Topics on Computing and Mathematical Sciences I Graph Theory (10) Random Graphs

Guest Lecture by Kiyohito Nagano

Tokyo Institute of Technology

June 25, 2008

"Last updated: Thu June 26 12:50 2008"

Today's contents

- Random graphs
- Probabilistic methods
- The Galton-Watson process

Probability space

Definition (Probability space)

A pair (Ω, \mathbb{P}) is a finite probability space if Ω is a finite set and \mathbb{P} is a map from Ω into $\mathbb{R}_{\geq 0}$ with $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$

Example: An unbiased dice

$$\Omega = \{1,\,2,\,3,\,4,\,5,\,6\}$$

$$\mathbb{P}(1) = \mathbb{P}(2) = \mathbb{P}(3) = \mathbb{P}(4) = \mathbb{P}(5) = \mathbb{P}(6) = \frac{1}{6}$$

Random graphs

$$V=\{1,\,\ldots,\,n\}$$
 a set of vertices $N=\binom{n}{2}=rac{n(n-1)}{2}$ p a number with $0\leq p\leq 1$

Definition (Random graph I)

- ullet We select the edges of K_n independently, with probability p
- $\mathcal{G}(n, p) = (\mathcal{G}_n, \mathbb{P}_p)$ is a probability space, where \mathcal{G}_n is the set of all 2^N graphs on V and

$$\mathbb{P}_{p}(H) = p^{m}(1-p)^{N-m}$$

if the graph H on V has precisely m edges

• $G_{n,p}$ denotes a random graph in the space $\mathcal{G}(n,p)$

Random graphs

$$V = \{1, \ldots, n\}$$
 a set of vertices

$$N = \binom{n}{2} = \frac{n(n-1)}{2}$$

M an integer with 0 < M < N

Definition (Random Graph II)

• $\mathcal{G}(n, M) = (\mathcal{G}_{n,M}, \mathbb{P}_M)$ is a probability space, where $\mathcal{G}_{n,M}$ is the set of all $\binom{N}{M}$ subgraphs of K_n with M edges and

$$\mathbb{P}_M(H) = \binom{N}{M}^{-1}$$

for all $H \in \mathcal{G}_{n, M}$

• $G_{n,M}$ denotes a random graph in the space $\mathcal{G}(n,M)$

Tools from probability: Expectation

$$(\Omega, \mathbb{P}) = \mathcal{G}(n, p) \text{ or } \mathcal{G}(n, M)$$

A random variable X on Ω is a mapping $X:\Omega\to\mathbb{R}$

The expectation
$$\mathbb{E}(X)$$
 of X is $\mathbb{E}(X) = \sum_{G \in \Omega} \mathbb{P}(G) \cdot X(G)$

Lemma 10.1

For two random variables X and Y on Ω , $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$

Proof

$$\mathbb{E}(X + Y) = \sum_{G \in \Omega} \mathbb{P}(G) \cdot (X(G) + Y(G))$$
$$= \sum_{G \in \Omega} \mathbb{P}(G) \cdot X(G) + \sum_{G \in \Omega} \mathbb{P}(G) \cdot Y(G) = \mathbb{E}(X) + \mathbb{E}(Y)$$

Tools from probability: Markov's inequality

$$(\Omega, \mathbb{P}) = \mathcal{G}(n, p)$$
 or $\mathcal{G}(n, M)$
 $X = X(G)$ a non-negative random variable on Ω
 $a > 0$ a number

Lemma 10.2 (Markov's inequality)

$$\operatorname{Prob}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$$

Proof

$$\mathbb{E}(X) = \sum_{G \in \Omega} \mathbb{P}(G) \cdot X(G) \ge \sum_{\substack{G \in \Omega \\ X(G) \ge a}} \mathbb{P}(G) \cdot X(G)$$
$$\ge \sum_{G \in \Omega} \mathbb{P}(G) \cdot a = \operatorname{Prob}(X \ge a) \cdot a$$

Structure of random graphs

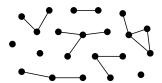
What does $G_{n, p}$ look like?

For further information, refer to "Random Graphs" by Bollobás (1985)

An isolated tree is a connected component without cycles Denote by T(G) the number of vertices contained in isolated trees of GClearly $T(G) \le n$

Suppose p = c/n, where c is a constant with 0 < c < 1; Then

- $\mathbb{E}(T(G_{n,p})) = n + \mathrm{O}(1)$
- For almost every $G_{n,p}$, the size of the largest component is $O(\ln n)$



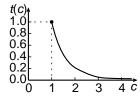
Structure of random graphs

T(G) # of vertices contained in isolated trees of G

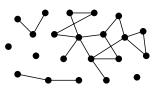
Suppose p = c/n, where c is a constant with c > 1; Then

•
$$\mathbb{E}(T(G_{n, p})) = t(c) \cdot n + \mathrm{O}(1)$$
, where

$$t(c) = \frac{1}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} (c \cdot e^{-c})^k$$



• For almost every $G_{n,p}$, it has a unique giant component, and all other vertices form trees of size $O(\ln n)$



Structure of random graphs

The following is the most celebrated theorem in the theory of random graphs:

Erdős-Řenyi theorem (1960)

Suppose
$$p = c \cdot \frac{\ln n}{n}$$
. Then
$$\lim_{n \to +\infty} \operatorname{Prob}(G_{n,\,p} \text{ is connected}) = \left\{ \begin{array}{l} 1 & \text{if } c > 1 \\ 0 & \text{if } 0 < c < 1 \end{array} \right.$$

In other words, $\frac{\ln n}{n}$ is a sharp threshold for the connectivity of $G_{n,p}$

Today's contents

- Random graphs
- Probabilistic methods
- The Galton-Watson process

A theorem of Erdős

Theorem 10.3 (Erdős '59) (This fact was stated in Lecture 7)

For every $k \ge 2$, there exists a graph G with $\chi(G) > k$ and g(G) > k.

Reminder:

 $\chi(G) =$ the chromatic number of G

g(G) = the girth (the length of a shortest cycle) of G

Let us see that this theorem can be proved using random graphs This approach is called a probabilistic method

Proof outline of the theorem of Erdős

Proof outline of Theorem 10.3

Choose $p:=n^{-\frac{k}{k+1}}=\frac{1}{n}\cdot n^{\frac{1}{k+1}}$ ($>\frac{1}{n}$, and $>\frac{\ln n}{n}$ for sufficiently large n) and consider $\mathcal{G}(n,\ p)$ for all n

We have that as n goes to infinity

- $\alpha(G_{n,p}) < \frac{n}{2k}$ holds with high probability (Lemma 10.4)
- # of all cycles of length $\leq k$ of $G_{n,p}$ is at most $\frac{n}{2}$ with high probability (Lemma 10.5)

As a result, there must exist a graph with desired properties

Reminder:

$$\alpha(G)$$
 = the size of a maximum independent set of G $\chi(G) \cdot \alpha(G) \geq n$

Properties of random graphs

Lemma 10.4

If $p:=n^{-\frac{k}{k+1}},\ \exists n_1\in\mathbb{N}$ such that for all $n\geq n_1$

$$\operatorname{Prob}\left(\alpha(G_{n,\,p})\geq \frac{n}{2k}\right)<\frac{1}{2}$$

Lemma 10.5

If $p := n^{-\frac{k}{k+1}}$, $\exists n_2$ such that for all $n \ge n_2$

$$\operatorname{Prob}\Bigl((\# \text{ of all cycles of length} \leq k \text{ of } G_{n,\,p}) \geq \frac{n}{2}\Bigr) < \frac{1}{2}$$

By Lemmas 10.4 and 10.5, there exists a graph G on V with

- $\alpha(G) < \frac{n}{2k}$
- fewer than $\frac{n}{2}$ cycles of length $\leq k$.

Properties of random graphs

Proof of Lemma 10.4

$$p := n^{-\frac{k}{k+1}}$$
; Suppose $2 \le r := \lceil \frac{n}{2k} \rceil$

- Prob(a fixed r-set $\subseteq V$ is independent) = $(1-p)^{\binom{r}{2}}$
- $\operatorname{Prob}(\alpha(G_p) \geq r) \leq \binom{n}{r} (1-p)^{\binom{r}{2}}$ $\leq n^r (1-p)^{r(r-1)/2} = (n(1-p)^{(r-1)/2})^r$ $\leq (ne^{-p(r-1)/2})^r$ $(1-p \leq e^{-p})$ $\leq (ne^{-pr/2} \cdot e^{\frac{1}{2}})^r$ $(p \leq 1)$
- $pr \ge \frac{n}{2k} \cdot n^{-\frac{k}{k+1}} = \frac{1}{2k} \cdot n^{\frac{1}{k+1}} \ge 3 \ln n$ for all $n \ge n'_1$
- $ne^{-pr/2} \cdot e^{\frac{1}{2}} \le ne^{-3\ln n/2} \cdot e^{\frac{1}{2}} = (\frac{e}{n})^{1/2}$ for all $n \ge n_1'$
- $\operatorname{Prob}(\alpha(G_p) \geq r) \leq (\frac{e}{n})^{r/2}$ for all $n \geq n_1'$

 $\frac{e}{n}$ converges to 0 as n goes to $+\infty$

◆ロ → ◆部 → ◆ き → ◆ き → り へ で

Properties of random graphs

Proof of Lemma 10.5

 $i \in \mathbb{N}$ an integer with $3 \le i \le k$

- (# of possible *i*-cycles on V) = $\binom{n}{i} \frac{(i-1)!}{2}$
- Every such cycle C appears with probability p^i

X a random variable that counts # of all cycles of length $\leq k$ of $G_{n,p}$

•
$$\mathbb{E}(X) = \sum_{i=3}^{k} \binom{n}{i} \frac{(i-1)!}{2} p^i \le \frac{1}{2} \sum_{i=3}^{k} n^i p^i \le \frac{1}{2} (k-2) n^k p^k$$

•
$$\operatorname{Prob}(X \ge \frac{n}{2}) \le \frac{\mathbb{E}(X)}{n/2}$$
 (Markov's inequality)

$$\le (k-2)\frac{(np)^k}{n}$$

$$= (k-2)n^{-\frac{1}{k+1}}$$

$$n^{-\frac{1}{k+1}}$$
 converges to 0 as n goes to $+\infty$

Proof of the theorem of Erdős

Proof of Theorem 10.3

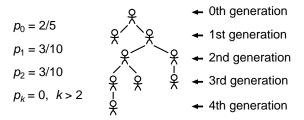
- By Lemmas 10.4 and 10.5, there exists a graph G on V with $\alpha(G) < \frac{n}{2k}$ and fewer than $\frac{n}{2}$ cycles of length $\leq k$.
- Delete one vertex from each of cycles of length $\leq k$ Let H be the resulting graph
- We have g(H) > k
- $\alpha(H) \le \alpha(G) < \frac{n}{2k}$ and $\chi(H) \cdot \alpha(H) \ge n(H) \ge \frac{n}{2}$ $\Rightarrow \chi(H) > k$
- Thus, H is a graph with desired properties

Today's contents

- Random graphs
- Probabilistic methods
- The Galton-Watson process

Definition (The Galton-Watson process $\{Z_i : i = 0, 1, ...\}$ (around 1873))

- Z_i denotes the number of people in the i-th generation
- $Z_0 = 1$ (There exists a unique root)
- Z_1 has a fixed distribution: $Prob(Z_1 = k) = p_k, \ k \ge 0$
- Each child produces offspring according to the same distribution



Probability distribution $\{p_k : k \ge 0\}$ is called an offspring distribution

$$\{p_k: k \geq 0\}$$
 an offspring distribution

$$\operatorname{Prob}(\operatorname{extinction}) = \operatorname{Prob}(Z_k = 0 \text{ for some } k \geq 0)$$

We want to determine whether Prob(extinction) = 1 or not

$$\longrightarrow$$
 Basically, it only depends on $\mu:=\mathbb{E}(Z_1)=\sum\limits_{k=0}^{+\infty}k\cdot p_k$

Suppose
$$p_0 + p_1 = 1$$
; Clearly, $\mu = p_1$
If $p_1 < 1$, then $\operatorname{Prob}(\operatorname{extinction}) = 1$
If $p_1 = 1$, then $\operatorname{Prob}(\operatorname{extinction}) = 0$

Thus, it suffices to consider the case where $p_0 + p_1 < 1$

 $\{p_k : k \ge 0\}$ an offspring distribution

Theorem 10.6

Suppose $p_0 + p_1 < 1$. Then

$$\operatorname{Prob}(\mathsf{extinction}) \left\{ \begin{array}{ll} = 1 & \text{if } \mu \leq 1 \\ < 1 & \text{if } \mu > 1, \end{array} \right.$$

where
$$\mu = \mathbb{E}(Z_1) = \sum_{k=0}^{+\infty} k \cdot p_k$$

Note that the population becomes extinct with probability one even if $\mu = 1$

Intuitive explanation of Theorem 10.6 (i)

q = Prob(extinction); We have $0 \le q \le 1$

- Prob(extinction $|Z_1 = k) = q^k$
- $q = \sum_{k=0}^{\infty} p_k \cdot \text{Prob}(\text{extinction}|Z_1 = k) = \sum_{k=0}^{\infty} p_k q^k$

Define
$$f(s) = \sum_{k=0}^{\infty} p_k s^k \ (s \in \mathbb{R})$$

- f(q) = q and f(1) = 1
- $f'(s) = \sum_{k=1}^{\infty} k p_k s^{k-1}$ and $f'(1) = \sum_{k=1}^{\infty} k p_k = \mu$
- s^k is strictly convex on [0, 1] if $k \ge 2$, and $p_k > 0$ for some $k \ge 2$ $\Rightarrow f(s)$ is strictly convex on [0, 1]

Intuitive explanation of Theorem 10.6 (ii)

Suppose $f'(1) = \mu \leq 1$

- Equation f(s) = s has a unique solution s = 1 on [0, 1]
- Thus, we obtain q=1

Suppose $f'(1) = \mu > 1$; Remark that $f(0) = p_0 \ge 0$

- Equation f(s) = s has two distinct solutions s = 1 and $\alpha \in [0, 1)$
- We can expect that $q = \alpha$

