Topics on Computing and Mathematical Sciences I Graph Theory (6) Coloring I

Yoshio Okamoto

Tokyo Institute of Technology

May 21, 2008

"Last updated: Wed May 21 16:13 2008"

Y. Okamoto (Tokyo Tech)

TCMSI Graph Theory (6)

2008-05-21 1 / 36

イロト イポト イヨト イ

Today's contents

- Coloring, chromatic number
- Lower bounds, perfect graphs
- Upper bounds, greedy coloring

∃ >

Coloring

G = (V, E) a graph; k a natural number

Definition (Coloring)

A *k*-coloring of *G* is a map $c: V \to \{1, ..., k\}$; The vertices of one color form a color class; A *k*-coloring of *G* is proper if $c(u) \neq c(v)$ for all $\{u, v\} \in E$

Each element of the range of a coloring is called a color

イロト イヨト イヨト

Colorability

G = (V, E) a graph; k a natural number

Definition (Colorability)

G is k-colorable if \exists a proper k-coloring of G

not 3-colorable but 4-colorable

Note: G k-colorable \Rightarrow G ℓ -colorable for all $\ell \ge k$

Chromatic numbers

G = (V, E) a graph

Definition (Chromatic number)

The chromatic number of G is the min k for which G is k-colorable

Notation

 $\chi(G)$ = the chromatic number of G

$$1 - \frac{2}{3 - 4} - \frac{3}{4} - \frac{3}{4$$

イロト イポト イヨト イヨト

k-Chromatic graphs

G = (V, E) a graph; k a natural number

Definition (*k*-Chromatic graph)

G is *k*-chromatic if $\chi(G) = k$

Remark: *G k*-colorable $\Leftrightarrow \chi(G) \leq k$

4-chromatic, but not 3-chromatic, not 5-chromatic

→ Ξ →

Coloring, chromatic number

Chromatic numbers of some graphs

- $\chi(K_n) = ??$
- $\chi(K_{m,n}) = ??$
- $\chi(P_n) = ??$
- $\chi(C_n) = ??$
- χ (Petersen) = ??

Remark

$$H \subseteq G \Rightarrow \chi(H) \leq \chi(G)$$

Y. Okamoto (Tokyo Tech)

TCMSI Graph Theory (6)

2008-05-21 7 / 36

Color-critical graphs

$${{\mathcal{G}}}=({{\mathcal{V}}},{{\mathcal{E}}})$$
 a graph; $\chi({{\mathcal{G}}})=k$

Definition (Color-critical graph)

G is k-critical if $\chi(H) < \chi(G)$ for every proper subgraph H of G

Observation

- For G without isolated vertex:
 G k-critical ⇔ χ(G-e) < χ(G) for all e ∈ E
- *G* 2-critical \Leftrightarrow *G* \simeq *K*₂
- *G* 3-critical \Leftrightarrow *G* an odd cycle

Proper coloring and independent sets

G = (V, E) a graph

Definition (Independent set (recap))

A set $S \subseteq V$ is independent if no two vertices of S are adjacent

Observation

c is a proper k-coloring of $G \Rightarrow$ each color class is independent

Multi-partite graphs

G = (V, E) a graph; r a natural number

Definition (Multi-partite graph)

G is *r*-partite if \exists a partition $V_1 \cup \cdots \cup V_r$ of *V* s.t. $\{u, v\} \in E \Rightarrow \{u, v\} \not\subseteq V_i$ for any *i*

Observation

G k-colorable \Leftrightarrow G k-partite

★ Ξ ►

Deciding k-colorability

Problem *k*-COLORABILITY

Pre-input: A natural number kInput: A graph GQuestion: Is G k-colorable?

Facts

- $k \leq 2 \Rightarrow k$ -COLORABILITY is poly-time solvable
- $k \ge 3 \Rightarrow k$ -COLORABILITY is NP-complete (Karp '72)

Today's contents

- Coloring, chromatic number
- Lower bounds, perfect graphs
- Upper bounds, greedy coloring

Lower bounds, perfect graphs

Easy lower bound (1)

Definition (clique, clique number (recap))

A set $S \subseteq V$ is a clique if every pair of vertices of S are adjacent; $\omega(G) =$ the size of a largest clique of G

Proposition 6.1 (Easy lower bound for the chromatic number) $\chi(G) \ge \omega(G)$ for every graph G

$$\chi(G) = 4 \\ \omega(G) = 3$$

Lower bounds, perfect graphs

Easy lower bound (2)

Definition (independence number (recap))

 $\alpha(G)$ = the size of a largest independent set of G

Proposition 6.2 (Easy lower bound for the chromatic number) $\chi(G) \ge n(G)/\alpha(G)$ for every graph G

イロト イポト イヨト イヨト

Lower bounds, perfect graphs

Is the lower bounds tight?

Consider an odd cycle C_{2k+1} of length at least 5

- $n(C_{2k+1}) = 2k+1$
- $\omega(C_{2k+1}) = 2$
- $\alpha(C_{2k+1}) = k$
- $\chi(C_{2k+1}) = 3$

We will see the bound $\chi(G) \ge \omega(G)$ can be arbitrarily bad (in the next lecture)

Lesson

Difficulty of optimization problems lies in certifying the optimality; Efficient algorithms require good lower bounds (for minimization problems)

Y. Okamoto (Tokyo Tech)

▶ ▲ 王 ▶ 王 ∽ Q < ○
 2008-05-21
 15 / 36

イロト イヨト イヨト イヨト

When is it tight?

Graphs G with $\chi(G) = \omega(G)$

• Complete graphs, bipartite graphs, interval graphs, ...

Definition (Interval graph)

G is an interval graph if \exists a set \mathcal{I} of (closed) intervals and a bijection $\phi \colon V(G) \to \mathcal{I}$ s.t. u, v adjacent iff $\phi(u) \cap \phi(v) \neq \emptyset$

Will prove later: G an interval graph $\Rightarrow \chi(G) = \omega(G)$

イロト イポト イヨト イヨト

Perfect graphs

Definition (Perfect graph)

G is perfect if $\chi(H) = \omega(H)$ for all *induced* subgraphs H of G

Weak Perfect Graph Theorem (Lovász '72)

G is perfect $\iff \overline{G}$ is perfect

Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour, Thomas '06)

G is perfect \iff G contains no induced subgraph iso. to an odd cycle of length at least 5 or its complement

Both conjectured by Berge ('61)

イロト イポト イヨト イヨト 二日

Today's contents

- Coloring, chromatic number
- Lower bounds, perfect graphs
- Upper bounds, greedy coloring

Greedy coloring

To give an upper bound for $\chi(G)$, we construct a proper coloring

Definition (Greedy coloring)

Fix a linear order \prec on V(G); The greedy coloring of G with respect to \prec is the following coloring $c \colon V(G) \to \{1, 2, \ldots\}$

 $c(v) = \begin{cases} 1 & v \text{ the min w.r.t. } \prec \\ \min(\{1, 2, \ldots\} \setminus \{c(u) \mid u \prec v, \{u, v\} \in E\}) & \text{otherwise} \end{cases}$

イロト イポト イヨト イヨト 二日

An easy upper bound

Proposition 6.3 (Greedy coloring) $\chi(G) \le \Delta(G) + 1$ for every graph G

Proof idea.

- Look at an arbitrary vertex v
- # vertices preceding v wrt $\prec \leq \Delta$
- \therefore at least one color in $\{1, \dots, \Delta{+}1\}$ is available for v

Degenerate graphs

Definition (Degenerate graph)

A graph G is d-degenerate if $\delta(H) \leq d$ for every subgraph H of G

Proposition 6.4 (chromatic number of degenerate graph)

$${\mathcal{G}} \, d$$
-degenerate $\Longrightarrow \chi({\mathcal{G}}) \leq d+1$

Prood idea.

Consider the following linear order \prec on V(G)

 The largest vertex wrt ≺ is one with min degree, denote it by v; Then, consider G-v and the second largest vertex w.r.t. ≺ is one with min degree in G-v, denote it by v'; Then, consider G-{v, v'}, ...

On this order \prec , try the greedy coloring

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

In other words, the order \prec satisfies: $u \prec v$ if $d_H(u) \ge d_H(v)$ where H is the subgraph induced by $V(G) \setminus \{w \mid v \prec w\}$

8

In other words, the order \prec satisfies: $u \prec v$ if $d_H(u) \ge d_H(v)$ where H is the subgraph induced by $V(G) \setminus \{w \mid v \prec w\}$

8

Upper bounds, greedy coloring

Non-regular graphs

If a graph G is not regular, we can improve $\Delta(G){+}1$ a bit

Proposition 6.5 (An improvement of an easy upper bound)

No component of G is regular $\Longrightarrow \chi(G) \leq \Delta(G)$

Proof idea.

- WLOG, G is connected
- G contains a spanning tree T (Prop. 3.6)
- v a min degree vertex of G (Rem: $\delta(G) < \Delta(G)$)

A B F A B F

Upper bounds, greedy coloring

Non-regular graphs

If a graph G is not regular, we can improve $\Delta(G){+}1$ a bit

Proposition 6.5 (An improvement of an easy upper bound)

No component of G is regular $\Longrightarrow \chi(G) \leq \Delta(G)$

Proof idea.

- WLOG, G is connected
- G contains a spanning tree T (Prop. 3.6)
- v a min degree vertex of G (Rem: $\delta(G) < \Delta(G)$)

(4) E (4) E (4)

Upper bounds, greedy coloring Non-regular graphs (cont'd)

Proof idea (continued).

- Define a linear order ≺ on V as the reverse order of the length of a unique path to v in T
- Property 1: $\forall u \in V \setminus \{v\} \exists w \in V \text{ s.t. } u \prec w \text{ and } \{u, w\} \in E(T) (\subseteq E)$

• Property 2:
$$d(v) \leq \Delta(G) - 1$$

• These properties lead to our upper bound

Upper bounds, greedy coloring What about regular graphs?: Brooks' theorem

Theorem 6.6 (Brooks '41)

No component of G is complete or an odd cycle $\Rightarrow \chi(G) \leq \Delta(G)$

Proof idea.

- WLOG G = (V, E) is 2-vertex-connected
- WLOG G is k-regular, $k \ge 3$
- Use Exer 5.3
 - G non-complete 2-vtx-connected k-reg (k ≥ 3) ⇒ ∃ x, y, z ∈ V s.t. {x, y}, {x, z} ∈ E, {y, z} ∉ E and G-{y, z} connected

Upper bounds, greedy coloring

Brooks' theorem (cont'd)

Proof idea (continued).

- A linear order ≺:
 - The smallest two are y and z
 - Order the vertices of $G \{y, z\}$ from a spanning tree (as before)
 - But this time, consider paths to x (so x is the largest in \prec)
- Greedy coloring wrt \prec gives the desired bound

Upper bounds, greedy coloring

Chromatic number of an interval graph

Theorem 6.7 (Chromatic number of an interval graph)

G an interval graph $\Rightarrow \chi(G) = \omega(G)$

Proof idea.

$\phi \colon V(G) \to \mathcal{I}$ a bijection to a set of intervals

• A linear order ≺: An ascending order of the left endpoints of the corresponding intervals (tie is broken arbitrarily)

Chromatic number of an interval graph (continued)

Proof idea (cont'd).

- Consider a vertex v with the largest color k
- φ(v) intersects k other intervals at the left endpoint of φ(v);
 They form a clique

•
$$\omega(G) \ge k = \chi(G)$$

Open problems

Today's contents

- Coloring, chromatic number
- Lower bounds, perfect graphs
- Upper bounds, greedy coloring
- Open problems

< ∃ ►

Coping with NP-completeness

Fact

Computing the chromatic number of a graph is NP-hard (Karp '72); Hence, no polynomial-time algorithm is unlikely to exist

Question

Then, what can we do for this problem?

We need to compromise somehow

Open problems

What to compromise (three-dimensional view)

Basic ways to cope with NP-hardness

• Restriction Approach

Require our algorithm to output the chromatic number in poly-time for a restricted class of graphs

• Exact Approach

Require our algorithm to output the chromatic number for every graph, but not necessarily in poly-time

• Approximate Approach

Require our algorithm to output a value close to the chromatic number for every graph in poly-time

Chromatic number: Restriction approach

Fact

We can compute the chromatic number of a perfect graph in polynomial time (Grötschel, Lovász, Schrijver '84)

- A milestone in the history of combinatorial optimization
- Use of semidefinite programming and the ellipsoid method (from continuous optimization)
- Note: The ellipsoid method is inefficient

Open problem

Design a practical algorithm (that does not rely on techniques in continuous optimization too) to compute the chromatic number of a perfect graph

Chromatic number: Exact approach

Fact

We can compute the chromatic number of a graph in $O(2^n poly(n))$ time (Björklund, Husfeldt, Koivisto '06)

- This is one of the milestones in the research of exponential-time exact algorithms
- The algorithm is based on a simple principle "inclusion-exclusion"

Open problem

Design a faster algorithm to compute the chromatic number; For example, can we do it in $O(1.7^n poly(n))$?

Chromatic number: Approximate approach

Definition (Approximation factor)

An algorithm for the chromatic # problem is an *r*-approximation if it always outputs a value at most *r* times the chromatic # of the input; $r \ge 1$ is called an approximation ratio

Facts for the chromatic number approximation

• \exists a poly-time alg w/ apx ratio $O(n(\log \log n)^2 / \log^3 n)$

(Halldórsson '93)

- no poly-time alg w/ apx ratio
 - n^{1-c} for some const c > 0 if $P \neq NP$ (Lund, Yannakakis '94)
 - $n^{1-\varepsilon}$ for any const $\varepsilon > 0$ if NP \neq ZPP (Feige, Kilian '98)
 - $n^{1-O((\log \log n)^{-1/2})}$ if NP $\not\subseteq$ ZPTIME $(2^{O(\log n(\log \log n)^{3/2})})$

(Engebretsen, Holmerin '03)

Remark: $O(n(\log \log n)^2 / \log^3 n) = n^{1 - O(\log \log n / \log n)}$

Reed's ω - Δ - χ conjecture

Conjecture (
$$\omega$$
- Δ - χ conjecture; Reed '98)
$$\chi(G) \le \left\lceil \frac{1}{2} (\omega(G) + \Delta(G) + 1) \right\rceil \text{ for every graph } G$$

Status

• True when $\omega({\mathcal G}) \geq \Delta({\mathcal G})$	(easy)
• True when $\omega(G)=\Delta(G){-}1$	(Brooks)
• True when $\Delta(G) = n(G) {-} 1$	(Reed '98)
 Asympototically true 	(Reed '98)
• $\exists \Delta_0 \ \forall \ \Delta \geq \Delta_0 \ \exists \ \varepsilon < 1 \ \exists \ \omega \geq (1 - \varepsilon)$	$arepsilon$) Δ : $\omega(G) \leq \omega \Rightarrow$
$\chi(G) \leq \left rac{1}{2} (\omega(G) + \Delta(G) + 1) ight $	
 True for line graphs 	(King, Reed, Vetta '07)
	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

Open problems

Alon-Saks-Seymour conjecture

Conjecture (Alon, Saks, Seymour '94)

G can be decomposed into k complete bipartite graphs $\Rightarrow \chi(G) \le k+1$

Status

• True when *G* complete

(Graham, Pollak '72)

• using linear algebra (the spectral method)

Y. Okamoto (Tokyo Tech)

TCMSI Graph Theory (6)

2008-05-21 36 / 36