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Coloring, chromatic number

Coloring

G = (V,E) a graph; k a natural number

Definition (Coloring)

A k-coloring of Gisamap c: V — {1,...,k};
The vertices of one color form a color class;
A k-coloring of G is proper if c(u) # c(v) for all {u,v} € E

Each element of the range of a coloring is called a color
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G = (V,E) a graph; k a natural number

G is k-colorable if 3 a proper k-coloring of G l
2

1 3 not 3-colorable

1

but 4-colorable
Note: G k-colorable = G (-colorable for all £ > k

DA




G =(V,E) a graph
The chromatic number of G is the min k for which G is k-colorable '

X(G) = the chromatic number of G I
2
A
2 1
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G = (V,E) a graph; k a natural number

G is k-chromatic if x(G) = k l
Remark: G k-colorable < x(G) < k

13

4-chromatic,
1

but not 3-chromatic,
not 5-chromatic
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o (K, =77
o X(Kmn) =177
o x(P,) =77
o \(C)=7

o x(Petersen) = 7?7

HC G = x(H) <x(G) '




Coloring, chromatic number

Color-critical graphs

G = (V,E) a graph; x(G) = k

Definition (Color-critical graph)
G is k-critical if x(H) < x(G) for every proper subgraph H of G

Observation

e For G without isolated vertex:
G k-critical & x(G—e) < x(G) foralle € E

e G 2-critical & G ~ K,
e G 3-critical & G an odd cycle

2 2 2 2
1 31 31 31 3
31
2 3 3 2 3 2 2 2
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= (V,E) a graph
A set S C V is independent if no two vertices of S are adjacent l
c is a proper k-coloring of G = each color class is independent '

?




G = (V, E) a graph; r a natural number

G is r-partite if 3 a partition Vi U---U V, of V sit. {u,v} € E =
{u,v} € V; for any i

G k-colorable < G k-partite '

DA




Coloring, chromatic number
Deciding k-colorability

Problem k-COLORABILITY

Pre-input: A natural number k
Input: A graph G
Question: Is G k-colorable?

o k <2 = k-COLORABILITY is poly-time solvable
e k >3 = k-COLORABILITY is NP-complete (Karp '72)
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Lower bounds, perfect graphs

Easy lower bound (1)

Definition (clique, clique number (recap))
A set S C V is a clique if every pair of vertices of S are adjacent;
w(G) = the size of a largest clique of G

Proposition 6.1 (Easy lower bound for the chromatic number)

X(G) > w(G) for every graph G
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a(G) = the size of a largest independent set of G
X(G) > n(G)/a(G) for every graph G

2




Lower bounds, perfect graphs

Is the lower bounds tight?

Consider an odd cycle Gk, 1 of length at least 5
o n(Coxy1) = 2k+1
d W(C2k+1)
i Oé(C2k+1)
(Cos1) =

® X C2k+1

We will see the bound x(G) > w(G) can be arbitrarily bad (in the
next lecture)

Lesson

Difficulty of optimization problems lies in certifying the optimality;
Efficient algorithms require good lower bounds (for minimization
problems)
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Lower bounds, perfect graphs

When is it tight?

Graphs G with x(G) = w(G)
e Complete graphs, bipartite graphs, interval graphs, ...

Definition (Interval graph)

G is an interval graph if 3 a set Z of (closed) intervals and a bijection
¢: V(G) — T s.t. u, v adjacent iff ¢p(u) N @(v) # 0

ﬁ.\& o) —
1
5 5 6 o e@ 0 O

Will prove later: G an interval graph = x(G) = w(G)
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Lower bounds, perfect graphs

Perfect graphs

Definition (Perfect graph)
G is perfect if x(H) = w(H) for all induced subgraphs H of G

Weak Perfect Graph Theorem (Lovasz '72)

G is perfect <= G is perfect

Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour, Thomas '06)

G contains no induced subgraph iso. to an odd

G is perfect <— :
P cycle of length at least 5 or its complement

Both conjectured by Berge ('61)
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Upper bounds, greedy coloring

Greedy coloring

To give an upper bound for x(G), we construct a proper coloring |

Definition (Greedy coloring)

Fix a linear order < on V/(G);

The greedy coloring of G with respect to < is the following coloring
c: V(G) —{1,2,...}

(v) = 1 v the min w.r.t. <
A= min({1,2,...} \ {c(v) | u < v,{u,v} € E}) otherwise

ZAQVISEN
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X(G) < A(G) + 1 for every graph G
e Look at an arbitrary vertex v
e # vertices preceding v wrt < < A
e . at least one color in {1,...,A+1} is available for v

LR

12221321
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Upper bounds, greedy coloring

Degenerate graphs

Definition (Degenerate graph)
A graph G is d-degenerate if §(H) < d for every subgraph H of G

Proposition 6.4 (chromatic number of degenerate graph)
G d-degenerate = x(G) < d +1

Prood idea.
Consider the following linear order < on V(G)

e The largest vertex wrt < is one with min degree, denote it by v;
Then, consider G—v and the second largest vertex w.r.t. < is
one with min degree in G—v, denote it by v/; Then, consider

G—{v,V'}, ...
On this order <, try the greedy coloring O]
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order < satisfies: u < v if dy(u) > dy(v) where
H is the subgraph induced by V(G)\ {w | v < w} J
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Upper bounds, greedy coloring
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Upper bounds, greedy coloring
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Upper bounds, greedy coloring

Example of a proposed linear order
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order < satisfies: u < v if dy(u) > dy(v) where
H is the subgraph induced by V(G)\ {w | v < w} J

1€ 4 o« o

3 6 7 8
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order < satisfies: u < v if dy(u) > dy(v) where
H is the subgraph induced by V(G)\ {w | v < w} J

N

4 — o & o

1 3 6 7 8

2 5
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order < satisfies: u < v if dy(u) > dy(v) where
H is the subgraph induced by V(G)\ {w | v < w} J

O SO,

5 1 3 6 7 8

2

Y. Okamoto (Tokyo Tech) TCMSI Graph Theory (6) 2008-05-21 22 /36



Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order < satisfies: u < v if dy(u) > dy(v) where
H is the subgraph induced by V(G)\ {w | v < w} J

PN

4 5 1 3 6 7 8
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order < satisfies: u < v if dy(u) > dy(v) where
H is the subgraph induced by V(G)\ {w | v < w} J

AR

2 4 5 1 3 6 7 8
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order < satisfies: u < v if dy(u) > dy(v) where
H is the subgraph induced by V(G)\ {w | v < w} J

12 A N

8 2 4 5 1 3 6 7 8
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Upper bounds, greedy coloring

Non-regular graphs

If a graph G is not regular, we can improve A(G)+1 a bit

Proposition 6.5 (An improvement of an easy upper bound)

No component of G is regular = x(G) < A(G)

Proof idea.
e WLOG, G is connected
e G contains a spanning tree T (Prop. 3.6)
e v a min degree vertex of G (Rem: §(G) < A(G))
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Upper bounds, greedy coloring

Non-regular graphs

If a graph G is not regular, we can improve A(G)+1 a bit

Proposition 6.5 (An improvement of an easy upper bound)

No component of G is regular = x(G) < A(G)

Proof idea.
e WLOG, G is connected
e G contains a spanning tree T (Prop. 3.6)
e v a min degree vertex of G (Rem: §(G) < A(G))

2 5
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Upper bounds, greedy coloring

Non-regular graphs (cont'd)

Proof idea (continued).

e Define a linear order < on V as the reverse order of the length
of a unique path to vin T

e Property I: Vue V\{v} Iwe Vst u<wand
{u,w} € E(T) (CE)
e Property 2: d(v) < A(G)-1
e These properties lead to our upper bound H

VA

2143576 8
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Upper bounds, greedy coloring

What about regular graphs?: Brooks' theorem

Theorem 6.6 (Brooks '41)
No component of G is complete or an odd cycle = x(G) < A(G)

Proof idea.
e WLOG G = (V, E) is 2-vertex-connected
e WLOG G is k-regular, k > 3
e Use Exer 5.3

e G non-complete 2-vtx-connected k-reg (k >3) = I x,y,z€ V
stt. {x,y}, {x,z} € E, {y,z} € E and G—{y, z} connected

y

G G—{y,z}
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Upper bounds, greedy coloring

Brooks' theorem (cont'd)

Proof idea (continued).

o A linear order <:
e The smallest two are y and z
e Order the vertices of G—{y, z} from a spanning tree (as before)
e But this time, consider paths to x (so x is the largest in <)

e Greedy coloring wrt < gives the desired bound
z y z X
G
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Upper bounds, greedy coloring

Chromatic number of an interval graph

Theorem 6.7 (Chromatic number of an interval graph)

G an interval graph = x(G) = w(G)

Proof idea.
¢: V(G) — T a bijection to a set of intervals

e A linear order <: An ascending order of the left endpoints of the
corresponding intervals (tie is broken arbitrarily)

ﬁ@ o) —
1
5 5 6 a2 @ O 0O

1 2 4 3 5 6
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Upper bounds, greedy coloring

Chromatic number of an interval graph (continued)

Proof idea (cont'd).
e Consider a vertex v with the largest color k

e ¢(v) intersects k other intervals at the left endpoint of ¢(v);
They form a clique

e w(G) >k =x(G) O

ﬁ.\& o) 2
1 —
3 5 6 a2 @ O YO

1 2 4 3 5 6
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Open problems

Today's contents

e Coloring, chromatic number

e Lower bounds, perfect graphs
e Upper bounds, greedy coloring
e Open problems
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Open problems
Coping with NP-completeness

Computing the chromatic number of a graph is NP-hard (Karp '72);
Hence, no polynomial-time algorithm is unlikely to exist

Then, what can we do for this problem?

We need to compromise somehow
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Open problems

What to compromise (three-dimensional view)

Basic ways to cope with NP-hardness

e Restriction Approach
Require our algorithm to output the chromatic number in
poly-time for a restricted class of graphs

e Exact Approach
Require our algorithm to output the chromatic number for every
graph, but not necessarily in poly-time

e Approximate Approach
Require our algorithm to output a value close to the chromatic
number for every graph in poly-time

Y. Okamoto (Tokyo Tech) TCMSI Graph Theory (6) 2008-05-21 31/ 36



Open problems
Chromatic number: Restriction approach

We can compute the chromatic number of a perfect graph in
polynomial time (Grotschel, Lovasz, Schrijver '84)

e A milestone in the history of combinatorial optimization

e Use of semidefinite programming and the ellipsoid method (from
continuous optimization)

e Note: The ellipsoid method is inefficient

Open problem

Design a practical algorithm (that does not rely on techniques in
continuous optimization too) to compute the chromatic number of a
perfect graph
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Open problems
Chromatic number: Exact approach

We can compute the chromatic number of a graph in O(2"poly(n))
time (Bjorklund, Husfeldt, Koivisto '06)

e This is one of the milestones in the research of exponential-time
exact algorithms

e The algorithm is based on a simple principle
“inclusion-exclusion”

Open problem

Design a faster algorithm to compute the chromatic number; For
example, can we do it in O(1.7"poly(n))?
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Open problems
Chromatic number: Approximate approach
Definition (Approximation factor)

An algorithm for the chromatic # problem is an r-approximation if it
always outputs a value at most r times the chromatic # of the input;
r > 1 is called an approximation ratio

Facts for the chromatic number approximation

e 3 a poly-time alg w/ apx ratio O(n(loglog n)?/ log® n)
(Halldérsson '93)
e no poly-time alg w/ apx ratio
e n'=¢ for some const ¢ > 0 if P # NP (Lund, Yannakakis '94)
e n'=¢ for any const ¢ > 0 if NP # ZPP (Feige, Kilian '98)
O nlfO((Ioglogn)_l/Q) if NP g ZPT'ME(zO(Iogn(loglogn)3/2))
(Engebretsen, Holmerin '03)

Remark: O(n(loglog n)?/log® n) = nt~Clloglogn/logn)
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Open problems

Reed's w-A-x conjecture

Conjecture (w-A-y conjecture; Reed '98)

X(G) < E(w(G) + A(G) + 1)—‘ for every graph G
Status
o True when w(G) > A(G) (easy

e True when w(G) = A(G)— (Brooks
True when A(G) = n(G)— (Reed '98
Asympototically true (Reed '98
e JAVA>ArTe<lTw>(1-¢)A: w(G)<w=
X(6) = [ 3(6) + A(6) + 1)

e True for line graphs (King, Reed, Vetta '07)

)
)
)
)
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Open problems

Alon-Saks-Seymour conjecture

Conjecture (Alon, Saks, Seymour '94)

G can be decomposed into k complete bipartite graphs =
X(G) < k+1

Status
e True when G complete (Graham, Pollak '72)
e using linear algebra (the spectral method)

Y. Okamoto (Tokyo Tech) TCMSI Graph Theory (6) 2008-05-21 36 / 36



	Coloring, chromatic number
	Lower bounds, perfect graphs
	Upper bounds, greedy coloring
	Open problems

