References 2
- D. Kőnig,
Theorie der endlichen und unendlichen Graphen.
Akademische Verlagsgesellschaft, Leipzig, 1936.
(MR0036989)
- J. Edmonds,
Minimum partition of a matroid into independent subsets.
Journal of Research National Bureau of Standards Section B
69 (1965) 67-72.
(MR0190025)
- L. Euler,
Solutio problematis ad geometriam situs pertinentis.
Commentarii Academiae Scientiarum Imperialis Petropolitanae
8 (1736) 128-140.
- C. Hierholzer,
Über die Möglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechnung zu
umfahren.
Math. Ann. 6 (1873) 30-32.
(MR1509807)
- R.M. Karp,
Reducibility among combinatorial problems.
R.E. Miller, J.W. Thatcher, editors,
Complexity of Computer Computations,
Plenum Press (1972) 85-103.
(MR0378476)
- A. van Rooij and H.S. Wilf,
The interchange graphs of a finite graph.
Acta Math. Acad. Sci. Hung. 16 (1965) 263-269.
(MR0195761)
- L.W. Beineke,
Characterizations of derived graphs.
J. Combinatorial Theory 9 (1970) 129-135.
(MR0262097)
- P.G.H. Lehot,
An optimal algorithm to detect a line-graph and
output its root graph.
J. Assoc. Comp. Mach. 21 (1974) 569-575.
(MR0347690)
- G.A. Dirac,
Some theorems on abstract graphs.
Proc. Lond. Math. Soc. 2 (1952) 69-81.
(MR0047308)
- W. Mantel,
Problem 28, soln. by H. Gouwentak, W. Mantel,
J. Teixeira de Mattes, F. Schuh and W.A. Wythoff.
Wiskundige Opgaven 10 (1907) 60-61.
- G. Brightwell and P. Winkler,
Counting Eulerian Circuits is #P-complete.
Proceedings of 2nd Workshop on Analytic Algorithms and
Combinatorics (2005) 259-262.
(SIAM)
- P. Tetali and S. Vempala,
Random Sampling of Euler Tours.
Algorithmica 30 (2001) 376-385.
(MR1822924)
- T. van Aardenne-Ehrenfest and N.G. de Bruijn,
Circuits and trees in oriented linear graphs.
Simon Stevin 28 (1951) 203-217.
(MR0047311)
- C.A. Smith and W.T. Tutte,
On unicursal paths in a network of degree 4.
Amer. Math. Monthly 48 (1941) 233-237.
(MR1525117)
- P.D. Seymour,
Problem 3.
T.P. McDonough and V.C. Mavron, editors,
Combinatorics, Cambridge University Press, 1974.
(MR0345829)
- J. Komlós, G.N. Sárközy,
and E. Szemerédi,
On the square of a Hamiltonian cycle in dense graphs.
Random Structures and Algorithms 9 (1996)
193-211.
(MR1611764)
(Wiley InterScience)
Textbooks
[TCMS1 Top]
[Teaching Top]
okamotoy@uec.ac.jp