set in R2

P = {p1, p2, . . . , pn} ⊆ R2 a point set

Signed covectors (when d = 2)

The signed covectors of P are the vectors in {+,−, 0}n defined as

V∗(P) = {(sgn(a · p1 − b), . . . , sgn(a · pn − b)) | a ∈ R2, b ∈ R}
⊆ {+,−, 0}n
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Signed covectors and signed cocircuits

Example

p1

p2

p3 p4

p5

V∗(P) = {(±,±,±,±,±), (∓,±,±,±,±), (±,∓,±,±,±), (±,±,±,±,∓),

{

(∓,∓,±,±,±), (∓,±,∓,±,±), (∓,±,±,±,∓), (±,∓,∓,±,±),

{

(±,∓,±,±,∓), (±,±,±,∓,∓), (0,±,±,±,±), (0,∓,±,±,±),

{

(0,∓,∓,±,±), (0,±,±,±,∓), (±, 0,±,±,±), (∓, 0,±,±,±),

{

(∓, 0,∓,±,±), (±, 0,±,±,∓), (∓,±, 0,±,±), (±,∓, 0,±,±),

{

(∓,∓, 0,±,±), (±,±,±, 0,∓), (∓,±,∓, 0,±), (±,±,±,±, 0),

{

(∓,±,±,±, 0), (±,∓,±,±, 0), (0, 0,±,±,±), (0,±, 0,∓,∓),

{

(0,±,±, 0,∓), (0,±,±,±, 0), (∓, 0, 0,±,±), (∓, 0,∓, 0,±),

{

(∓, 0,∓,∓, 0), (∓,±, 0, 0, 0), (0, 0, 0, 0, 0)}
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Signed covectors and signed cocircuits

A bit of thought

The signed covectors are redundant

p1

p2

p3 p4

p5

For example, ...

(+, 0,+,−,−), (+, 0, 0,−,−), (+, 0,+, 0,−) ∈ V∗(P)

But, “(+, 0, 0,−,−), (+, 0,+, 0,−) ∈ V∗(P)” tells you
“(+, 0,+,−,−) ∈ V∗(P)”

So (+, 0,+,−,−) is redundant

Can we get rid of such redundancy?  Signed cocircuits C∗(P)
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Signed covectors and signed cocircuits

Example

V∗(P) = {(±,±,±,±,±), (∓,±,±,±,±), (±,∓,±,±,±), (±,±,±,±,∓),

{

(∓,∓,±,±,±), (∓,±,∓,±,±), (∓,±,±,±,∓), (±,∓,∓,±,±),

{

(±,∓,±,±,∓), (±,±,±,∓,∓), (0,±,±,±,±), (0,∓,±,±,±),

{

(0,∓,∓,±,±), (0,±,±,±,∓), (±, 0,±,±,±), (∓, 0,±,±,±),

{

(∓, 0,∓,±,±), (±, 0,±,±,∓), (∓,±, 0,±,±), (±,∓, 0,±,±),

{

(∓,∓, 0,±,±), (±,±,±, 0,∓), (∓,±,∓, 0,±), (±,±,±,±, 0),

{

(∓,±,±,±, 0), (±,∓,±,±, 0), (0, 0,±,±,±), (0,±, 0,∓,∓),

{

(0,±,±, 0,∓), (0,±,±,±, 0), (∓, 0, 0,±,±), (∓, 0,∓, 0,±),

{

(∓, 0,∓,∓, 0), (∓,±, 0, 0, 0), (0, 0, 0, 0, 0)}
C∗(P) = {(0, 0,±,±,±), (0,±, 0,∓,∓), (0,±,±, 0,∓), (0,±,±,±, 0),

{

(∓, 0, 0,±,±), (∓, 0,∓, 0,±), (∓, 0,∓,∓, 0), (∓,±, 0, 0, 0)}
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Signed covectors and signed cocircuits

A partial order on the set of signs

A partial order on the set of signs

We define a partial order ≤ on the set {+,−, 0} of signs as

0 ≤ + and 0 ≤ −
(+ and − are incomparable)

The order ≤ is extended to the set {+,−, 0}n of sign vectors as

x ≤ y ⇔ xi ≤ yi for all i ∈ {1, . . . , n}

For example,

(+,−,+, 0,−) ≤ (+,−,+,+,−)

(+,−, 0, 0, 0) ≤ (+,−,+,+,−)

(0,−,−, 0,+) 6≤(+,−,+,+,−)
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Signed covectors and signed cocircuits

Signed cocircuits

P = {p1, p2, . . . , pn} ⊆ R2 a point set

Signed cocircuits (when d = 2)

The signed cocircuits of P are the minimal elements in V∗(P) \ {0};
The set of signed cocircuits of P is denoted by C∗(P)

V∗(P) = {(±,±,±,±,±), (∓,±,±,±,±), (±,∓,±,±,±), (±,±,±,±,∓),

{

(∓,∓,±,±,±), (∓,±,∓,±,±), (∓,±,±,±,∓), (±,∓,∓,±,±),

{

(±,∓,±,±,∓), (±,±,±,∓,∓), (0,±,±,±,±), (0,∓,±,±,±),

{

(0,∓,∓,±,±), (0,±,±,±,∓), (±, 0,±,±,±), (∓, 0,±,±,±),

{

(∓, 0,∓,±,±), (±, 0,±,±,∓), (∓,±, 0,±,±), (±,∓, 0,±,±),

{

(∓,∓, 0,±,±), (±,±,±, 0,∓), (∓,±,∓, 0,±), (±,±,±,±, 0),

{

(∓,±,±,±, 0), (±,∓,±,±, 0), (0, 0,±,±,±), (0,±, 0,∓,∓),

{

(0,±,±, 0,∓), (0,±,±,±, 0), (∓, 0, 0,±,±), (∓, 0,∓, 0,±),

{

(∓, 0,∓,∓, 0), (∓,±, 0, 0, 0), (0, 0, 0, 0, 0)}

Y. Okamoto (JAIST) I631 (8) 2011-11-02 64 / 69



Signed covectors and signed cocircuits

Signed covectors and signed cocircuits in Rd

When d ≥ 3

The definitions are naturally extended

P = {p1, p2, . . . , pn} ⊆ Rd a point set

Signed covectors

The signed covectors of P are the vectors in {+,−, 0}n defined as

V∗(P) = {(sgn(a · p1 − b), . . . , sgn(a · pn − b)) | a ∈ Rd , b ∈ R}

Signed cocircuits

The signed cocircuits of P are the minimal elements in V∗(P) \ {0};
The set of signed cocircuits of P is denoted by C∗(P)

(Bland, Las Vergnas ’78; Folkman, Lawrence ’78)
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Signed covectors and signed cocircuits

Example: A regular octahedron

p1

p2
p3

p4

p5

p6

C∗(P) = {(0, 0, 0,±,±,±), (0, 0,±,±, 0,±), (0,±, 0, 0,±,±), (0,±,±, 0, 0,±),

{

(±, 0, 0,±,±, 0), (±, 0,±,±, 0, 0), (±,±, 0, 0,±, 0), (±,±,±, 0, 0, 0),

{

(0, 0,±, 0,∓, 0), (0,±, 0,∓, 0, 0), (±, 0, 0, 0, 0,∓)}
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Summary

Three ways of extracting combinatorics of point sets

Order type

Signed covectors

Signed cocircuits

Remarks

It’s known (but we don’t prove in the lecture) that these three
objects carry the same information

We can transform one to another, without passing through
coordinates of the points

Such combinatorial descriptions motivate us to study “oriented
matroids”

Interface between combinatorics, topology, and geometry
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Further reading

Ziegler: Lectures on Polytopes

Lecture 6

Matoušek: Lectures on Discrete Geometry

Chapters 1, 3, 8, 10

Edelsbrunner: Algorithms in Combinatorial Geometry

Chapter 1

Björner, Las Vergnas, Sturmfels, White, Ziegler: Oriented
Matroids

Bokowski: Computational Oriented Matroids
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