
On Algorithmic Enumeration of Higher-Order

Delaunay Triangulations

Yusuke Abe∗ Yoshio Okamoto†

Abstract

In the pursuit of realistic terrain models, Gudmundsson, Hammar, and van Kreveld
introduced higher-order Delaunay triangulations. A usual Delaunay triangulation is a 0-
order Delaunay triangulation, thus unique for a non-degenerate point set, while order-k
Delaunay triangulations can be non-unique when k ≥ 1. In this work, we propose an
algorithm to list all order-k Delaunay triangulations of a given non-degenerate point set on
the plane, when k ≤ 2, in polynomial time per triangulation. The main technique is the
reverse search due to Avis and Fukuda, which exploits the connectedness of a certain graph
over all objects to be listed. We also show that the same technique is unlikely to work for
k ≥ 3 by exhibiting an example on which the associated graph is disconnected.

1 Introduction

As a generalization of Delaunay triangulations, Gudmundsson, Hammar, and van Kreveld [6]
introduced higher-order Delaunay triangulations. Their work is motivated by realistic terrain
modeling, and the subsequent work by de Kok, van Kreveld, and Löffler [4] made a further
progress on this problem. Further applications have been found by Benkert, Gudmundsson,
Haverkort, and Wolff [2] in constructing minimum-interference networks and by Neamtu [8]
in multivariate splines. Recently, constrained higher-order Delaunay triangulations [5, 9] and
higher-order Delaunay triangulations of a simple polygon [10] have also been studied.

While a Delaunay triangulation is unique on any non-degenerate set of points, higher-order
Delaunay triangulations are not necessarily unique (where a point set is non-degenerate if no
three points are collinear and no four points are cocircular). Therefore, we may consider several
optimization problems over higher-order Delaunay triangulations. However, some of these prob-
lems are NP-hard [4, 12], so no polynomial-time algorithm can be expected. There can be lots
of approaches to tackle NP-hard problems, and in this work we take an enumerative approach.
One of the merits of an enumerative approach is the generality: This can be applied for any
kind of objective functions. Also, a partial enumeration can be used to obtain an approximate
solution.

Technology for designing enumeration algorithms has been developed for a long time. Among
them, the reverse search framework proposed by Avis and Fukuda [1] is quite powerful and suited
for enumerating complicated objects. The basic strategy is as follows. First we implicitly define

∗Discrete Optimization Laboratory, Department of Information and Computer Sciences, Toyohashi University
of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi, Aichi, 441-8580, Japan

†Corresponding author. Graduate School of Information Science and Engineering, Tokyo Institute of Technol-
ogy, 2-12-1-W8-88, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan. E-mail: okamoto@is.titech.ac.jp. Supported
by Global COE Program “Computationism as a Foundation for the Sciences” and Grant-in-Aid for Scientific
Research from Ministry of Education, Science and Culture, Japan, and Japan Society for the Promotion of
Science.

1



Figure 1: (Left) A Delaunay triangulation. All triangles are Delaunay. (Right) An order-2
Delaunay triangulation. One triangle with its dashed circumscribing disk is of order-2.

a rooted tree on the objects to enumerate. Then, we traverse this tree in a depth-first fashion
and output each object when it is visited by the traversal. We try to adapt their strategy for
enumerating higher-order Delaunay triangulations of a given non-degenerate set of points.

For k ≤ 2, we show that the reverse search framework can successfully be adapted, and
the order-k Delaunay triangulations can be enumerated in polynomial time per triangulation.
In contrast to this positive result, we show that for k ≥ 3 a natural rooted tree for devising a
reverse search algorithm is not well-defined. This indicates that it is difficult to yield an efficient
enumeration algorithm for our problem by the reverse search.

2 Preliminaries and statement of our main result

We denote by R2 the Euclidean plane. A finite set P ⊆ R2 of points is non-degenerate if no
three points of P lie on a common line and no four points of P lie on a common circle. A convex
hull of a set S of points is denoted by S. A triangulation of P is a decomposition of the convex
hull of P into triangles with their vertices in P . We think of a triangulation T of P as a set of
triangles forming T . The set of edges of T is denoted by E(T ).

Let T be a triangulation of a non-degenerate set P of n points in R2. A triangle t ∈ T
is called Delaunay if the circumscribing disk of t contains no point of P in its interior. If
all triangles of T are Delaunay, then T is called Delaunay. It is well-known that a Delaunay
triangulation uniquely exists for any non-degenerate set of points. Left of Figure 1 shows an
example of a Delaunay triangulation.

A triangle t ∈ T is of order-k, for a natural number k, if the circumscribing disk of t contains
at most k points of P in its interior. Note that a Delaunay triangle is of order-0. If all triangles
of T are of order-k, then T is called an order-k Delaunay triangulation. Note that a Delaunay
triangulation is an order-0 Delaunay triangulation. Right of Figure 1 shows an example of
an order-2 Delaunay triangulation. Note that every triangulation is an order-(n−3) Delaunay
triangulation.

The problem we are dealing with in this paper is enumeration. Generally, in an enumeration
problem, we are given a structure (such as graph, point set) and need to output all objects in
the structure that have required properties. The theoretical efficiency of an algorithm for an
enumeration problem is measured by running time and space consumption. An enumeration
algorithm runs in polynomial-time delay if the time spent between two consecutive outputs is
bounded by a polynomial of the input size, and runs in polynomial space if the working space
spent by the algorithm is bounded by a polynomial of the input size.

In this paper, we consider an enumeration of the order-k Delaunay triangulations of a given
non-degenerate point set. As our main result, we design an algorithm to enumerate the order-
k Delaunay triangulations of a given non-degenerate point set in polynomial-time delay and

2



polynomial space provided that k ≤ 2.
In the next section, we prove this result with help of the reverse search technique. We show

in the final section that the same approach does not work for k ≥ 3.

3 Proposed algorithm

3.1 Review of the reverse search framework

Basically, we follow the approach of Avis and Fukuda [1] to enumerate the triangulations of
a given non-degenerate point set. Therefore, we first explain their algorithm. Let P be a
given non-degenerate point set in R2 and T be the family of all triangulations of P . In their
reverse search framework, we implicitly construct a rooted tree R(T ) on T and traverse it in
the depth-first fashion.

An implicit construction of R(T ) is given by specifying a unique root triangulation Tr

of R(T ) and a unique parent triangulation p(T ) of a non-root triangulation T ∈ T \ {Tr}.
We define Tr as a Delaunay triangulation of P , which is unique since P is non-degenerate.
To define a parent triangulation, we need to introduce more terminology. Let T ∈ T be a
triangulation of P and e = {u, v} ∈ E(T ) be an edge of T not on the boundary of the convex
hull of P . We call e flippable if it is the intersection of two triangles {u, v, x}, {u, v, y} of T
and flip(T, e) = (T \ {{u, v, x}, {u, v, y}})∪ {{u, x, y}, {v, x, y}} is a triangulation of P . We can
easily see that e is flippable if and only if {u, v, x, y} is a convex quadrilateral (4-gon). The
triangulation flip(T, e) is the outcome of an operation of the flip of e. We define a graph G(T )
constructed from the family T of triangulations of P as follows: The vertex set of G(T ) is
the family T , and two triangulations T1, T2 ∈ T are joined by an edge in G(T ) if and only if
T1 = flip(T2, e) for some flippable edge e of T2. It is well-known that G(T ) is connected. In
Figure 2, the graph G(T ) is shown by solid lines. Our rooted tree R(T ) is actually a spanning
tree of G(T ).

Let e ∈ E(T ) be a flippable edge of a triangulation T ∈ T that is the intersection of two
triangles {u, v, x}, {u, v, y} of T . We call e illegal if the circumscribing disk of {u, v, x} contains
y in its interior. Note that this is equivalent to that the circumscribing disk of {u, v, y} contains
x in its interior. Otherwise, we call e legal. When we keep flipping illegal edges, we obtain
a sequence of triangulations, and it is well-known that such a sequence does not contain one
triangulation multiple times, so eventually we get a triangulation in which all edges are legal.
We can see that such a triangulation is indeed a Delaunay triangulation.

Now we define a rooted tree R(T ) as follows. First let < be a fixed total order on the family
of unordered pairs of points from P . The root of R(T ) is a (unique) Delaunay triangulation of
P . If T ∈ T is not Delaunay, we define the parent of T as flip(T, e) where e is a (unique) <-
minimum illegal edge in T . This finishes the definition of R(T ), and note that it is well-defined.
In Figure 2, the rooted tree R(T ) is shown by fat solid lines. From a result by Avis and Fukuda
[1], combined with a technique by Uno [11] and Nakano and Uno [7],1 we can enumerate all the
triangulations of a non-degenerate set P of n points in O(n) time delay and O(n) space with
O(n log n) time preprocessing by traversing R(T ) from its root.

Note that Bespamyatnikh [3] devised a faster enumeration algorithm for triangulations based
on the reverse search technique, but his algorithm uses a different rooted tree. His algorithm
introduces a lexicographic order on the family of pairs of points, and the lexicographically
smallest triangulation is the root of his search tree. In particular, his algorithm does not use
the Delaunay triangulation as a root.

1In Uno’s paper [11] two techniques are proposed. We always refer to his first technique in this paper, and
this is what is used by Nakano and Uno [7].

3



root (Delaunay)

order-1

order-1

order-1

order-2

order-2

order-3 order-3

Figure 2: The family of triangulations of a set of six points. There are eight triangulations on
this point set, and solid lines between triangulations show the adjacency relationship in G(T ).
The fat solid lines indicate the adjacency in the rooted tree R(T ).

3.2 Enumeration of the order-1 and order-2 Delaunay triangulations

The basic idea of our algorithm is to look at the orders of triangulations in G(T ), and if the
restriction of G(T ) (in the graph-theoretic sense) to the order-k Delaunay triangulations is again
connected, then we may perform a reverse search on this restricted graph. Indeed, in Figure 2,
this holds for each k = 0, 1, 2, 3.

Given a non-degenerate set P of n points in R2 and a natural number k, define Tk as the
family of order-k Delaunay triangulations of P , and define G(Tk) as the restriction of G(T ) on
Tk. The following theorem plays a crucial role in our algorithm.

Theorem 3.1. For k ≤ 2, the graph G(Tk) is always connected.

To prove Theorem 3.1, we use two lemmas.

Lemma 3.2. Let T be a triangulation of a non-degenerate set P of points in R2, and e =
{u, v} ∈ E(T ) be an illegal edge of T , which is the intersection of two triangles {u, v, x} and
{u, v, y} of T . If the triangles {u, v, x} are {u, v, y} of order-k and order-`, respectively, and the
triangles {u, x, y} and {v, x, y} are of order-k′ and order-`′, respectively, but not of order-(k′−1)
and order-(`′−1), respectively, then it holds that k′ + `′ ≤ k + `− 2.

Proof. By the assumption, the circumscribing disk D1 of {u, v, x} contains at most k points
from P in its interior, and y is one of those k points. Similarly, the circumscribing disk D2 of
{u, v, y} contains at most ` points from P in its interior, and x is one of those ` points. Let D′

1

and D′
2 denote the circumscribing disks of {u, x, y} and {v, x, y}, respectively. Since the interior

of D′
1 ∪D′

2 is included in the interior of D1 ∪D2 and x, y lie on the boundary of D1 ∪D2, the
sum of the number of points in the interior of D′

1 and the number of points in the interior of
D′

2 is at most k+`−2. Therefore, k′+`′ ≤ k+`−2. See also Figure 3.

4



u
v

x

y

u
v

x

y

u
v

x

y

D1

D2

D′
2

D′
1

Figure 3: Proof of Lemma 3.2.

Lemma 3.3. Let k ≤ 2 and T be an order-k Delaunay triangulation of a non-degenerate set P
of points in R2. If e ∈ E(T ) is illegal, then flip(T, e) is also an order-k Delaunay triangulation
of P .

Proof. Let an illegal edge e = {u, v} be the intersection of two triangles {u, v, x}, {u, v, y} of T .
By the assumption, the triangles {u, v, x}, {u, v, y} are of order-k where k ≤ 2. By Lemma 3.2,
the sum of the numbers of points from P in the interior of the circumscribing disk of {u, x, y}
and the number of points from P in the interior of the circumscribing disk of {v, x, y} is at most
k+k−2 = 2k−2, which is 0 if k=1 and 2 if k=2. Therefore, both triangles {u, x, y}, {v, x, y} are
of order-k whenever k ≤ 2.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let T be an order-k triangulation of P , where k ≤ 2. Flipping any illegal
edge of T does not increase the order by Lemma 3.3, and as we observed in the previous section
successive flips bring T to a (unique) Delaunay triangulation.

With Theorem 3.1 and modifying the enumeration algorithm for triangulations in the pre-
vious section we conclude the following.

Theorem 3.4. There exists an algorithm to enumerate all order-k Delaunay triangulations of
a given non-degenerate set of n points in R2, if k ≤ 2. The running time is O(n2) per output,
with O(n log n)-time preprocessing, and the memory usage is bounded by O(n).

Proof. The algorithm described above does the job. The correctness follows from Theorem 3.1
and the general theory of reverse search [1].

Then, we bound the running time and the memory usage. To begin the reverse search we
need to find a Delaunay triangulation, that takes O(n log n) time. Then, similarly to a result
by Avis and Fukuda [1], we can show that we can find a child triangulation and a unique
parent triangulation of any triangulation in O(n2) time since we can check that a triangulation
obtained by a flip from an order-2 Delaunay triangulation is also order-2 in O(n) time just by
looking at two newly introduced triangles. Therefore, if we combine the argument above with a
technique of Uno [11] and Nakano and Uno [7], we obtain the running time O(n2) per output,
and the memory usage O(n).

5



Figure 4: A bad example for k = 3.

Figure 5: The triangulations resulting from flips in the bad example for k = 3.

If we wish to apply the method of Bespamyatnikh [3], then we need to compute the lexi-
cographically minimum (in his sense) order-k Delaunay triangulation. However, it is not clear
how to do this in polynomial time.

4 Concluding remarks

The algorithm above does not apply to the case k ≥ 3. Actually, we exhibit below a non-
degenerate set of points for which G(Tk) is not connected when k ≥ 3. Thus, it looks difficult
to extend the approach in the previous section to that case.

Figure 4 is an example for k = 3. The figure shows a triangulation of a set of eight points,
and this is of order-3 as illustrated by the set of dotted circles. It has four flippable edges,
and Figure 5 shows all resulting triangulations of these flips. We can see that they all contain
a triangle whose circumscribing disk contains more than three points in their interiors; Thus
these triangulations are not of order-3.

By extending the example in Figure 4, we may show that this sort of bad examples with k+5
points exist for k = 4, 5, . . . , n−4. An example for k = 4 appears in Figure 6, but we omit the
details here. Therefore, the reverse search approach we adapted in this paper cannot be directly

6



Figure 6: A bad example for k = 4.

applied to higher-order Delaunay triangulations. This however does not exclude the possibility
of efficient enumeration of these triangulations either. This remains an unsolved problem.

Acknowledgments The authors are grateful to Toshihiro Fujito and the members of Dis-
crete Optimization Laboratory, Department of Information and Computer Sciences, Toyohashi
University of Technology for constructive suggestions.

References

[1] D. Avis, K. Fukuda. Reverse search for enumeration. Discr. Appl. Math. 65 (1996) 21–46.
[2] M. Benkert, J. Gudmundsson, H.J. Haverkort, A. Wolff. Constructing interference-

minimal networks. Proc. SOFSEM 2006, pp. 166–176.
[3] S. Bespamyatnikh. An efficient algorithm for enumerating triangulations. Comput. Geom.

23 (2002) 271–279.
[4] T. de Kok, M. van Kreveld, M. Löffler. Generating realistic terrains with higher-order

Delaunay triangulations. Comput. Geom. 36 (2007) 52–65.
[5] J. Gudmundsson, H.J. Haverkort, M. van Kreveld. Constrained higher order Delaunay

triangulations. Comput. Geom. 30 (2005) 271–277.
[6] J. Gudmundsson, M. Hammar, M. van Kreveld. Higher order Delaunay triangulations.

Comput. Geom. 23 (2002) 85–98.
[7] S.-I. Nakano, T. Uno. Generating colored trees. Proc. 31st WG (2005) pp. 249–260.
[8] M. Neamtu. Delaunay configurations and multivariate splines: A generalization of a result

of B.N. Delaunay. Trans. Amer. Math. Soc. 359 (2007) 2993–3004.
[9] R.I. Silveira, M.J. van Kreveld. Towards a definition of higher order constrained Delaunay

triangulations. Proc. CCCG 2007, pp. 161–164.
[10] R.I. Silveira, M.J. van Kreveld. Optimal higher order Delaunay triangulations of poly-

gons. Proc. LATIN 2008, pp. 133-145.
[11] T. Uno. Two general methods to reduce delay and change of enumeration algorithms.

NII Technical Report NII-2003-004E (2003), 10 pages.
[12] M.J. van Kreveld, M. Löffler, R.I. Silveira. Optimization for first order Delaunay trian-

gulations. Proc. WADS 2007, pp. 175–187.

7


