Vertex Angle and Crossing Angle Resolution of Leveled Tree Drawings

Walter Didimo	U Perugia	IT
Michael Kaufmann	U Tübingen	DE
Giuseppe Liotta	U Perugia	IT
<u>Yoshio Okamoto</u>	JAIST	JP
Andreas Spillner	U Greifswald	DE

Drawing trees

A tree is a connected graph without cycle

Every tree can be drawn on the plane without edge crossing

How about if the y-coordinates are fixed?

Def.: Leveled tree

A leveled tree is a pair (T, L) of

- a tree T and
- ▶ an injection $L: V \to \mathbb{R}$

A leveled drawing of (T, L) is a straight-line drawing of T s.t. for every vertex $v \in T(V)$ the y-coordinate of v is L(v) How about if the y-coordinates are fixed?

Def.: Leveled tree

A leveled tree is a pair (T, L) of

- a tree T and
- an injection $L \colon V \to \mathbb{R}$

A leveled drawing of (T, L) is a straight-line drawing of T s.t. for every vertex $v \in T(V)$ the y-coordinate of v is L(v)

A non-planar example of leveled trees

Not all leveled trees can be drawn without edge crossing

[Healy, Kuusik, Leipert '04]

Didimo, Kaufmann, Liotta, Okamoto, Spillner Angle resolution of leveled tree drawings

Reflection on aesthetics

- Not every (leveled) graph can be drawn without edge crossing
- ▶ ∴ Imposing "planarity" is too restricted
- ► ∴ Need to live with crossings

Cognitive experiments	(Huang '07, Huang, Hong, Eades '08)
 The readability of non-planar drawing is severely affected by those crossings that form "sharp" angles 	
 Crossing angles of at leas on human task performar 	t 70° have smaller impact nce

► ∴ A drawing with large crossing angles is desired

A crossing doesn't harm the readability if it creates a large angle

A crossing doesn't harm the readability if it creates a large angle

The crossing angle resolution of a drawing is ...

the minimum angle formed by a crossing in the drawing

The crossing angle resolution of a drawing is ...

the minimum angle formed by a crossing in the drawing

Our task

Given a (leveled) graph Find a (leveled) drawing with large crossing angle resolution

Result 1

Theorem 1

∀ leveled tree (*T*, *L*) ∃ a leveled drawing of (*T*, *L*) with the crossing angle resolution $\ge 90^{\circ} - \epsilon$ for any $\epsilon > 0$

Remark: \exists a leveled tree (T, L) such that \forall leveled drawing of (T, L): the Xing angle resol'n < 90°

Algorithm for Theorem 1 (1/2)

First step

Given a leveled tree

Didimo, Kaufmann, Liotta, Okamoto, Spillner Angle resolution of leveled tree drawings

Algorithm for Theorem 1(1/2)

First step

We fix a root arbitrarily

Didimo, Kaufmann, Liotta, Okamoto, Spillner Angle resolution of leveled tree drawings

Algorithm for Theorem 1 (1/2)

First step

Color an edge red if the parent is lower than the child, blue o/w

What is the crossing angle resolution of such drawings?

At least $90^{\circ} - \epsilon$ since

- ▶ a crossing occurs between a red edge and a blue edge, and
- their angle is $90^{\circ} \epsilon$

Result 1

Theorem 1

∀ leveled tree (*T*, *L*) ∃ a leveled drawing of (*T*, *L*) with the crossing angle resolution $\ge 90^{\circ} - \epsilon$ for any $\epsilon > 0$

Remark: \exists a leveled tree (T, L) such that \forall leveled drawing of (T, L): the Xing angle resol'n < 90°

Upper bound construction for Result 1

For this leveled tree, the crossing angle resol'n $<90^\circ$

Our drawing is unsatisfactory!!

Because of too small angles around vertices

We need to take care of the angles around vertices, too!

The total angle resolution of a drawing is ...

the minimum angle formed by a crossing or two incident edges in the drawing $% \left({{{\mathbf{r}}_{i}}} \right)$

The total angle resolution of a drawing is ...

the minimum angle formed by a crossing or two incident edges in the drawing $% \left({{{\mathbf{r}}_{i}}} \right)$

Our task

Given a (leveled) graph Find a (leveled) drawing with large total angle resolution

Result 2

Theorem 2

∀ leveled tree (*T*, *L*) ∃ a leveled drawing of (*T*, *L*) with the total angle resolution $\ge \pi/d - \epsilon$ for any $\epsilon > 0$ where *d* = max degree of *T*

Remark: \exists a leveled tree (T, L) such that \forall leveled drawing of (T, L) the total angle resol'n = π/d

Algorithm for Theorem 2 (1/2)

First step

Given a leveled tree

Didimo, Kaufmann, Liotta, Okamoto, Spillner Angle resolution of leveled tree drawings

Algorithm for Theorem 2 (1/2)

First step

We fix a proper *d*-edge-coloring arbitrarily

Didimo, Kaufmann, Liotta, Okamoto, Spillner Angle resolution of leveled tree drawings

Consider the 2*d*-gon w/ long diagonals colored by *d* colors

Algorithm for Theorem 2 (2/2)

Second step

Draw the edges of T with the slope of the same-color diagonals

Algorithm for Theorem 2: Validity

What is the total angle resolution of such drawings?

At least $\pi/d - \epsilon$ since

- ▶ a crossing occurs between edges with different colors, and
- their angle is at least $\pi/d \epsilon$

Result 2

Theorem 2

∀ leveled tree (*T*, *L*) ∃ a leveled drawing of (*T*, *L*) with the total angle resolution $\ge \pi/d - \epsilon$ for any $\epsilon > 0$ where *d* = max degree of *T*

Remark: \exists a leveled tree (T, L) such that \forall leveled drawing of (T, L) the total angle resol'n = π/d

Upper bound construction for Result 2

For this leveled tree, the total angle resol'n $\leq \pi/d$

(when d = 3)

- Tight bounds of
 - the crossing angle resolution $(\pi/2-\epsilon)$
 - the total angle resolution $(\pi/d \epsilon)$

in leveled tree drawings

- Question: The crossing angle resolution when d = 3?
- Question: What about leveled planar graphs?

