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Abstract
We propose a new combinatorial optimization problem that we call the submodular reassignment
problem. We are given k submodular functions over the same ground set, and we want to find a set
that minimizes the sum of the distances to the sets of minimizers of all functions. The problem is
motivated by a two-stage stochastic optimization problem with recourse summarized as follows. We
are given two tasks to be processed and want to assign a set of workers to maximize the sum of profits.
However, we do not know the value functions exactly, but only know a finite number of possible
scenarios. Our goal is to determine the first-stage allocation of workers to minimize the expected
number of reallocated workers after a scenario is realized at the second stage. This problem can be
modeled by the submodular reassignment problem. We prove that the submodular reassignment
problem can be solved in strongly polynomial time via submodular function minimization. We
further provide a maximum-flow formulation of the problem that enables us to solve the problem
without using a general submodular function minimization algorithm, and more efficiently both
in theory and in practice. In our algorithm, we make use of Birkhoff’s representation theorem for
distributive lattices.
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1 Introduction

In this paper, we introduce the following optimization problem. Let U be a finite set.
We are given k submodular functions f1, . . . , fk : 2U → R. We want to find X ⊆ U and
Yi ∈ arg min fi for all i ∈ {1, . . . , k} that

minimize
k∑
i=1
|X 4 Yi|, (1)

where X 4 Yi := (X ∪ Yi) \ (X ∩ Yi) is the symmetric difference of X and Yi, and arg min fi
refers to the set of minimizers of fi. We will denote

di(X) := min{|X 4 Yi| | Yi ∈ arg min fi} (2)

for X ⊆ U . Then, the problem (1) can be rewritten as

minimize
X⊆U

k∑
i=1

di(X). (3)

We call this problem the submodular reassignment problem.
When k = 1, this is equivalent to the submodular function minimization problem, in

which we are given a single submodular function f : 2U → R and want to find a set X ⊆ U
in arg min f .

1.1 Motivation
The problem is motivated by the following situation.

We are given two tasks T1 and T2 that need to be processed. We are employing some
workers, and each worker is going to be assigned to exactly one task. A set of workers
assigned to a task determines a certain value that represents the profit, the payoff, or the
utility. We want to maximize the sum of the values by appropriately assigning the workers.

However, we do not know how much value we may obtain in advance. Rather, we
know some possible scenarios that may happen in the future. In this situation, our goal
can be summarized as follows. Before we know which scenario really happens, we first fix
an assignment of workers to two tasks. Then, after a scenario is realized, we modify the
assignment to maximize the obtained value. Our goal is to minimize the expected amount of
modification by choosing the most appropriate assignment at the first stage. In this way,
we will be able to minimize the cost of reallocating workers to the two tasks when some
undesired events happen.

We describe the situation more formally. Let U be a finite set of workers, and we are
facing k scenarios. For each scenario i, the associated value functions g1

i : 2U → R and
g2
i : 2U → R are given, where gji (X) represents the value obtained by a set X of workers

when they are assigned to the task j ∈ {1, 2}.
Suppose that we first fix an assignment in such a way that the set X of workers is assigned

to the first task, and the set U \X of workers is assigned to the second task. Then, suppose
that we learn that the i-th scenario occurs after fixing the assignment. We now change the
assignment to maximize the obtained value. Let Yi maximize g1

i (Y ) + g2
i (U \ Y ) which is the

value we obtain in the i-th scenario. Then, the magnitude of modification can be measured
by the symmetric difference |X 4 Yi|.
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Let pi be the probability with which the scenario i realizes. Then, our goal is to find
X ⊆ U such that the expected magnitude of modification

k∑
i=1

pi|X 4 Yi| (4)

is minimized, where Yi maximizes g1
i (Y ) + g2

i (U \ Y ).
For the easier presentation, assume that each scenario occurs with the same probability:

pi = 1/k for all i ∈ {1, . . . , k}. Further, we assume that the functions gji : 2U → R
are supermodular to model the synergy effect among workers (see an example below).
Supermodularity is a natural assumption, which is also known as convexity in cooperative
game theory [23] and known to have a lot of desirable properties. Then, the function Y 7→
−(g1

i (Y )+g2
i (U \Y )) is submodular for every i ∈ {1, . . . , k}. Therefore, the problem above can

be rephrased in the following form: We are given k submodular functions f1, . . . , fk : 2U → R,
and our goal is to find X ⊆ U and a minimizer Yi of fi for every i ∈ {1, . . . , k} such that

k∑
i=1
|X 4 Yi| (5)

is minimized. This is exactly the submodular reassignment problem.
A typical setup arises when the synergy effect is binary in the following sense. Suppose

we know that the worker u ∈ U generates the value vj(u) ≥ 0 if she is assigned to the task
Tj for j ∈ {1, 2}. Furthermore, suppose we know that there is a binary synergy effect such
that if two workers u, u′ ∈ U are assigned to the same task, then they together generate the
value w(u, u′) ≥ 0.

In this case, if a set X ⊆ U of workers is assigned to T1 and the complement U \X is
assigned to T2, then we obtain the value∑

u∈X
v1(u) +

∑
u∈U\X

v2(u) +
∑

u,u′∈X
w(u, u′) +

∑
u,u′∈U\X

w(u, u′). (6)

We want to maximize this value.
As it turns out, the maximization of (6) can be done by the computation of a minimum

s, t-cut in an undirected network. To this end, we construct the following network. Consider
a graph with vertex set U ∪ {s, t}, where s and t are two designated vertices such that
s, t 6∈ U . The edge set of the graph is

{{u, u′} | u, u′ ∈ U, u 6= u′} ∪ {{s, u} | u ∈ U} ∪ {{t, u} | u ∈ U}.

The capacity of the edge {s, u} for each u ∈ U is equal to v1(u), and the capacity of the edge
{t, u} for each u ∈ U is equal to v2(u). The capacity of the edge {u, u′} for each u, u′ ∈ U is
equal to w(u, u′). Then, for a subset X ⊆ U of workers, the capacity of the set X ∪ {s} is
equal to∑

u∈X
v2(u) +

∑
u∈U\X

v1(u) +
∑

u∈X,u′∈U\X

w(u, u′). (7)

Since the values in (6) and (7) sum up to∑
u∈U

(v1(u) + v2(u)) +
∑

u,u′∈U
w(u, u′), (8)
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which does not depend on the choice of X, the maximization of (6) is equivalent to the
minimization of (7). It is well-known that the cut function of a network is submodular.

So far, we assumed that we know the values v1(u), v2(u), w(u, u′) for workers u, u′ ∈ U
exactly. However, today we only know a rough estimate for them, and we will learn their
exact values tomorrow.

In this way, we may also model the following situations in staff scheduling by the network
as follows.
Absence of a worker: It is possible that tomorrow a worker will be sick in bed, and cannot

come. To model the absence of a worker u ∈ U , we consider a scenario in which the
values v1(u), v2(u), and w(u, u′) for all u′ ∈ U \ {u} are zero.

Fixing a worker to a specific task: It is possible that tomorrow a worker will be injured,
and can only join task T1 because task T2 needs a special treatment. To fix a worker
u ∈ U to task T1, we consider a scenario in which the value v1(u) is +∞, or a sufficiently
large number.

In any case, the submodular reassignment problem formulates the situation where we want
to minimize the number of reallocated workers.

We discussed the binary synergy effects above. We may also consider ternary or k-ary
synergy effects. In that case, a non-negative value is given for a triple or a k-tuple of workers.
Then, the computation of the value is reduced to the minimum s, t-cut computation of a
hypergraph, which can be done in polynomial time (e.g. see [7]). Therefore, the problem can
still be formulated as the submodular reassignment problem.

With help of hypergraphs, we can model a binary synergy effect that is dependent on the
assigned task, too. Namely, suppose there is a binary synergy effect such that if two workers
u, u′ ∈ U are assigned to the task i, then they together generate the value wi(u, u′) ≥ 0. In
this case, we use a hyperedge {s, u, u′} with capacity w1(u, u′), and a hyperedge {t, u, u′}
with capacity w2(u, u′).

We are tempted to think about the same problem with three or more tasks. However,
the problem is NP-hard. See Section 5.

1.2 Contributions
We prove that the submodular reassignment problem can be solved in strongly polynomial
time. To this end, we provide two algorithms. The first algorithm reduces the problem to
the submodular function minimization problem. The second algorithm reduces the problem
to the maximum flow problem. The second maximum-flow based algorithm is more efficient
while the first algorithm reveals a basic property of the problem.

Note that if each function fi has a unique minimizer, then it is easy to see that the
submodular reassignment problem can be solved in strongly polynomial time. This is because
we can find a unique minimizer Yi of each fi in strongly polynomial time,1 and an optimal
solution X∗ to the submodular reassignment problem can be obtained as

X∗ = {v ∈ U | |{i | v ∈ Yi}| ≥ |{i | v 6∈ Yi}|}.

Therefore, the difficulty of the problem arises from the fact that the number of minimizers of
a submodular function can be exponentially large. A trick here is that we can represent the
family of minimizers of a submodular function in a compact way via Birkhoff’s representation
theorem for distributive lattices (see Section 2 for details).

1 The uniqueness can also be checked in strongly polynomial time by Theorem 2.3.
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If the function is not necessarily submodular, the problem is hard even when k = 1. This
is just a minimization of a set function, and we need to look at the value f(X) for all X ⊆ U
to find the optimum.

1.3 Background and Literature
The submodular reassignment problem is a particular example of two-stage stochastic optim-
ization problems with recourse. For a detailed treatment of stochastic optimization, refer to
the books by Shapiro, Dentcheva and Ruszczyński [22] and Birge and Louveaux [2].

A two-stage stochastic optimization problem with recourse can be described as follows:

minimize E
ξ∼P

[F (x, ξ)] (9)

subject to x ∈ X ,
F (x, ξ) = min{g(x, y, ξ) | y ∈ Y(x, ξ)},

where P is a probability distribution, X ,Y(x, ξ) are some sets, and g is some function.
Intuitively, x represents the first-stage decision that should be made before the realization of
the random variable ξ is known, and y represents the second-stage decision (or recourse) that
will be made after ξ is realized. The objective is to minimize the expected cost Eξ[F (x, ξ)].

For the computational purpose, we should be careful about how the probability distribution
P is specified in the input. In the literature, we see two frequently used representations.
The first one is the finite scenario model in which the probability distribution has a finite
support and is given explicitly. The second one is the black-box model in which the probability
distribution can be accessed only through a black box (or an oracle), and a sample can be
chosen according to the distribution.

In the finite scenario model, suppose that the size of the support is k, and let ξi occur
with probability pi for each i ∈ {1, . . . , k}. Then, the two-stage stochastic optimization
problem (9) can be rephrased as

minimize
k∑
i=1

piF (x, ξi)

subject to x ∈ X ,
F (x, ξi) = min{g(x, y, ξi) | y ∈ Y(x, ξi)} ∀ i ∈ {1, . . . , k}.

This form is often called the deterministic equivalent problem of the problem (9).
The submodular reassignment problem can be formulated as a two-stage stochastic

optimization problem with finite scenarios. The correspondence can be seen as X = 2U ,
x = X, ξi = fi, y = Y , Y(x, ξi) = arg min fi, and g(x, y, ξi) = |X 4 Y |.

One method to tackle the two-stage stochastic optimization problem in the black-box
model is the sample average approximation (SAA). In this method, we choose a number of
samples from the distribution, and approximate the probability distribution by the obtained
empirical distribution. Some theoretical studies focus on the number of samples to guarantee
a certain error. Thus, the sample average approximation reduces the problem to the finite
scenario model by losing optimality. However, Dyer and Stougie [9, 10] proved that the
two-stage stochastic linear programming can be solved in polynomial time in the finite
scenario model, but the problem is #P-hard in the black-box model.

In the context of theoretical computer science, most of the algorithmic studies for two-
stage stochastic optimization problems look at approximation. Among others, Shmoys
and Swamy [24] gave a fully polynomial-time approximation scheme for the two-stage
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stochastic linear programming in the black-box model. Approximation for two-stage stochastic
combinatorial optimization problems has also been studied by, for example, [24, 13, 6].

Robust optimization is another way of dealing with uncertainty in optimization. See [1] for
an introduction. Robust optimization usually considers minimizing the cost of the worst-case
scenario while stochastic optimization usually aims at minimizing the expected cost. We will
comment on the robust counterpart of the submodular reassignment problem in Section 6.

Reoptimization is another concept related to the submodular reassignment problem. In
general, the reoptimization problem can be phrased as follows. We are given an instance I of
an optimization problem and one of its optimal solutions x. Then, for a slightly modified
instance I ′ of the problem, we make a small change to x so that the resulting solution x′ is a
good approximation (or even an optimal solution) of I ′. Reoptimization has been studied for
several combinatorial optimization problems such as the minimum spanning tree problem [5],
the traveling salesman problem [16], and the Steiner tree problem [4].

In the submodular reassignment problem, we want to minimize the expected amount of
change from X to Yi. This is similar to the situation in reoptimization.

In our algorithm, we make use of Birkhoff’s representation theorem for distributive lattices.
The theorem is well-known in combinatorics, but its algorithmic application is not abundant.
We only give a few references here: one in the stable matching problem [14], and one in the
rectangular layout problem [11].

2 Preliminaries

2.1 Distributive Lattices
In this paper, we will make use of properties of finite distributive lattices. To ease the
notation, we minimize the use of terminology in poset theory, and we stick to the terminology
in sets and graphs.

For our purpose, a distributive lattice is a set family L ⊆ 2U that is closed under union
and intersection: X,Y ∈ L implies X ∪Y ∈ L and X ∩Y ∈ L. This is a partially ordered set
with respect to set inclusion ⊆, and has a unique minimal element (i.e., an element that has
no proper subset in L) and a unique maximal element (i.e., an element that has no proper
superset in L).

Birkhoff’s representation theorem is a useful tool for studying distributive lattices, which
states the following.

I Theorem 2.1 (Birkhoff’s representation theorem [3]). Let L ⊆ 2U be a distributive lattice.
There exists a partition of U into U0, U1, . . . , Ub, U∞, where U0 and U∞ can possibly be empty,
such that the following hold.
(1) Every set in L contains U0.
(2) Every set in L has an empty intersection with U∞.
(3) For every set X ∈ L, there exists a set J ⊆ {1, . . . , b} of indices such that X = U0 ∪⋃

j∈J Uj.
(4) There exists a directed acyclic graph G(L) that has the following properties:
(4-1) The vertex set is {U0, U1, . . . , Ub};
(4-2) U0 is a unique sink, i.e., a vertex of out-degree zero, of G(L);
(4-3) For a set Z of vertices in G(L), Z has no out-going edge if and only if

⋃
j∈J Uj ∈ L,

where J = {j | Uj ∈ Z}.
Figure 1 shows an example.
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{1,2}

{1, 2, 3}{1, 2, 4}

{1, 2, 4, 7} {1, 2, 3, 4}

{1, 2, 3, 4, 5, 6}{1, 2, 3, 4, 7}

{1, 2, 3, 4, 5, 6, 7}

{1,2}

{4} {3}

{5,6}{7}
U3U4

U2 U1

U0

L G(L)

Figure 1 Example for Birkhoff’s representation theorem. The left is a distributive lattice L on
U = {1, . . . , 8} (shown by its Hasse diagram), and the right is the directed graph G(L). In this case,
U∞ = {8}.

For a distributive lattice L ⊆ 2U , we call the directed graph G(L) above a compact
representation of L. Note that the size of G(L) is O(|U |2) while |L| can be as large as 2|U |.
This justifies the use of word “compact.” The graph G(L) is unique if we delete transitive
arcs.

2.2 Submodular Functions
Let U be a non-empty finite set. A function f : 2U → R is submodular if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (10)

for all X,Y ⊆ U . A function f : 2U → R is supermodular if −f is submodular. A minimizer
of the function f is X ⊆ U such that f(X) ≤ f(Y ) for all Y ⊆ U . The set of minimizers of
f is denoted by arg min f .

For the computational purpose, we define a value oracle of a submodular function
f : 2U → R. A value oracle takes X ⊆ U as an input, and returns the value f(X). Assuming
that we are given a value oracle, we can minimize a submodular function in polynomial time.
The currently fastest algorithm for the submodular function minimization was given by Lee,
Sidford, and Wong [15] and runs in Õ(n3EO + n4) time, where n = |U | and EO is the query
time of a value oracle.

The following is a well-known fact on submodular functions.

I Lemma 2.2. Let f : 2U → R be a submodular function. Then, arg min f forms a distributive
lattice.

Proof. Let X,Y ∈ arg min f , and denote α = min{f(Z) | Z ⊆ U}. Then, f(X ∪ Y ) ≥ α,
f(X ∩ Y ) ≥ α, and

2α = f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) ≥ α+ α = 2α.

Therefore, f(X ∪ Y ) = f(X ∩ Y ) = α, which implies that X ∪ Y,X ∩ Y ∈ arg min f . J

It is known that a compact representation of the distributive lattice arg min f can be
constructed in strongly polynomial time. We phrase it as a theorem.

I Theorem 2.3. Given a submodular function f : 2U → R, a compact representation of the
distributive lattice arg min f can be computed in strongly polynomial time.
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Proof Sketch. As a proof sketch, we give a short description of an algorithm.
First, we find a minimal minimizer X0 of f in strongly polynomial time. This can be

done by minimizing the submodular function f̃ : 2U → R defined by f̃(X) = f(X) + ε|X| for
a sufficiently small ε > 0 [17, Notes 10.13]. The set X0 is a unique sink in G(L). Similarly,
we find a unique maximal minimizer that we denote by Xb. Then, we take a maximal chain
X0 ( X1 ( · · · ( Xb of minimizers of f . Such a chain can be obtained by minimizing
submodular functions repeatedly. In fact, if we are given two minimizers Y and Y ′ with
Y ( Y ′, then we can decide whether there exists no minimizer Z such that Y ( Z ( Y ′,
by finding a minimal minimizer of a submodular function f ′ : 2Y ′\(Y ∪{v}) → R defined by
f ′(X) = f(X ∪ Y ∪ {v}) for each v ∈ Y ′ \ Y . The maximal chain gives a partition of U , i.e.,
we define U0 = X0 and Ui = Xi \Xi−1, i = 1, . . . , b, and U∞ = U \Xb. By Theorem 2.1, it
can be argued that this partition forms the vertex set of G(L). Moreover, for i, j ∈ {1, . . . , b},
G(L) has an edge from Ui to Uj if and only if any minimizer of f containing Ui includes Uj ,
which can be checked by finding a minimal minimizer of a submodular function f ′ : 2U\Ui → R
defined by f ′(X) = f(X ∪ Ui). Also, G(L) has an edge from each Ui to U0 and from U∞ to
each Ui. J

There exists a more efficient algorithm for creating a compact representation of the
distributive lattice arg min f for a submodular function f . For example, it is known that a
compact representation of the distributive lattice arg min f can be constructed in Õ(n5EO +
n6) time via Orlin’s submodular function minimization algorithm [18]. See [17, Notes 10.11
and 10.12].2

2.3 Minimum Cuts
Let G = (V,A) be a directed graph, where V is its vertex set and A is its arc set. For an arc
a ∈ A, ∂+a denotes the tail, and ∂−a denotes the head.

An s, t-network consists of a directed graph G = (V,A) with two designated vertices s, t
(s 6= t), and a capacity function c : A→ R+ ∪ {+∞}, where R+ is the set of all non-negative
real numbers. Such an s, t-network is denoted by (G, c; s, t). Let U = V \ {s, t}. Then, the
set function κ : 2U → R defined as

κ(X) =
∑

a∈A : ∂+a∈X∪{s},∂−a∈(U\X)∪{t}

c(a) (11)

is called the cut function of the s, t-network (G, c; s, t). The value κ(X) is called the capacity
of an s, t-cut X ∪ {s}.

It is well-known and easy to see that the cut function is submodular. For each minimizer
X of the cut function, the set X ∪ {s} is called a minimum s, t-cut. A minimum s, t-cut
can be deduced from a maximum flow of the network in linear time by constructing the
so-called residual network and performing the depth-first search from s. Since the fastest
known algorithm for the maximum flow computation takes O(|V ||A|) time [19], a minimum
s, t-cut can also be computed in O(|V ||A|) time.

By Lemma 2.2, the family of minimum s, t-cuts forms a distributive lattice. A compact
representation can be constructed from a maximum flow in the s, t-network in linear time.
More specifically, from a maximum flow, construct the residual network, and find the strongly-
connected-component decomposition of the residual network. The decomposition gives a

2 It is not clear to us that the algorithm by Lee et al. [15] can be used to find a compact representation of
arg min f .
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directed graph which can be turned into a compact representation of the distributive lattice
of minimum s, t-cuts [21]. In total, when we construct a compact representation from scratch,
the running time is dominated by the maximum flow computation, and this can be done in
O(|V ||A|) time [19].

We may also consider an undirected s, t-network (G, c; s, t) in which G is an undirected
graph instead of a directed graph. An undirected s, t-network can be turned into a directed
s, t-network by changing each undirected edge {u, v} of G to two directed arcs (u, v) and
(v, u), and setting the capacity as c((u, v)) = c((v, u)) := c({u, v}).

Similarly, we may consider a minimum s, t-cut of a hypergraph. By a hypergraph, we mean
a pair H = (V,E) of finite set V called the vertex set and a family E ⊆ 2V of hyperedges.
For a hypergraph H = (V,E) and two designated vertices s, t ∈ V , let U = V \ {s, t}. For a
capacity function on the hyperedges c : E → R+, the cut function κ : 2U → R is defined as

κ(X) =
∑

e∈E : e∩(X∪{s})6=∅,e∩((U\X)∪{t})6=∅

c(e).

It is known that the computation of a minimum s, t-cut of a hypergraph H = (V,E) can be
reduced to the computation of a minimum s, t-cut of some directed s, t-network G = (V ′, A′),
where |V ′| = O(|V |+|E|), and |A′| = O(|E|+

∑
e∈E |e|). Furthermore, there exists a bijection

between the family of minimum s, t-cuts of H and the family of minimum s, t-cuts of G
(see [7]). Therefore, the family of all minimum s, t-cuts of a hypergraph forms a distributive
lattice, and its compact representation can be obtained in O(|V ′||A′|) time.

3 Reduction to Submodular Minimization

3.1 Proof of Submodularity
In this section, we prove that the objective function

∑k
i=1 di(X) in Problem (3) is submodular.

I Theorem 3.1. The function X 7→
∑k
i=1 di(X) is submodular.

Proof. It is enough to prove that di : 2U → R is submodular for each i ∈ {1, . . . , k}, as
the sum of submodular functions is submodular. Recall the definition in (2): di(X) :=
min{|X 4 Yi| | Yi ∈ arg min fi}.

Let X1, X2 ⊆ U , and Y j ∈ arg min{|Xj 4 Y | | Y ∈ arg min fi} for j ∈ {1, 2}. Namely,
Y j is a set in arg min fi that is the “closest” to X. Then, di(Xj) = |Xj 4 Y j | holds.

Suppose that the following is true:

|X1 4 Y 1|+ |X2 4 Y 2| ≥ |(X1 ∪X2)4 (Y 1 ∪ Y 2)|+ |(X1 ∩X2)4 (Y 1 ∩ Y 2)|. (12)

Then, we obtain

di(X1) + di(X2) = |X1 4 Y 1|+ |X2 4 Y 2|
≥ |(X1 ∪X2)4 (Y 1 ∪ Y 2)|+ |(X1 ∩X2)4 (Y 1 ∩ Y 2)|
≥ di(X1 ∪X2) + di(X1 ∩X2),

where the second inequality follows from Lemma 2.2: Y 1, Y 2 ∈ arg min fi implies Y 1 ∪
Y 2, Y 1 ∩ Y 2 ∈ arg min fi.

Thus, it is sufficient to prove (12). To this end, we consider the difference of the left-hand
side and the right-hand side of (12). Keeping the identities |A4B| = |A|+ |B| − 2|A ∩B|
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and |A|+ |B| = |A ∪B|+ |A ∩B| for all finite sets A,B in mind, we obtain

1
2
(
|X1 4 Y 1|+ |X2 4 Y 2| − |(X1 ∩X2)4 (Y 1 ∩ Y 2)| − |(X1 ∪X2)4 (Y 1 ∪ Y 2)|

)
= 1

2 |X
1|+ 1

2 |Y
1| − |X1 ∩ Y 1|+ 1

2 |X
2|+ 1

2 |Y
2| − |X2 ∩ Y 2|

− 1
2 |X

1 ∩X2| − 1
2 |Y

1 ∩ Y 2|+ |(X1 ∩X2) ∩ (Y 1 ∩ Y 2)|

− 1
2 |X

1 ∪X2| − 1
2 |Y

1 ∪ Y 2|+ |(X1 ∪X2) ∩ (Y 1 ∪ Y 2)|

= −
(
|X1 ∩ Y 1|+ |X2 ∩ Y 2|

)
+ |(X1 ∩X2) ∩ (Y 1 ∩ Y 2)|+ |(X1 ∪X2) ∩ (Y 1 ∪ Y 2)|

= −
(
|(X1 ∩ Y 1) ∩ (X2 ∩ Y 2)|+ |(X1 ∩ Y 1) ∪ (X2 ∩ Y 2)|

)
+ |(X1 ∩X2) ∩ (Y 1 ∩ Y 2)|+ |(X1 ∪X2) ∩ (Y 1 ∪ Y 2)|

= −|(X1 ∩ Y 1) ∪ (X2 ∩ Y 2)|+ |(X1 ∪X2) ∩ (Y 1 ∪ Y 2)|
= −|(X1 ∩ Y 1) ∪ (X2 ∩ Y 2)|+ |(X1 ∩ Y 1) ∪ (X1 ∩ Y 2) ∪ (X2 ∩ Y 1) ∪ (X2 ∩ Y 2)|
≥ 0,

where the last inequality holds because |A| ≤ |A ∪ B| for any finite sets A and B. This
finishes the proof of (12), and thus the submodularity of

∑k
i=1 di(X) holds. J

Note that we can also prove the submodularity of di by using known results on submodular
functions as follows. Define a submodular function g : 2U → R ∪ {+∞} by

g(X) =
{

0 if X ∈ arg min fi
+∞ otherwise.

Then, di(X) is represented by

di(X) = min
Y⊆U

(
g(Y ) +

∑
v∈U
|χX(v)− χY (v)|

)
,

where χX , χY are the characteristic vectors of X,Y . The right-hand side is the convolution of
a submodular function and a separable convex function, which is known to be submodular (see
e.g., [17, Theorem 7.10]). Thus, di is submodular.

We here emphasize that for a submodular function f : 2U → R and a set S ⊆ U , the
function f4S : 2U → R defined as f4S(X) = f(X 4 S) is not necessarily submodular. For
example, consider the following case: U = {1, 2}, S = {1} and the submodular function
f : 2U → R defined as f(∅) = 0, f({1}) = 2, f({2}) = 2, f({1, 2}) = 3. Then, f4S(∅) =
f({1}) = 2, f4S({1}) = f(∅) = 0, f4S({2}) = f({1, 2}) = 3, and f4S({1, 2}) = f({2}) = 2.
Therefore, f4S({1}) + f4S({2}) < f4S(∅) + f4S({1, 2}), and thus f4S is not submodular.

3.2 Implementation of a Submodular Value Oracle
The goal of the section is to give a polynomial-time algorithm for the submodular reassignment
problem. It follows from Theorem 3.1 that the objective function

∑k
i=1 di(X) is submodular.

As discussed in Section 2, it suffices to design a value oracle for
∑k
i=1 di(X), that is, to

design a polynomial-time algorithm to compute di(X) for a given subset X and an integer i.
The algorithm is similar to Picard’s method to reduce the maximum closure problem to

the maximum flow problem [20]. For the sake of later convenience, we explain the reduction
in detail. Refer to Figure 2.
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Figure 2 Implementation of a submodular value oracle. The example is taken from Figure 1,
and X = {1, 7}. The solid black arcs have infinite capacities, and blue broken arcs have the unit
capacities. A minimum s, t-cut of DX is {s, 1, 2, 4, 7}, which is shown in gray, and its capacity is
two. On the other hand, Y ∗ = {1, 2, 4, 7} ∈ L minimizes the value |X 4 Y | over all Y ∈ L, and
|X 4 Y ∗| = 2.

Fix a subset X of U and an integer i in {1, 2, . . . , k}. Define L := arg min fi. Recall that
computing di(X) is to find a subset Y ∈ L that minimizes |X 4 Y |.

Let G(L) be a compact representation of L with a partition U0, U1, . . . , Ub, U∞ of U . We
first construct a directed graph D(L) from G(L) by expanding each vertex in G(L) to a
complete graph. More specifically, D(L) has a vertex set U ∪ {s, t}, and its arc set A is
defined as follows.

(u, v) ∈ A if u, v ∈ Uj for some j.
(uj , uj′) ∈ A for any uj ∈ Uj and uj′ ∈ Uj′ if G(L) has an arc from Uj to Uj′ .
(u, s), (s, u) ∈ A if u ∈ U0.
(u, t), (t, u) ∈ A if u ∈ U∞.

The capacity c(e) is set to be +∞ for any e ∈ A. We denote the cut function of the
s, t-network (D(L), c; s, t) by κ. Note that for any subset Z ⊆ U , κ(Z) is either zero or +∞.

Then, the following lemma holds by Birkhoff’s representation theorem (Theorem 2.1).

I Lemma 3.2. Let Z be a subset of U . Then, Z ∈ L if and only if κ(Z) = 0.

Proof. Suppose that Z ∈ L. Then, Z is partitioned into {U0} ∪ {Uj | j ∈ J} for some
J ⊆ {1, . . . , k}. Moreover, there is no outgoing arc from {U0} ∪ {Uj | i ∈ J} in G(L). By
construction, there is no outgoing arc from Z ∪ {s} in D(L). Hence, κ(Z) is equal to zero.

On the other hand, suppose that κ(Z) = 0. Then, there is no outgoing arc from Z ∪ {s}
in D(L), as each arc has infinite capacity. Hence, it follows that U0 ⊆ Z, Z ∩ U∞ = ∅,
and, for each j ∈ {1, 2, . . . , b}, either Uj ⊆ Z or Z ∩ Uj = ∅. Moreover, letting J = {j ∈
{1, 2, . . . , b} | Uj ⊆ Z}, we see that there is no outgoing arc from {U0} ∪ {Uj | j ∈ J} in
G(L). This implies that Z is in L. J

Using X, we add arcs to D(L); For each element u in X, we add an arc (s, u) with
c((s, u)) = 1, and, for each element u in U \X, we add an arc (u, t) with c((u, t)) = 1. We
denote the resulting graph by DX = (U ∪ {s, t}, AX). Define κX as the cut function of
(DX , c; s, t).

I Lemma 3.3. Let Z be a subset of U . If κX(Z) < +∞, then Z ∈ L and κX(Z) = |X4Z|.
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Figure 3 Reduction of the submodular reassignment problem to the maximum flow problem.
The solid black arcs have infinite capacities, and the blue broken arcs have unit capacities. In this
example, k = 3.

Proof. Since κX(Z) < +∞, we have κ(Z) = 0 for D(L), and thus Z ∈ L by Lemma 3.2.
Moreover, we have

κX(Z) = κ(Z) +
∑

u∈Z\X

c((u, t)) +
∑

v∈X\Z

c((s, v)) = |Z \X|+ |X \ Z|,

which proves the lemma. J

These lemmas show that di(X) is equal to the capacity of a minimum s, t-cut in DX ,
which can be computed in polynomial time. Summarizing the discussion above with Theorem
3.1, we obtain the following theorem.

I Theorem 3.4. The submodular reassignment problem can be solved in strongly polynomial
time. J

4 Reduction to Maximum Flow

In Section 3, we proved the submodular reassignment problem can be solved in strongly
polynomial time by using a submodular function minimization algorithm. However, the
submodular function minimization is a big hammer that we like to avoid. Thus, in this
section, we will give a reduction of the submodular reassignment problem to the minimum
s, t-cut problem (or equivalently via duality theorem, the maximum flow problem) that can
be solved more efficiently both in theory and in practice. For an illustration, see Figure 3.

We here note that in our algorithm we need to have a compact representation of arg min fi
for each submodular function fi. In this sense, a submodular function minimization algorithm
is actually required. On the other hand, if the submodular functions fi are represented by
cut functions of graphs or hypergraphs, then we can avoid using a submodular function
minimization algorithm to obtain compact representations.

For each integer i in {1, 2, . . . , k}, we define Li := arg min fi. Let G(Li) be a compact
representation of Li, where the vertex set is {U i0, U i1, . . . , U ib} with U i∞ = U \

⋃b
j=0 U

i
j . We

construct a directed graph Di := D(Li) and a capacity c similarly to Section 3.2. We denote
the vertex set of Di except for s, t by U i, and the arc set by Ai. Since the vertices of Di
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other than s, t are formed by a copy of U , we denote a vertex of Di that corresponds to
u ∈ U by ui. Namely, U i = {ui | u ∈ U}. The cut function of the s, t-network (Di, c; s, t) is
denoted by κDi . Then, it follows from Lemma 3.2 that, for each subset X in U i, κDi(X) is
zero if and only if X is in Li.

From Di, i = 1, . . . , k, we construct an s, t-network (D = (V,A), c; s, t) as follows. We
identify all s (and t, respectively) in Di into one vertex s (and t, respectively). We further
prepare another copy of U , i.e., U∗ = {u∗ | u ∈ U}. Thus, the vertex set V of D is defined by

V :=
k⋃
i=1

U i ∪ U∗ ∪ {s, t}.

The arc set A of D consists of Ai and arcs connecting u∗ and a copy of u in Di. That is,

A :=
k⋃
i=1

(
Ai ∪ {(u∗, ui), (ui, u∗) | u ∈ U}

)
.

The capacity c on A is defined by

c(e) :=
{

+∞ if e ∈
⋃k
i=1 A

i,

1 otherwise.
(13)

Define κD as the cut function of (D, c; s, t).

I Lemma 4.1. Let Z be a subset of V \ {s, t} such that κD(Z) is finite. Define Yi = {u |
ui ∈ Z ∩ U i} for i = 1, . . . , k. Then, Yi is in Li.

Proof. Since κD(Z) is finite, there is no outgoing arc in
⋃k
i=1 A

i from Z ∪ {s}, as each arc
has infinite capacity. Hence, we have κDi(Z ∩ U i) = 0 for each i = 1, . . . , k, and thus the
corresponding set Yi is in Li by Lemma 3.2. J

I Lemma 4.2. Let X be a subset of U , and Yi be a minimizer in Li for each integer i
in {1, 2, . . . , k}. Define X∗ := {u∗ | u ∈ X} and U i(Yi) := {ui | u ∈ Yi}. Then, the set
Z := X∗ ∪

⋃k
i=1 U

i(Yi) satisfies that

κD(Z) =
k∑
i=1
|X 4 Yi|.

Proof. Since Yi is in Li, it holds that κDi(U i(Yi)) = 0 for each i by Lemma 3.2. Therefore,
we have

κD(Z) =
k∑
i=1

 ∑
u∈X∗,v 6∈V (Yi)

c((u, v)) +
∑

u6∈X∗,v∈V (Yi)

c((v, u))


=

k∑
i=1

(|X \ Yi|+ |Yi \X|) =
k∑
i=1
|X 4 Yi|. J

These lemmas show that finding X ⊆ U and Yi ∈ arg min fi for all i ∈ {1, . . . , k} that
minimize

∑k
i=1 |X 4 Yi| is equivalent to finding a minimum s, t-cut in D, which can be done

in O(|V ||A|) time [19]. Since D contains O(kn) vertices and O(kn2) arcs, where n = |U |, we
have the following theorem.

I Theorem 4.3. The submodular reassignment problem can be reduced to the minimum
s, t-cut problem. Furthermore, it can be solved in O(k2n3) time if we are given a compact
representation of Li for each i, where n = |U |.
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5 Hardness of Variants

5.1 More Than Two Tasks
The submodular reassignment problem deals with assigning workers to two tasks. Therefore,
we may also think about more general problem in which we assign workers to m tasks, m ≥ 3.
This generalized setup can be cast into the following optimization problem. Let U be a finite
set and we are given mk submodular functions f ji : 2U → R, i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}.
Then, our goal is to find Xj , Y ji ⊆ U for i ∈ {1, . . . , k} and j ∈ {1, . . . ,m} such that

X1, . . . , Xm partition U ,
Y 1
i , . . . , Y

m
i partition U for every i ∈ {1, . . . , k}, and

Y 1
i , . . . , Y

m
i minimize

∑m
j=1 f

t
i (Y

j
i ).

Under these constraints, we want to minimize

k∑
i=1

m∑
j=1
|Xj 4 Y ji |.

Unfortunately, this problem is NP-hard already when m = 3, k = 1 and the involved
submodular functions are cut functions of a graph with unit capacity. This can be proved by
a reduction of the minimum 3-terminal cut problem [8].

In the minimum 3-terminal cut problem, we are given an undirected graph G = (V,E)
and three designated vertices s1, s2, s3 ∈ V . Then, we want to find a partition of V
into three parts V1, V2, V3 such that si ∈ Vi for each i ∈ {1, 2, 3}, and the following sum
|E(V1, V2)|+ |E(V1, V3)|+ |E(V2, V3)| is minimized, where E(Vi, Vj) is the set of edges in G
that have one endpoint in Vi and the other endpoint in Vj . The minimum 3-terminal cut
problem is NP-hard [8].

Given an instance G = (V,E) of the minimum 3-terminal cut problem, we construct an
instance of our problem under investigation. Let U = V \ {s1, s2, s3}, k = 1 and m = 3. For
each j ∈ {1, 2, 3}, the function f j1 : 2U → R is defined as follows:

f j1 (X) = |E(X ∪ {sj}, V \ (X ∪ {sj}))|.

Note that f (j)
1 is a cut function, and thus submodular.

Let (X1, X2, X3, Y 1
1 , Y

2
1 , Y

3
1 ) be an optimal solution to our problem. Then, Y 1

1 , Y
2

1 , Y
3

1
partition U and minimize

∑3
j=1 f

j
1 (Y j1 ). Therefore, Y 1

1 ∪ {s1}, Y 2
1 ∪ {s2}, Y 3

1 ∪ {s3} yield an
optimal solution to the minimum 3-terminal cut problem. Thus, our problem variant with
three tasks is NP-hard.

5.2 A Robust Variant
The submodular reassignment problem can be thought of as the “min-sum” problem, or the
“median” problem for arg min f1, arg min f2, . . . , arg min fk. This motivates us to study the
“min-max” version, or the “center” version of the problem. Namely, for given submodular
functions f1, . . . , fk : 2U → R, we want to solve the following problem:

minimize
X⊆U

max
i=1,...,k

di(X), (14)

where di is defined by (2). This is the robust counterpart of the submodular reassignment
problem.
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However, the above min-max version is NP-hard as the closest string problem is NP-
hard [12]. Here, we give a reduction even when the submodular functions are cut functions
of s, t-networks.

We reduce the closest string problem to the problem above. In the closest string problem,
we are given k strings σ1, . . . , σk of length n over an alphabet Σ, and want to find a string τ
of length n over Σ that minimizes

max
i=1,...,k

d(σi, τ), (15)

where d(σi, τ) denotes the Hamming distance between σi and τ :

d(σi, τ) = |{j ∈ {1, . . . , n} | σi[j] 6= τ [j]}|. (16)

It is known that the closest string problem is NP-hard even when Σ = {0, 1} [12].
For our reduction, we create an undirected s, t-network (Gi, c; s, t) based on each σi. The

vertex set of Gi is {1, . . . , n} ∪ {s, t}. The edge set of Gi is

{{s, j} | σi[j] = 0} ∪ {{j, t} | σi[j] = 1},

and each edge has a unit capacity.
Let X ⊆ {1, . . . , n}. Then, the cut function κi of the network is determined as

κi(X) = |{j ∈ X | σi[j] = 1}|+ |{j 6∈ X | σi[j] = 0}|

for every X ⊆ {1, . . . , n}. Therefore, this capacity is equal to the Hamming distance d(σi, τX),
where the string τX is constructed from X as τX [j] = 0 if and only if j ∈ X. Thus, minimizing
maxi=1,...,k d(σi, τX) is equivalent to minimizing maxi=1,...,k κi(X). This finishes the proof
of NP-hardness.

6 Concluding Remarks

You may think Theorem 3.4 is useless for the algorithmic purpose since it is beaten by Theorem
4.3. However, Theorem 3.4 can be used to solve a more general problem. For example, for
another submodular function f0 : 2U → R, we may consider minimizing f0(X) +

∑k
i=1 di(X)

where f0(X) represents the cost associated with the first-stage decision X. Then, Theorem
3.4 (and its proof) can be used to prove that the problem above can be solved in strongly
polynomial time by a submodular function minimization algorithm.

As we have seen in the introduction, we can consider the situation in which each scenario
happens with non-uniform probability pi. That is, the problem is to find X ⊆ U and
Yi ∈ arg min fi for all i ∈ {1, . . . , k} that minimize

∑k
i=1 pi|X 4 Yi|. Since this problem is

equivalent to finding X ⊆ U that minimizes a submodular function
∑k
i=1 pidi(X), it can be

solved in strongly polynomial time via a submodular function minimization algorithm in the
same way as in Section 3. We can also reduce the problem to the minimum s, t-cut problem
in the same way as in Section 4 by modifying the definition of the capacity c on A. More
precisely, we replace (13) with

c(e) :=
{

+∞ if e ∈
⋃k
i=1 A

i,

pi if e = (u∗, ui) or e = (ui, u∗)

in the definition of (D, c; s, t). Then, finding X ⊆ U and Yi ∈ arg min fi for all i ∈ {1, . . . , k}
that minimize

∑k
i=1 pi|X 4 Yi| is equivalent to finding a minimum s, t-cut in D, which can

be done in strongly polynomial time.
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