References 4
- P. Hall,
On representatives of subsets.
J. Lond. Mat. Soc.10 (1935) 26-30.
- G. Frobenius,
Über zerlegbare Determinanten.
Sitzungsber. König. Preuss. Adad. Wiss. XVIII
(1917) 274-277.
- D. Kőnig,
Graphok és matrixok.
Mat. Lapok 38 (1931) 116-119.
- J. Egerváry,
Matrixok kombinatorius tulajdonságairól.
Mat. Lapok 38 (1931) 16-28.
- T. Feder and R. Motwani,
Clique partitions, graph compression and speeding-up algorithms.
J. Comput. Systtem Sci. 51 (1995) 261-272.
(MR1356505)
- A.V. Goldberg and R. Kennedy,
An efficient cost scaling algorithm for the assignment problem.
Math. Program. 71 (1997) 551-572.
(MR1373361)
- O.H. Ibarra and S. Moran,
Deterministic and probabilistic algorithms for maximum bipartite matching via fast matrix multiplication.
Inform. Process. Lett. 13 (1981) 12-15.
(MR0636312)
- W.T. Tutte,
The factorization of linear graphs.
J. London Math. Soc. 22 (1947) 107-111.
(MR0023048)
- L. Lovász,
Three short proofs in graph theory.
J. Comb. Theory Ser. B 19 (1975) 269-271.
(MR0396344)
- J. Petersen,
Die Theorie der reguláren Graphen.
Acta Math. 15 (1891) 193-220.
(MR1554815)
- C. Berge,
Sur le couplage maximum d'un graphe.
C.R. Acad. Sci. Paris 247 (1958) 258-259.
(MR0100850)
- J. Edmonds,
Paths, trees, and flowers.
Canad. J. Math. 17 (1965) 449-467.
(MR0177907)
- A.V. Goldberg and A.V. Karzanov,
Maximum skew-symmetric flows and matchings.
Math. Program. 100 (2004) 537-568.
(MR2129927)
- M. Mucha and P. Sankowski,
Maximum matchings via Gaussian elimination.
Proc. 45th FOCS (2004) 248-255.
- N.J.A. Harvey,
Algebraic algorithms for matching and matroid problems.
Proc. 47th FOCS (2006) 531-542.
- J.H. Ryser,
Combinatorial Mathematics.
Math. Assoc. of America, Buffalo, 1963.
(MR0150048)
- L.G. Valiant,
The complexity of computing the permanent.
Theoret. Comput. Sci. 8 (1979) 189-201.
(MR0526203)
- M. Jerrum, A. Sinclair and E. Vigoda,
A polynomial-time approximation algorithm for
the permanent of a matrix with nonnegative entries.
J. ACM 51 (2004) 671-697.
(MR2147852)
- C.E. Shannon,
The zero error capacity of a noisy channel.
Institute of Radio Engineers, Transactions on Information Theory, IT-2 (1956) 8-19.
(MR0089131)
- L. Lovász,
On the Shannon capacity of a graph.
IEEE Trans. Inform. Theory 25 (1979) 1-7.
(MR0514926)
- A. Vesel and J. Žerovnik,
Improved lower bound on the Shannon capacity of
C7.
Inform. Process. Lett. 81 (2002) 277-282.
(MR1879651)
- N. Alon and E. Lubetzky,
The Shannon capacity of a graph and the independence numbers of its powers.
IEEE Trans. Inform. Theory 52 (2006) 2172-2176.
(MR2234473)
Textbooks
[TCMS1 Top]
[Teaching Top]
okamotoy@uec.ac.jp