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Coloring, chromatic number

Today’s contents

• Coloring, chromatic number

• Lower bounds, perfect graphs

• Upper bounds, greedy coloring

Y. Okamoto (Tokyo Tech) TCMSI Graph Theory (6) 2008-05-21 2 / 36



Coloring, chromatic number

Coloring

G = (V , E ) a graph; k a natural number

Definition (Coloring)

A k-coloring of G is a map c : V → {1, . . . , k};
The vertices of one color form a color class;
A k-coloring of G is proper if c(u) 6= c(v) for all {u, v} ∈ E

Each element of the range of a coloring is called a color
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Coloring, chromatic number

Colorability

G = (V , E ) a graph; k a natural number

Definition (Colorability)

G is k-colorable if ∃ a proper k-coloring of G
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Note: G k-colorable ⇒ G `-colorable for all ` ≥ k
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Coloring, chromatic number

Chromatic numbers

G = (V , E ) a graph

Definition (Chromatic number)

The chromatic number of G is the min k for which G is k-colorable

Notation

χ(G ) = the chromatic number of G
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χ(G ) = 4

Y. Okamoto (Tokyo Tech) TCMSI Graph Theory (6) 2008-05-21 5 / 36



Coloring, chromatic number

k-Chromatic graphs

G = (V , E ) a graph; k a natural number

Definition (k-Chromatic graph)

G is k-chromatic if χ(G ) = k

Remark: G k-colorable ⇔ χ(G ) ≤ k
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Coloring, chromatic number

Chromatic numbers of some graphs

• χ(Kn) = ??

• χ(Km,n) = ??

• χ(Pn) = ??

• χ(Cn) = ??

• χ(Petersen) = ??
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Remark

H ⊆ G ⇒ χ(H) ≤ χ(G )
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Coloring, chromatic number

Color-critical graphs

G = (V , E ) a graph; χ(G ) = k

Definition (Color-critical graph)

G is k-critical if χ(H) < χ(G ) for every proper subgraph H of G

Observation

• For G without isolated vertex:
G k-critical ⇔ χ(G−e) < χ(G ) for all e ∈ E

• G 2-critical ⇔ G ' K2

• G 3-critical ⇔ G an odd cycle
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Coloring, chromatic number

Proper coloring and independent sets

G = (V , E ) a graph

Definition (Independent set (recap))

A set S ⊆ V is independent if no two vertices of S are adjacent

Observation

c is a proper k-coloring of G ⇒ each color class is independent
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Coloring, chromatic number

Multi-partite graphs

G = (V , E ) a graph; r a natural number

Definition (Multi-partite graph)

G is r -partite if ∃ a partition V1 ∪ · · · ∪ Vr of V s.t. {u, v} ∈ E ⇒
{u, v} 6⊆ Vi for any i

Observation

G k-colorable ⇔ G k-partite
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Coloring, chromatic number

Deciding k-colorability

Problem k-Colorability

Pre-input: A natural number k
Input: A graph G
Question: Is G k-colorable?

Facts

• k ≤ 2 ⇒ k-Colorability is poly-time solvable

• k ≥ 3 ⇒ k-Colorability is NP-complete (Karp ’72)
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Lower bounds, perfect graphs

Today’s contents

• Coloring, chromatic number

• Lower bounds, perfect graphs

• Upper bounds, greedy coloring
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Lower bounds, perfect graphs

Easy lower bound (1)

Definition (clique, clique number (recap))

A set S ⊆ V is a clique if every pair of vertices of S are adjacent;
ω(G ) = the size of a largest clique of G

Proposition 6.1 (Easy lower bound for the chromatic number)

χ(G ) ≥ ω(G ) for every graph G
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Lower bounds, perfect graphs

Easy lower bound (2)

Definition (independence number (recap))

α(G ) = the size of a largest independent set of G

Proposition 6.2 (Easy lower bound for the chromatic number)

χ(G ) ≥ n(G )/α(G ) for every graph G

3

1

2
1

2
3 4 χ(G ) = 4

α(G ) = 2
n(G ) = 7

Y. Okamoto (Tokyo Tech) TCMSI Graph Theory (6) 2008-05-21 14 / 36



Lower bounds, perfect graphs

Is the lower bounds tight?

Consider an odd cycle C2k+1 of length at least 5

• n(C2k+1) = 2k+1

• ω(C2k+1) = 2

• α(C2k+1) = k

• χ(C2k+1) = 3

We will see the bound χ(G ) ≥ ω(G ) can be arbitrarily bad (in the
next lecture)

Lesson

Difficulty of optimization problems lies in certifying the optimality;
Efficient algorithms require good lower bounds (for minimization
problems)
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Lower bounds, perfect graphs

When is it tight?

Graphs G with χ(G ) = ω(G )

• Complete graphs, bipartite graphs, interval graphs, ...

Definition (Interval graph)

G is an interval graph if ∃ a set I of (closed) intervals and a bijection
φ : V (G ) → I s.t. u, v adjacent iff φ(u) ∩ φ(v) 6= ∅
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Will prove later: G an interval graph ⇒ χ(G ) = ω(G )
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Lower bounds, perfect graphs

Perfect graphs

Definition (Perfect graph)

G is perfect if χ(H) = ω(H) for all induced subgraphs H of G

Weak Perfect Graph Theorem (Lovász ’72)

G is perfect ⇐⇒ G is perfect

Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour, Thomas ’06)

G is perfect ⇐⇒ G contains no induced subgraph iso. to an odd
cycle of length at least 5 or its complement

Both conjectured by Berge (’61)
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Upper bounds, greedy coloring

Today’s contents

• Coloring, chromatic number

• Lower bounds, perfect graphs

• Upper bounds, greedy coloring
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Upper bounds, greedy coloring

Greedy coloring

To give an upper bound for χ(G ), we construct a proper coloring

Definition (Greedy coloring)

Fix a linear order ≺ on V (G );
The greedy coloring of G with respect to ≺ is the following coloring
c : V (G ) → {1, 2, . . .}

c(v) =

{
1 v the min w.r.t. ≺
min({1, 2, . . .} \ {c(u) | u ≺ v , {u, v} ∈ E}) otherwise

1 2 2 2 1 3 2 1
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Upper bounds, greedy coloring

An easy upper bound

Proposition 6.3 (Greedy coloring)

χ(G ) ≤ ∆(G ) + 1 for every graph G

Proof idea.

• Look at an arbitrary vertex v

• # vertices preceding v wrt ≺ ≤ ∆

• ∴ at least one color in {1, . . . , ∆+1} is available for v
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Upper bounds, greedy coloring

Degenerate graphs

Definition (Degenerate graph)

A graph G is d-degenerate if δ(H) ≤ d for every subgraph H of G

Proposition 6.4 (chromatic number of degenerate graph)

G d-degenerate =⇒ χ(G ) ≤ d + 1

Prood idea.

Consider the following linear order ≺ on V (G )

• The largest vertex wrt ≺ is one with min degree, denote it by v ;
Then, consider G−v and the second largest vertex w.r.t. ≺ is
one with min degree in G−v , denote it by v ′; Then, consider
G−{v , v ′}, ...

On this order ≺, try the greedy coloring
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}

2

8

7

6

1

5

4

3
3

��
��
��
��

2 876154

Y. Okamoto (Tokyo Tech) TCMSI Graph Theory (6) 2008-05-21 22 / 36



Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Example of a proposed linear order

In other words, the order ≺ satisfies: u ≺ v if dH(u) ≥ dH(v) where
H is the subgraph induced by V (G ) \ {w | v ≺ w}
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Upper bounds, greedy coloring

Non-regular graphs

If a graph G is not regular, we can improve ∆(G )+1 a bit

Proposition 6.5 (An improvement of an easy upper bound)

No component of G is regular =⇒ χ(G ) ≤ ∆(G )

Proof idea.

• WLOG, G is connected

• G contains a spanning tree T (Prop. 3.6)

• v a min degree vertex of G (Rem: δ(G ) < ∆(G ))
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Upper bounds, greedy coloring

Non-regular graphs

If a graph G is not regular, we can improve ∆(G )+1 a bit

Proposition 6.5 (An improvement of an easy upper bound)

No component of G is regular =⇒ χ(G ) ≤ ∆(G )

Proof idea.

• WLOG, G is connected

• G contains a spanning tree T (Prop. 3.6)

• v a min degree vertex of G (Rem: δ(G ) < ∆(G ))
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Upper bounds, greedy coloring

Non-regular graphs (cont’d)

Proof idea (continued).

• Define a linear order ≺ on V as the reverse order of the length
of a unique path to v in T

• Property 1: ∀ u ∈ V \ {v} ∃ w ∈ V s.t. u ≺ w and
{u, w} ∈ E (T ) (⊆ E )

• Property 2: d(v) ≤ ∆(G )−1

• These properties lead to our upper bound
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Upper bounds, greedy coloring

What about regular graphs?: Brooks’ theorem

Theorem 6.6 (Brooks ’41)

No component of G is complete or an odd cycle ⇒ χ(G ) ≤ ∆(G )

Proof idea.

• WLOG G = (V , E ) is 2-vertex-connected

• WLOG G is k-regular, k ≥ 3

• Use Exer 5.3
• G non-complete 2-vtx-connected k-reg (k ≥ 3) ⇒ ∃ x , y , z ∈ V

s.t. {x , y}, {x , z} ∈ E , {y , z} 6∈ E and G−{y , z} connected
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Upper bounds, greedy coloring

Brooks’ theorem (cont’d)

Proof idea (continued).

• A linear order ≺:
• The smallest two are y and z
• Order the vertices of G−{y , z} from a spanning tree (as before)
• But this time, consider paths to x (so x is the largest in ≺)

• Greedy coloring wrt ≺ gives the desired bound
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Upper bounds, greedy coloring

Chromatic number of an interval graph

Theorem 6.7 (Chromatic number of an interval graph)

G an interval graph ⇒ χ(G ) = ω(G )

Proof idea.

φ : V (G ) → I a bijection to a set of intervals

• A linear order ≺: An ascending order of the left endpoints of the
corresponding intervals (tie is broken arbitrarily)
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Upper bounds, greedy coloring

Chromatic number of an interval graph (continued)

Proof idea (cont’d).

• Consider a vertex v with the largest color k

• φ(v) intersects k other intervals at the left endpoint of φ(v);
They form a clique

• ω(G ) ≥ k = χ(G )
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Open problems

Today’s contents

• Coloring, chromatic number

• Lower bounds, perfect graphs

• Upper bounds, greedy coloring

• Open problems
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Open problems

Coping with NP-completeness

Fact

Computing the chromatic number of a graph is NP-hard (Karp ’72);
Hence, no polynomial-time algorithm is unlikely to exist

Question

Then, what can we do for this problem?

We need to compromise somehow
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Open problems

What to compromise (three-dimensional view)

Basic ways to cope with NP-hardness

• Restriction Approach
Require our algorithm to output the chromatic number in
poly-time for a restricted class of graphs

• Exact Approach
Require our algorithm to output the chromatic number for every
graph, but not necessarily in poly-time

• Approximate Approach
Require our algorithm to output a value close to the chromatic
number for every graph in poly-time
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Open problems

Chromatic number: Restriction approach

Fact

We can compute the chromatic number of a perfect graph in
polynomial time (Grötschel, Lovász, Schrijver ’84)

• A milestone in the history of combinatorial optimization

• Use of semidefinite programming and the ellipsoid method (from
continuous optimization)

• Note: The ellipsoid method is inefficient

Open problem

Design a practical algorithm (that does not rely on techniques in
continuous optimization too) to compute the chromatic number of a
perfect graph
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Open problems

Chromatic number: Exact approach

Fact

We can compute the chromatic number of a graph in O(2npoly(n))
time (Björklund, Husfeldt, Koivisto ’06)

• This is one of the milestones in the research of exponential-time
exact algorithms

• The algorithm is based on a simple principle
“inclusion-exclusion”

Open problem

Design a faster algorithm to compute the chromatic number; For
example, can we do it in O(1.7npoly(n))?
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Open problems

Chromatic number: Approximate approach

Definition (Approximation factor)

An algorithm for the chromatic # problem is an r -approximation if it
always outputs a value at most r times the chromatic # of the input;
r ≥ 1 is called an approximation ratio

Facts for the chromatic number approximation

• ∃ a poly-time alg w/ apx ratio O(n(log log n)2/ log3 n)
(Halldórsson ’93)

• no poly-time alg w/ apx ratio
• n1−c for some const c > 0 if P 6= NP (Lund, Yannakakis ’94)
• n1−ε for any const ε > 0 if NP 6= ZPP (Feige, Kilian ’98)

• n1−O((log log n)−1/2) if NP 6⊆ ZPTIME(2O(log n(log log n)3/2))
(Engebretsen, Holmerin ’03)

Remark: O(n(log log n)2/ log3 n) = n1−O(log log n/ log n)
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Open problems

Reed’s ω-∆-χ conjecture

Conjecture (ω-∆-χ conjecture; Reed ’98)

χ(G ) ≤
⌈

1

2
(ω(G ) + ∆(G ) + 1)

⌉
for every graph G

Status

• True when ω(G ) ≥ ∆(G ) (easy)

• True when ω(G ) = ∆(G )−1 (Brooks)

• True when ∆(G ) = n(G )−1 (Reed ’98)

• Asympototically true (Reed ’98)

• ∃ ∆0 ∀ ∆ ≥ ∆0 ∃ ε < 1 ∃ ω ≥ (1−ε)∆: ω(G ) ≤ ω ⇒

χ(G ) ≤
⌈

1

2
(ω(G ) + ∆(G ) + 1)

⌉
• True for line graphs (King, Reed, Vetta ’07)
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Open problems

Alon-Saks-Seymour conjecture

Conjecture (Alon, Saks, Seymour ’94)

G can be decomposed into k complete bipartite graphs ⇒
χ(G ) ≤ k+1
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Status

• True when G complete (Graham, Pollak ’72)
• using linear algebra (the spectral method)
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