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Abstract. We study problems in computational geometry from the viewpoint of adaptive algorithms.
Adaptive algorithms have been extensively studied for the sorting problem, and in this paper we gener-
alize the framework to geometric problems. To this end, we think of geometric problems as permutation
(or rearranging) problems of arrays, and define the “presortedness” as a distance from the input array
to the desired output array. We call an algorithm adaptive if it runs faster when a given input array
is closer to the desired output, and furthermore it does not make use of any information of the pre-
sortedness. As a case study, we look into the planar convex hull problem for which we discover two
natural formulations as permutation problems. An interesting phenomenon that we prove is that for one
formulation the problem can be solved adaptively, but for the other formulation no adaptive algorithm
can be better than an optimal output-sensitive algorithm for the planar convex hull problem.

1 Introduction

One can think of computational geometry as a generalization of numerical problems (namely, 1-dimensional
problems) to higher dimensions. A typical example is the 2-dimensional convex hull computation, which can
be thought of as a 2-dimensional generalization of sorting an array of numbers.

This work is motivated by a thorough treatment for sorting problems to take “presortedness” into account
in the analysis of the algorithms. In certain cases one expects sorting algorithms to run faster if a given
input is almost sorted. Mehlhorn [23] introduced the term “adaptive sorting algorithms” for those with such
a property. A formal framework for the worst-case analysis of adaptive sorting algorithms was introduced by
Mannila [22], and the framework is well surveyed by Estivill-Castro and Wood [15].

An adaptive sorting algorithm has several characteristics. First, it runs faster if the presortedness is high.
Second, the algorithm does not use any information of the presortedness. That is a reason why it is called
“adaptive.”

In this paper, we study adaptive computational geometry . To apply the adaptiveness framework to geo-
metric problems, we want to think of the problems as permutation problems. That is, we are given an array
of objects (points, segments, etc.), and we output a permutation (or a rearrangement) of the objects that
represents the desired answer. Naturally, the sorting problem is such a permutation problem, and the planar
convex hull problem can be seen as a permutation problem (and actually, a lower bound of the convex hull
algorithm is given by a reduction from the sorting problem). Indeed, this work is also motivated by recent
studies on in-place geometric algorithms that treat some geometric problems as permutation problems [7, 9,
10].

Several “presortedness” measures have been proposed [15]. In this work, we use the oldest and the most
frequently used measure: the number of inversions. Given two linear orders ≤1,≤2 on X, an inversion is an
ordered pair (i, j) ∈ X2 such that i <1 j and j <2 i. We denote the total number of inversions for ≤1,≤2 by

? Work by Ahn was supported by Basic Science Research Program Through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science and Technology (No. 2009-0067195). Work by Okamoto
was supported by Global COE Program “Computationism as a Foundation for the Sciences” and Grant-in-Aid for
Scientific Research from Ministry of Education, Science and Culture, Japan, and Japan Society for the Promotion
of Science.



inv(≤1,≤2), Note that inv(≤1,≤2) = 0 if and only if the order ≤1 conforms to the order ≤2, and therefore
we may regard the number of inversions as an appropriate measure of the presortedness.

As a case study, we consider the planar convex hull computation: given a set of points in the plane, we
want to compute its convex hull. For this problem, we discover two natural formulations as permutation
problems. In both formulations, we require the points on the boundary of the convex hull to be sorted in
clockwise order, but they are different in the treatment of the points in the interior. In the first formulation
the interior points are required to be sorted (by their x-coordinates) while in the second formulation the
interior points are not required so. Interestingly, this makes a huge difference in terms of complexity. We
show that in the first formulation the problem can be solved in O(n(1 + log(1 + k))) time when k is the
number of inversions in a given array of n points with respect to the desired output. Since k ≤ (n2

)
, the

running-time bound can be as bad as O(n log n). Hence, this is still worst-case optimal with respect to n.
On the other hand, in the second formulation we give a lower bound of Ω(n log h) for computing the convex
hull, where h is the complexity of the convex hull. This shows that the second formulation does not allow us
to design any adaptive algorithm. This kind of phenomenon has not been seen for any problems for which
the adaptive framework was applied.

A natural question arises here: since the convex hull of n points in the plane can be computed in linear
time once they are sorted along a line or around a point, why do we need another adaptive algorithm other
than an optimal adaptive sorting algorithm? An answer to the question is that any existing adaptive sorting
method does not reflect the presortedness of a point set on its convex hull: consider an input array A of n
points whose i-th element is a point with coordinates (i, (−1)i), for 1 ≤ i ≤ n. Clearly the points are already
sorted along the x-axis, but not along its convex hull. As a result, A has no inversion on sorting, but has
Ω(n2) inversions on convex hull.

Related work There are a huge number of articles discussing the adaptive sorting problem. We recommend
the readers to consult a survey by Estivill-Castro and Wood [15]. Adaptive sorting algorithms are also
discussed in terms of integer sorting [25] and I/O-efficiency (both cache-aware and cache-oblivious) [8].

There are several papers which apply the adaptiveness framework to problems other than sorting. De-
maine, López-Ortiz, and Munro [11] considered some set operations on sorted sets, and gave adaptive algo-
rithms with respect to a certain measure of difficulty of the problem. The problem has been motivated from
a database application, and this line of research was followed by some subsequent papers [4, 3].

Levcopoulos, Lingas, and Mitchell [19] were the first to study a computational-geometric problem in
the adaptive framework. Their work studied the convex hull computation of a (possibly self-intersecting)
piecewise linear chain. Their consideration relies on the fact that the convex hull can be computed in linear
time when the chain does not have a self-intersection. Since the x-monotone non-self-intersecting chain can
be seen as a sorted sequence, their study is a generalization of the adaptive sorting framework. However,
they did not look at the problem as a permutation problem. Besides, Baran and Demaine [1] and Barbay
and Chen [2] studied other geometric problems. However, their adaptiveness framework did not look at the
presortedness and is completely different from the viewpoint of this work. In this sense, our work studies the
most fundamental counterpart of the adaptive sorting problem in computational geometry.

Notation An array A of n elements is indexed by 1, . . . , n. The i-th element of A is denoted by A[i],
i ∈ {1, . . . , n}. The subarray of A consisting of A[i], . . . , A[j] is denoted by A[i..j]. For a subset A′ of A, the
difference A\A′ denotes the array consisting of the elements of A\A′ and ordered as in A. The concatenation
of two arrays A and B (in this order) is denoted by A ◦B. For a set (or an array) P of points, we denote by
conv(P ) the convex hull of P , and by ∂conv(P ) the boundary of conv(P ).

Weak orders For the investigation of geometric problems, it is convenient to extend the framework for linear
orders to weak orders. In general, a binary relation . on a set X is a weak order on X if it is reflexive (x . x
for all x ∈ X), transitive (x . y and y . z imply x . z for all x, y, z ∈ X), and total (x . y or y . x for all
x, y ∈ X). We say x ∼ y if x . y and y . x, and x < y if x . y and not x ∼ y. Note that a weak order is
a linear order if and only if it is also antisymmetric. In other words, x ∼ y does not necessarily imply x = y
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Fig. 1. A two-dimensional convex hull.

for a weak order .. Given two weak orders .1,.2 on X, an inversion is an ordered pair (i, j) ∈ X2 such
that i <1 j and j <2 i. We denote the total number of inversions for .1,.2 by inv(.1,.2).

2 Planar Convex Hulls

Informally speaking, in the planar convex hull problem, we are given a set P of n points in general position
(i.e., no three points of P are collinear, and no two points have the same x-coordinate), and want to identify
the points on the boundary of the convex hull of P . To cast the problem into the adaptive framework, we
introduce the following two formulations.

2.1 First formulation: The interior points need to be sorted

We are given P as an array of n points in the plane. The output is a rearrangement Q of the array
P in the following way. If h is the number of points on ∂conv(P ), then Q[1..h] should be the array
of these points sorted clockwise with Q[1] being the leftmost point in P . Then, Q[h+1..n] should be
the array of points lying in the interior of conv(P ), sorted by their x-coordinates. For the example in
Fig. 1, the input array is [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14], and the output array must be
[p1, p3, p5, p8, p12, p14, p10, p6, p2, p4, p7, p9, p11, p13].

Thus, we obtain two linear orders. The first order ≤P is defined by the input array P as P [i] ≤P P [j] if
and only if i ≤ j. The other order ≤Q is defined by the output array Q as Q[i] ≤Q Q[j] if and only if i ≤ j.
For these we may define the number of inversions.

2.2 Second formulation: The interior points need not to be sorted

In the first formulation, it would be unnatural to require the interior points to be sorted because we are often
interested in the points on the boundary of the convex hull only. Therefore, it is natural to think the following
variation. We are given P as an array of n points in the plane. The output is a rearrangement Q of the array P
in the following way. If h is the number of points on ∂conv(P ), then Q[1..h] should be the array of these points
sorted clockwise with Q[1] being the leftmost point in P . Then, Q[h+1..n] is any rearrangement of points lying
in the interior of conv(P ). So the output array Q is not uniquely determined from P . For the example in Fig.
1, [p1, p3, p5, p8, p12, p14, p10, p6, p2, p9, p4, p13, p7, p11] and [p1, p3, p5, p8, p12, p14, p10, p6, p2, p11, p13, p4, p9, p7, ]
are possible outputs.

Note that this formulation has already been proposed in the literature on in-place algorithms [10].
Then, we define the following two weak orders. The first one ≤P is the same as the first formulation:

P [i] ≤P P [j] if and only if i ≤ j. The other order .Q is defined from an output array Q as Q[i] .Q Q[j] if
and only if i ≤ j and furthermore Q[i] ∼ Q[j] if and only if i = j or h+1 ≤ i, j ≤ n. That means the interior
points are indifferent in .Q. Note that the order .Q does not depend on a particular choice of an output
Q. This is the spot where we need a weak order since the output is not determined uniquely from the input.

3



2.3 Results

With these two formulations, we prove the following results.

– For the first formulation, we give an adaptive algorithm running in O(n(1 + log(1 + k))) time where
k = inv(≤P ,≤Q). We also give a lower bound Ω(n(1+ log(1+k/n))) for the number of comparisons even
if the number h of points on the boundary of the convex hull is constant.

– For the second formulation, we prove that any (fixed-degree) algebraic decision tree solving the problem
has height at least Ω(n log h). Therefore, with the second framework we cannot beat an optimal output-
sensitive algorithm (running in O(n log h) time, e.g. [18]) and cannot obtain any adaptive algorithm.

In the subsequent sections, we will give proofs for our results.

3 An adaptive algorithm for the first formulation

When designing adaptive convex hull algorithms, we may encounter at least the following two difficulties.
First, we cannot determine whether p <Q q just by looking at two points p, q. It depends on how the other
points are placed around p, q. Second, related to the first one, if we want to proceed by divide-and-conquer
and obtain a subset P ′ of P that yields the output Q′, then it is not generally the case that Q′ is a subarray
of Q; i.e., subsets do not inherit the linear order. These two issues do not arise in the sorting problem, where
any two numbers can be compared just by looking at them, and any smaller subsets inherit the order.

Our algorithm below overcomes these issues and is shown to be adaptive. The call to ConvexHull(P )
identifies the upper chain U(P ) of conv(P ) in the increasing order of x-coordinates, the lower chain L(P ) of
conv(P ) in the decreasing order of x-coordinates, and the set I(P ) of points in the interior of conv(P ) in the
increasing order of x-coordinates. The desired output is the concatenation U(P )◦(L(P )\{the rightmost point,
the leftmost point}) ◦ I(P ).

Algorithm: ConvexHull(P )
Step 1: If P is arranged as a desired output, then identify U(P ), L(P ), I(P ) and halt.
Step 2: Otherwise, compute a vertical bisector s of P . Let PA be the set of points in P left to s, and PB

be the set of points in P right to s.
Step 3: Compute the upper common tangent u and the lower common tangent ` of conv(PA) and conv(PB).

Let au ∈ PA and bu ∈ PB be the two points spanning u. Similarly, let a` ∈ PA and b` ∈ PB be the two
points spanning `. Let PL be the set of points in P that lie left to the line spanned by au, a`, PR be
the set of points in P that lie right to the line spanned by bu, b`, and PM = P \ (PL ∪ PR). Note that
PL ⊆ PA and PR ⊆ PB .

Step 4: Call ConvexHull(PL) and ConvexHull(PR) to obtain U(PL), L(PL), I(PL), U(PR), L(PR),
I(PR). Identify U(P ) = U(PL) ◦ U(PR) and L(P ) = L(PR) ◦ L(PL).

Step 5: Sort the points in PM by their x-coordinates to obtain the sorted sequence S(PM ), and apply the
merge sort for I(PL), S(PM ), I(PR). Identify the result as I(P ). Halt.

The algorithm is similar to the divide-and-conquer algorithm by Kirkpatrick and Seidel [18]. In their
algorithm the upper hull and the lower hull are computed separately, but we cannot do so here since we may
lose the adaptiveness. Rather, we compute the upper and lower hulls simultaneously. The correctness of the
algorithm is straightforward.

Now we estimate the running time. From now on, denote by n the number of input points in P , and by
k the number of inversions between ≤P and ≤Q.

Step 1 can be executed in O(n) time as follows. First we find the leftmost point p and the rightmost point
q of P in O(n) time. In the desired output, p should come first (p = P [1]) and q should come somewhere,
say at the h′-th position (q = P [h′]). Then we check whether the subarray P [1..h′] is a concave chain Cu
by looking at turns at all three consecutive points. This can be done in O(n) time. Next, we compute the
second leftmost point p′ on the lower hull of P in O(n) time, and determine h ≥ h′ such that p′ = P [h].
Then, we check whether the subarray P [h′..h] with p forms a convex chain C` in O(n) time. Now the points
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P [h+1..n] must lie in the interior of conv(P ), and be sorted by their x-coordinates. First we check if they
are sorted in O(n) time. Then, for each point r ∈ P [h+1..n] from left to right, we check if r lies between the
concave chain Cu and the convex chain C`. This can be done in O(n) time since they are all sorted. Finally,
we identify U(P ) = P [1..h′], L(P ) = P [h′..h] ◦P [1], I(P ) = P [h+1..n]. Thus, we can execute Step 1 in O(n)
time.

Step 2 reduces to the median finding problem, which can be solved in O(n) time [6].
In Step 3, computing the upper and the lower tangents reduces to 2-dimensional linear programming (as

in Kirkpatrick and Seidel [18]), which can be solved in O(n) time [24]. Also it is straightforward to find PL
and PR in O(n) time. Note that |PL|, |PR| ≤ n/2.

Step 4 involves recursive calls. A crucial observation is that a point of P on ∂conv(P ) lies on ∂conv(PL)
or ∂conv(PR), and a point of PL (and PR) on ∂conv(PL) (and ∂conv(PR) respectively) lies on ∂conv(P ).
Therefore, the desired output QL for ConvexHull(PL) and the desired output QR for ConvexHull(PR)
are subsequences of Q. This way, we succeed in overcoming the difficulties described before. If we denote
by t(n, k) the worst-case running time of ConvexHull(P ) over all P with |P | = n and inv(≤P ,≤Q) = k
(when Q is the desired output), Step 4 takes at most t(|PL|, kL) + t(|PR|, kR) time, where kL, kR denote
the number of inversions for PL, PR and (the restriction to PL, PR of) Q, respectively. Since PL, PR, PM are
disjoint subsequences of P , we have the following lemma.

Lemma 1. Denote by kL, kR, kM the number of inversions for PL, PR, PM and (the restriction to PL, PR, PM
of) Q, respectively. Then, it holds that kL + kR + kM ≤ k. ut

In Step 5, we sort the points in PM . If we apply an adaptive sorting algorithm, say by Estivill-Castro
and Wood [14], we can sort PM in O(|PM |(1 + log(1 +kM ))) time. Further, the merging can be done in O(n)
time in a standard way since I(PL), I(PR), S(PM ) are all sorted.

Now we estimate the overall running time summarizing the discussion above. Consider all linear-time
processing in Steps 1, 2, 3, 5 takes an time for some constant a and for all sufficiently large n, and the adaptive
sorting in Step 5 takes b|PM |(1 + log2(1 + kM )) time for some constant b and for all sufficiently large n. If
we denote the number of points in PL, PR, PM by nL, nR, nM , respectively (note that nL + nR + nM = n),
then we obtain the following recurrence:

t(n, k) ≤ an+ t(nL, kL) + t(nR, kR) + bnM (1 + log2(1 + kM ))

for sufficiently large n and k ≥ 1. Note that for small n it holds t(n, k) = O(1) and when k ≤ 0 it holds that
t(n, k) = O(n). We now derive that t(n, k) ≤ cn(1 + log2(1 + k)) for some constant c and for all sufficiently
large n.

By induction, we obtain

t(n, k) ≤ an+ cnL(1 + log2(1 + kL)) + cnR(1 + log2(1 + kR))
+bnM (1 + log2(1 + kM )).

We choose c so that it satisfies 2b ≤ c. Let nL = αn and nR = βn. Then we have 0 ≤ α ≤ 1/2, 0 ≤ β ≤ 1/2,
and nM = (1− α− β)n. Note that α and β are parameters that cannot be freely chosen but depend on the
input. The recurrence becomes

t(n, k) ≤ an+ cαn(1 + log2(1 + kL)) + cβn(1 + log2(1 + kR))

+
c

2
(1− α− β)n(1 + log2(1 + kM ))

= an+ c(α+ β +
1− α− β

2
)n

+cn log2(1 + kL)α(1 + kR)β(1 + kM )(1−α−β)/2

≤ an+ cn+ cn log2(1 + kL)α(1 + kR)β(1 + kM )(1−α−β)/2.

Here, we want to know when the argument of the last logarithm (1 + kL)α(1 + kR)β(1 + kM )(1−α−β)/2 is
maximized. Taking the logarithm further, we reduce this maximization to the following linear program with
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two variables α, β:

maximize α log2(1 + kL) + β log2(1 + kR) +
1− α− β

2
log2(1 + kM )

subject to 0 ≤ α, β ≤ 1/2.

This problem can be directly solved. We have four cases. Let A = log2(1 + kL)− 1
2 log2(1 + kM ) (that is the

coefficient of α), and B = log2(1 + kR)− 1
2 log2(1 + kM ) (that is the coefficient of β).

Case 1: when A ≥ 0 and B ≥ 0. Then, the optimum is attained at α = β = 1/2, and the optimal value is
(log2(1 + kL) + log2(1 + kR))/2.

Case 2: when A ≥ 0 and B < 0. Then, the optimum is attained at α = 1/2, β = 0, and the optimal value
is (2 log2(1 + kL) + log2(1 + kM ))/4.

Case 3: A < 0 and B ≥ 0. Then, the optimum is attained at α = 0, β = 1/2, and the optimal value is
(2 log2(1 + kR) + log2(1 + kM ))/4.

Case 4: A < 0 and B < 0. Then, the optimum is attained at α = β = 0, and the optimal value is
(log2(1 + kM ))/2.

For each of these four cases, we proceed with the estimation of t(n, k). When Case 1 occurs, we obtain

t(n, k) ≤ (a+ c)n+ cn log2(1 + kL)1/2(1 + kR)1/2

≤ (a+ c)n+ cn log2

(1 + kL) + (1 + kR)
2

≤ (a+ c)n+ cn log2

2 + k

2
≤ (a+ c)n+ cn log2(

3
4

(1 + k))

= (a+ c)n+ (log2

3
4

)cn+ cn log2(1 + k),

where we use a relation of arithmetic means and geometric means in the second inequality, Lemma 1 in
the third inequality, and 2+k

2 ≤ 3
4 (1 + k) for k ≥ 1 in the second to last inequality. Thus, if we choose c

so that it satisfies a + (1 + log2
3
4 )c ≤ c, then we obtain t(n, k) ≤ cn(1 + log2(1 + k)) as desired. Note that

log2
3
4 ≈ −0.415037.

When Case 2 occurs, we obtain

t(n, k) ≤ (a+ c)n+ cn log2(1 + kL)1/2(1 + kM )1/4

≤ (a+ c)n+ cn log2(1 + kL)1/2(1 + kM )1/2,

and we then go along the same line as Case 1. Case 3 is also similar. When Case 4 occurs, we obtain

t(n, k) ≤ an+ cn+ cn log2(1 + kM )1/2 ≤ an+ cn+ cn log2(1 + kM/2)

and we proceed with the same argument. This way, we conclude t(n, k) ≤ cn(1 + log2(1 + k)) for all of the
four cases. We summarize the discussion in the following theorem.

Theorem 1. The algorithm ConvexHull above computes the convex hull of a given (non-degenerate) point
set in the plane in O(n(1 + log(1 + k))) time, where n is the number of input points and k is the number of
inversions as defined in the first formulation, namely k = inv(≤P ,≤Q). ut

As for the lower bound it is easy to observe the following.

Theorem 2. Any algorithm to solve the planar convex hull problem in the first formulation needs at least
Ω(n(1 + log(1 + k/n))) comparisons in the worst case even if the number of points on the boundary of the
convex hull is constant (four). Here, n is the number of input points and k is the number of inversions as
defined in the first formulation.
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Proof. We reduce the adaptive sorting problem to our problem. In the sorting problem we are given n
numbers in an array, and need to sort them in increasing order. Guibas, McCreight, Plass, and Roberts [16]
showed that any sorting algorithm needs at least Ω(n(1+log(1+k/n))) comparisons in the worst case, where
n is the size of an input array and k is the number of inversions between the positions (or indices) in the
input array and the increasing order of numbers themselves.

Let A be an input array of size n for the sorting problem. Then, we construct an array P of n + 4
planar points as follows. For each number A[i] in the input array, we set P [i+4] = (A[i], 0). This determines
P [5..n+4]. The other four points are determined as follows. Let ` be the smallest number in A, and u be the
largest number in A. Then, we set P [1] = (`− 2, 1), P [2] = (u+ 2, 1), P [3] = (u+ 1,−1), P [4] = (`− 1,−1).
This completes the construction of the point set P , and we consider the planar convex hull problem when
the input array is P . Let Q be the output array. Then we can see that P [1], . . . , P [4] are the points on the
boundary of the convex hull, and k = inv(≤P ,≤Q). Furthermore, from Q we can extract the sorted sequence
in the increasing order as the x-coordinates of Q[5..n+4]. Since ` and u can be found in linear time, this
finishes the whole reduction. ut

4 Lower bound for the second formulation

To obtain a lower bound for the second formulation, we consider the following No Inversion Problem:
Given an array P of (non-degenerate) point set in the plane, we want to determine whether inv(≤P ,.Q) = 0.
The following theorems show that this problem is as hard as the planar convex hull problem itself.

Theorem 3. Any (fixed-degree) algebraic decision tree solving the No Inversion Problem has height at
least Ω((n−h) log h), where n is the number of input points and h is the number of points on the boundary
of the input.

Proof. We construct a linear-time reduction to No Inversion Problem from the following CHIR Prob-
lem:3 Given a regular convex h-gon R with its smallest circumscribing disk D, and n−h points in D,
determine whether all of these n−h points lies in R. See Fig. 2 for an illustration. Kapoor and Ramanan
[17] proved that any (fixed-degree) algebraic decision tree solving the CHIR Problem has height at least
Ω((n−h) log h).4

R

D

Fig. 2. The CHIR problem.

For the reduction, we are given a regular convex h-gon R with its smallest circumscribing disk D, and a
set X of n−h points in D. Then, we construct an array P of points that is supposed to be an instance of the
No Inversion Problem as follows. At P [1..h] we place the vertices of R in the clockwise order in such a
way that P [1] will be the leftmost one. Then, at P [h+1..n] we place the points of X arbitrarily. We can see
that P can be constructed in linear time. We can also see that inv(≤P ,.Q) = 0 if and only if all points of
X lie in R. Thus, the reduction is completed. ut
3 This is the abbreviation of “Convex hull inclusion with restriction” [17].
4 Actually the CHIR problem by Kapoor and Ramanan [17] is a bit different from ours, but the lower bound proof

of them can be easily adapted to our variation.
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Theorem 4. Any (fixed-degree) algebraic decision tree solving the No Inversion Problem has height at
least Ω(n logn), where n is the number of input points.

Proof. Follow the proof of Theorem 3, but this time we set h = n/2 in the CHIR Problem. Then, the same
argument gives a desired lower bound. ut

The following corollary is straightforward from the theorems above.

Corollary 1. Any (fixed-degree) algebraic decision tree solving the No Inversion Problem has height at
least Ω(n log h), where n is the number of input points and h is the number of points on the boundary of the
input.

Proof. When h < n/2, we have an Ω(n log h) lower bound from Theorem 3. When h ≥ n/2, we have an
Ω(n log h) lower bound from Theorem 4. ut

As shown in the following theorem, the lower bound for the No Inversion Problem can be translated
to the lower bound for the planar convex hull problem in the second formulation.

Theorem 5. Any comparison-based algorithm to solve the planar convex hull problem in the second formu-
lation requires at least Ω(n log h) comparisons, where n is the number of input points and h is the number of
points on the boundary from the input.

Proof. Let A be a comparison-based algorithm to solve the planar convex hull problem in the second for-
mulation, and let Q be an output array from A when we input P into A. From Q, we can determine h in
O(n) time as Step 1 of the algorithm ConvexHull in the previous section. Therefore, by looking through
P [1..h] and Q[1..h], we can determine whether inv(≤P ,.Q) = 0 in O(h) time. In this way, we can solve No
Inversion Problem, and so A needs at least Ω(n log h) comparisons by Corollary 1 (note that decision by
one comparison can be implemented as a node of an algebraic decision tree). ut

5 Constructing a kd-tree adaptively

To further pursue the possibility of adaptive computational geometry, we consider constructing a kd-tree. A
kd-tree [5] can be thought of as a permutation of the points [9]. Namely, the root comes first and then the left
subtree comes recursively, and finally the right subtree comes also recursively. We assume canonical orders
in which the left side and the top side come as left subtrees, the right side and the bottom side come as right
subtrees, and left subtrees always contain no more points than right subtrees. Fig. 3 shows an example, in
which the desired output is the array [p7, p1, p5, p6, p3, p2, p4, p11, p9, p12, p10, p8, p13].

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

Fig. 3. A kd-tree.
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Given an array of n (non-degenerate) points in the plane, we can determine whether it represents the kd-
tree in O(n) time in the following bottom-up fashion. First from the input array P of n points we construct a
binary tree T recursively as follows. If P contains only one point, then T consists of a single node. Otherwise,
P [1] is the root of T , the binary tree for P [2..dn−1

2 e + 1] comes as the left subtree, and the binary tree for
P [dn−1

2 e + 2..n] comes as the right subtree. This can be done in O(n) time simply by scanning the input
array. Then, for each subtree T ′ of T , we compute the four points on the boundary of the bounding box
of the points contained in T ′. This can be done in O(n) time in total by computing from the leaves to the
root. Then, for each node p of T , we check whether all points contained in the left subtree of p lie on the left
of p (or above p depending on the depth of p in T ), and similarly whether all points contained in the right
subtree of p lie on the right of p (or below p). If it is the case for every node of T , then we can conclude
that T is the kd-tree for P , and consequently P represents the kd-tree; Otherwise P does not represent the
kd-tree. This check can also be done in O(n) time with help of four extreme points associated with each
subtree that we have already computed. Thus, the whole computation can be done in linear time.

Combining this procedure with a usual recursive construction of a kd-tree gives the following theorem.

Theorem 6. We can compute the kd-tree of a given (non-degenerate) point set in the plane in O(n(1 +
log(1 + k))) time, where n is the number of input points and k is the number of inversions for the input and
the desired output.

Proof. The algorithm below does the job. Given an input array P , we execute KdTree(P , v).

Algorithm: KdTree(P , subdiv)
Step 1: If P is arranged as a desired output, then output P itself and halt. (Note: this case only deal when

P contains at most one point.)
Step 2: Otherwise, we have two cases depending on subdiv.
Step 2-1: If subdiv = v, then we identify a point p in P with the median x-coordinate. Let PL be the array

of points in P that are left to p, and PR be the array of points in P that are right to p. Then, output
{p} ◦KdTree(PL, h) ◦KdTree(PR, h). Halt.

Step 2-2: If subdiv = h, then we identify a point p in P with the median y-coordinate. Let PA be the array
of points in P that are above p, and PB be the array of points in P that are below p. Then, output
{p} ◦KdTree(PA, v) ◦KdTree(PB , v). Halt.

The correctness of the algorithm immediately follows from the definition of kd-trees. To bound the running
time, we just need to observe the following lemma which can be seen as easily as Lemma 1.

Lemma 2. Denote by k′, k′′ the number of inversions for PL, PR (or PA, PB) and (the restriction to PL, PR
or PA, PB of) the desired output array, respectively. Then, it holds that k′ + k′′ ≤ k. ut

Then, the analysis similar to one in the proof of Theorem 1 goes. This concludes the proof. ut

A usual argument of the lower bound for the kd-tree construction gives an adaptive lower bound similar
to Theorem 2.

Theorem 7. Any algorithm to solve the kd-tree construction problem in the plane needs at least Ω(n(1 +
log(1 + k/n))) comparisons in the worst case. Here, n is the number of input points and k is the number of
inversions between the input array and the desired output array.

Proof. To sort an array A of n numbers, we just need to set up an array P of n planar points by P [i] =
(A[i], A[i]2) for all i ∈ {1, . . . , n}, construct a kd-tree for P , and traverse the tree in an appropriate order.
Since the procedures except for the kd-tree construction can be done in O(n) time, the lower bound by
Guibas, McCreight, Plass, and Roberts [16] proves the theorem.
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6 Concluding remarks

For the sorting problem, several algorithms running in O(n(1 + log(1 + k/n))) time [12, 13, 20–23] have been
presented, and there is a tight lower bound [16]. This lower bound also applies to the first formulation, but
our algorithm has not reached this limit. It is desirable to find an optimal algorithm.

For further investigation, we can think of other presortedness measures, and other geometric problems
that can be thought of as permutation problems. A lot of questions remain unsolved, and we hope that this
is a stimulating line of research.
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