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Random graphs

Probability space

Definition (Probability space)
A pair (2, P) is a finite probability space if Q is a finite set and P is a map
from Q into R>o with ) o P(w) =1

Example: An unbiased dice
Q=1{1,23,4,56}
P(1) = P(2) = P(3) = P(4)
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Random graphs

Random graphs

V ={1, ..., n} a set of vertices
~1

V= () = oo
p anumberwith0 < p<1
Definition (Random graph I)

o We select the edges of K, independently, with probability p

e G(n, p) = (Gn, Pp) is a probability space, where G, is the set of all

2N graphs on V and

Pp(H) = p™(1 = p)"—"

if the graph H on V has precisely m edges
* Gp,p denotes a random graph in the space G(n, p)
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Random graphs

Random graphs

V ={1, ..., n} a set of vertices

= (3) = 2D

M an integer with 0 < M < N

Definition (Random Graph II)

* G(n, M) = (Gnm, Pun) is a probability space, where G, y is the set of

all (,\’\2) subgraphs of K, with M edges and

forall He G, m

e Gp, i denotes a random graph in the space G(n, M)
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Random graphs

Tools from probability: Expectation

(Q, P) =G(n, p) or G(n, M)
A random variable X on Q is a mapping X : Q2 - R
The expectation E(X) of X is E(X) = Z P(G) - X(G)
GeQ
Lemma 10.1
For two random variables X and Y on Q, E(X + Y) = E(X) + E(Y)

Proof
EX +Y)= > P(G)-(X(G)+ Y(G))
GeQ
= > P(G) - X(G)+ > P(G)-Y(G) =E(X) +E(Y)
GeQ GeQ ]

v
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(€, G(n, p) or G(n, M)
X =

P) =
X(G)

a non-negative random variable on Q
> 0 a number

Prob(X > a) S

_
BX) = X P(6)-X(6)> ¥ B(6)-X(6)
X(G)>a
> > P(G)-a=Prob(X > a)
X(G)>a
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Random graphs

Structure of random graphs

What does G, , look like?
For further information, refer to “Random Graphs" by Bollobas (1985)

An isolated tree is a connected component without cycles
Denote by T(G) the number of vertices contained in isolated trees of G

Clearly T(G) < n

Suppose p = ¢/n, where c is a constant with 0 < ¢ < 1; Then

o E(T(Gp,,)) =n+0(1)

e For almost every G, p, the size of the largest component is O(In n)
“/
°
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Random graphs

Structure of random graphs

T(G) # of vertices contained in isolated trees of G

Suppose p = c¢/n, where c is a constant with ¢ > 1; Then

o E(T(Gp,p)) = t(c) - n+ O(1), where &(%
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e For almost every G p, it has a unique giant component, and all other
vertices form trees of size O(In n)

Rt
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Random graphs

Structure of random graphs

The following is the most celebrated theorem in the theory of random
graphs:

Erdés-Renyi theorem (1960)
I
Suppose p=c - 7 Then
n

lim Prob(G, , is connected) =
lim_Prob(Gp,p )

1 ifc>1
0 f0<c<l1

Inn . .
In other words, — is a sharp threshold for the connectivity of G,
n
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Probabilistic methods

A theorem of Erdés

Theorem 10.3 (Erd8s '59) (This fact was stated in Lecture 7)
For every k > 2, there exists a graph G with x(G) > k and g(G) > k. J

Reminder:
X(G) = the chromatic number of G
g(G) = the girth (the length of a shortest cycle) of G

Let us see that this theorem can be proved using random graphs
This approach is called a probabilistic method J
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Probabilistic methods

Proof outline of the theorem of Erdds

Proof outline of Theorem 10.3

R i 1 Inn L
Choose p := n" 1 = . n&T (> ~, and > 1 for sufficiently large n) and

consider G(n, p) for all n

We have that as n goes to infinity
e aGp,p) < 5 holds with high probability (Lemma 10.4)

o # of all cycles of length < k of G, p, is at most 7 with high
probability (Lemma 10.5)

As a result, there must exist a graph with desired properties

Reminder:
a(G) = the size of a maximum independent set of G

X(G) - a(G) = n
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Probabilistic methods

Properties of random graphs

Lemma 10.4

k
If p:= n" %1, dn; € N such that for all n > n;

Prob(a(G,,,p) > ﬁ) < %

Lemma 10.5

k
If p:= n~ %1, dny such that for all n > ny

1
Prob((# of all cycles of length < k of G, ) > g) < 5
By Lemmas 10.4 and 10.5, there exists a graph G on V with

* a(G) < 5

n

o fewer than 7 cycles of length < k.
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Probabilistic methods

Properties of random graphs

Proof of Lemma 10.4
F= n_k__’;.l; Suppose 2 S ri= ’Vﬁ—l

e Prob(a fixed r-set C V is independent) = (1 — p)(g)

e Prob(a(G,) >r) < (7)(1 - )()
< (1= p) /2 = (n{1 = p)r D2y
< (neslr=/2y (1-p<e)
< (ne~p/2 . ety (p<1)

k
n a1 — 1 T !
® pr>ap-n k= 4o nk+1 >3Inn forall n>ny

1 1
o nePr/2.e2 < e 3NN/2.e2 = (&)1/2 forall n> nf

o Prob(a(Gp) > r) < (£)7/2 forall n>nf

£ converges to 0 as n goes to +00 O

w
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Probabilistic methods

Properties of random graphs

Proof of Lemma 10.5
i € N an integer with 3 </ < k
; ; m (i—1)!
e (# of possible i-cycles on V) = (") 6 S )

e Every such cycle C appears with probability p’

X a random variable that counts # of all cycles of length < k of G, ,

o B(X) = i (DL < 3508 nip’ < J(k —2)nkpk

i

e Prob(X > 17) < % (Markov's inequality)
< (k -2tk (p=n~"1)
1
=(k—2)n "1
nFa converges to 0 as n goes to 400 ]
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Probabilistic methods

Proof of the theorem of Erdds

Proof of Theorem 10.3

e By Lemmas 10.4 and 10.5, there exists a graph G on V with
a(G) < 5 and fewer than 7 cycles of length < k.

Delete one vertex from each of cycles of length < k
Let H be the resulting graph

We have g(H) > k

e a(H) < a(G) < £ and x(H) - a(H) > n(H) > 1
= x(H) >k
e Thus, H is a graph with desired properties O
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The Galton-Watson process

The Galton-Watson process

Definition (The Galton-Watson process {Z; : i =0, 1, ...} (around 1873))

Z; denotes the number of people in the i-th generation

Zo = 1 (There exists a unique root)
Z; has a fixed distribution: Prob(Z; = k) = px, k >0

Each child produces offspring according to the same distribution

% < Oth generation
Po = 2/5 %/ \% < 1st generation
p; =3/10 < i
Q ® <« 2nd generation
= 3/10 > ' i
p, =3/ Q & < 3rd generation
Pk = O, k>2

< 4th generation

Probability distribution {py : k > 0} is called an offspring distribution
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The Galton-Watson process

The Galton-Watson process

{pk : k > 0} an offspring distribution

Prob(extinction) = Prob(Zy = 0 for some k > 0) $
|
R

We want to determine whether Prob(extinction) = 1 or not

+o0
— Basically, it only depends on p:=E(Z1) = > k- px
k=0

>to
N\

Suppose pg + p1 = 1; Clearly, u = p1
If p1 < 1, then Prob(extinction) =1
If p1 =1, then Prob(extinction) = 0

Thus, it suffices to consider the case where pg + p; < 1
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The Galton-Watson process

The Galton-Watson process

{pk : k > 0} an offspring distribution
Theorem 10.6
Suppose pg + p1 < 1. Then

=1 ifu<l

Prob(extinction){ <1 fu>1

+00
where p =E(Z1) = > k- pk
k=0

Note that the population becomes extinct with probability one even if

p=1
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The Galton-Watson process

The Galton-Watson process

Intuitive explanation of Theorem 10.6 (i)
q = Prob(extinction); We have 0 < g <1

o Prob(extinction|Z; = k) = g*

o0
e g= Y px - Prob(extinction|Z; = k) = 2% o pkg¥
k=0
Define f(s) = 5. pis* (s € R)
k=0
e f(g)=qgand f(1) =1

o £/(s)= 3 kpks ! and F(1) = L2, kpk = 1
k=1

o s¥ is strictly convex on [0, 1] if kK > 2, and pyx > 0 for some k > 2
= f(s) is strictly convex on [0, 1]
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The Galton-Watson process

The Galton-Watson process

Intuitive explanation of Theorem 10.6 (ii)
Suppose (1) =pu <1
e Equation f(s) = s has a unique solution s = 1 on [0, 1]
e Thus, we obtain g =1
Suppose f'(1) = pu > 1; Remark that 7(0) = pp > 0
e Equation f(s) = s has two distinct solutions s =1 and « € [0, 1)

e We can expect that g = « 0
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