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Abstract

We propose a polynomial-time-delay polynomial-space algorithm to enumerate all efficient
extreme solutions of a multi-criteria minimum-cost spanning tree problem, while only the bi-
criteria case was studied in the literature. The algorithm is based on the reverse search frame-
work due to Avis & Fukuda. We also show that the same technique can be applied to the
multi-criteria version of the minimum-cost basis problem in a (possibly degenerated) submod-
ular system. As an ultimate generalization, we propose an algorithm to enumerate all efficient
extreme solutions of a multi-criteria linear program. When the given linear program has no
degeneracy, the algorithm runs in polynomial-time delay and polynomial space. To best of our
knowledge, they are the first polynomial-time delay and polynomial-space algorithms for the
problems.

1 Introduction

The multi-criteria optimization is a vast field in optimization theory, operations research, and deci-
sion science. In a multi-criteria optimization problem, we usually need to enumerate the solutions
which have a certain specified property, for example, the Pareto optimality or the efficiency.1 See
Ehrgott [3] for detail.

There have been two main streams in algorithm design for the multi-criteria optimization:
exact approach and approximate approach. In the exact approach, the enumeration has to be
exact, namely, all the solutions have to be output (without any duplication). For example, in the
multi-criteria linear programming many exact algorithms have been proposed which enumerate all
efficient extreme solutions or enumerate all efficient faces (see Ehrgott [3] and references therein).
For bi-criteria combinatorial optimization problems, Ulungu & Teghem [11] proposed the so-called
two-phase method which first determines the extreme efficient solutions then enumerate the rest of
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the efficient solutions. On the other hand, in the approximate approach the enumeration is partial.
See Zitzler, Laumanns & Bleuler [14] for example. A bit different approximate approach was done
by Papadimitriou & Yannakakis [8], which has a certain approximation guarantee. See a recent
short survey by Zaroliagis [13].

This work concentrates on the exact approach and we will exploit techniques from enumeration
algorithmics. Despite a lot of algorithms have been reported for multi-criteria optimization from
the exact approach viewpoint, few of them have a certain theoretical guarantee of computational
complexity. Observe that enumeration of the Pareto-optimal extreme solutions of a single-criteria
linear program is equivalent to enumeration of the vertices of a convex polyhedron, and a recent
result by Khachiyan, Boros, Borys, Elbassioni & Gurvich [5] shows that this problem admits no
polynomial-total-time algorithm unless P = NP. This looks one of the obstructions for a theoretical
investigation. Therefore, we concentrate on a simpler problem to reveal the difficulty for the
development of an algorithmic theory of multi-criteria enumeration problems.

As a sample problem, we study the multi-criteria minimum-cost spanning tree problem: given
a connected undirected graph and several edge-cost functions, we have to find all spanning trees
which minimize some convex combinations of the cost functions. In the multi-criteria optimization
terminology, the outputs are exactly the solutions for all possible weighted sum scalarizations,
and they correspond to the extreme efficient solutions. The determination of the extreme efficient
solutions is a first step for complete enumeration of the efficient solutions, for example in the
two-phase method [11].

We will compare two main methods in enumeration algorithmics. One is the binary partition
method, and the other is the reverse search method. In the binary partition method, we recursively
divide the solution space until we get trivial instances. In the reverse search method proposed
by Avis & Fukuda [1], we implicitly define a rooted tree on the solutions to be enumerated, and
traverse it.

We try to apply the two enumeration methods above to the multi-criteria minimum-cost span-
ning tree problem. For the binary partition method, we prove that a subproblem arising from a
natural binary partition approach is NP-complete. This implies that an approach by the binary
partition method seems difficult. On the other hand, with the reverse search method we design an
algorithm which runs with polynomial-time delay and in polynomial space. Here, polynomial-time
delay means that the time difference spent by the algorithm between two consecutive solutions is
bounded by a polynomial of the input size. This is the first algorithm for this problem with such
a complexity guarantee.

Our reverse-search algorithm can be extended to the multi-criteria version of the minimum-cost
base problem in matroids and submodular systems. Furthermore, a similar algorithm turns out
to work for the multi-criteria linear programming. Although there have been a lot of algorithms
proposed for the multi-criteria linear programming, none of them has a performance guarantee
as running with polynomial-time delay and in polynomial space (see Ehrgott [3] and references
therein). Indeed, these algorithms store all the outputs as a list in the working memory to get
rid of duplication, which looks a bottleneck for the efficiency. We may accomplish the polynomial-
time delay by a small modification (for example, using a balanced binary search tree instead of a
list). However, it appears difficult for these algorithms to achieve the polynomial space by a small
modification; namely, the essential improvement for memory usage is by far harder. On the other
hand, our reverse-search algorithm can achieve both of the goals. This exhibits the power of the
reverse search, and we hope that this work initiates a more fruitful connection of the multi-criteria
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optimization with the algorithms community.
The paper is organized as follows. In the next section, we give an introduction to enumeration

algorithmics terminology and a concise description of the multi-criteria minimum-cost spanning
tree problem. Section 3 discusses some existing methods to enumerate the spanning trees and
observe how natural extensions of these methods fail. This includes the NP-completeness result
of a natural subproblem arising from a binary partition method. Then in Section 4, we consider
how we can overcome this issue, and design an algorithm running in polynomial-time delay and
polynomial space with the reverse search method. Section 5 discusses a possible generalization of
our reverse search algorithm to the multi-criteria linear programming. The final section concludes
the paper with some open questions.

2 Preliminaries

An enumeration problem asks to output all objects, called solutions, which satisfy a given condition.
To measure the efficiency of enumeration algorithms, we have to take into account the size of output
(i.e., the number of solutions) explicitly since it could be exponentially large in terms of the size of
input. An enumeration algorithm runs in polynomial-time delay if for any output object the next
output object can be obtained in polynomial time in the size of input. Also, it runs in polynomial
space if the working space it uses is bounded by a polynomial of the size of input. Note that we
only count the working space, excluding the space for outputs. Intuitively speaking, the working
space is a read/write memory and the output space is a write-only disk.

A convex combination of k functions c1, c2, . . . , ck is a function
∑k

i=1 λici for some non-negative
real numbers λ1, λ2, . . . , λk summing up to one. We call the vector (λ1, . . . , λk)

⊤ ∈ Rk of coefficients
the barycentric coordinate of the combination.

Given a connected undirected graph G = (V,E), a spanning tree of G is an edge subset T ⊆ E
of size |V | − 1 which embraces no cycle. For a non-negative edge-cost function c : E → R+, a
minimum-cost spanning tree of G with respect to c is a spanning tree T of G which minimizes the
total cost c(T ) =

∑
e∈T c(e). We study the following problem.

Problem: MC-MCST

Input: a connected undirected graph G = (V,E) and k distinct non-negative edge-cost
functions c1, . . . , ck : E → R+

Enumerate: the spanning trees of G each of which is minimum-cost with respect to
some convex combination of c1, . . . , ck.

We call a spanning tree of G feasible if it is minimum-cost with respect to some convex combination
of c1, . . . , ck (i.e., if it is to be output in MC-MCST).

3 Failed Attempts for Generalization by Straightforward Approaches

In this section, we first describe two existing methods for enumeration of the spanning trees in a
given connected graph, and observe why the straightforward generalizations of them to MC-MCST
do not give efficient algorithms.
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BinaryPartition(X,X1, X2)

Input (explicitly given): a finite set X, and subsets X1, X2 ⊆ X such that X1 ∩X2 = ∅;
Input (implicitly given): a property P for subsets of X;
Output: All subsets of X \X2 that contain X1 and satisfy P ;

1 If X = X1 ∪X2 and X \X2 satisfies P , then output X \X2;
2 If no subset of X \X2 containing X1 satisfies P , then halt;
3 Otherwise, choose an element e ∈ X \ (X1 ∪X2);
4 Call BinaryPartition(X,X1 ∪ {e}, X2);
5 Call BinaryPartition(X,X1, X2 ∪ {e}).

Figure 1: A general description of the binary partition method

3.1 Binary Partition Method

Let us first look at a simple binary partition approach to enumerate all spanning trees in a given
connected undirected graph G = (V,E). First of all, we choose an arbitrary edge e1 ∈ E and
classify the spanning trees of G into two groups: those containing e1 and those not containing e1.
Then, we choose another arbitrary edge e2 ∈ E \ {e1}, and divide the groups similarly. This will
give a recursion tree, and we stop the recursive call when the obtained group is ensured to contain
no spanning tree. In this way, we can reduce redundant computation. The problem to decide
whether a group contains a spanning tree can be formulated as “for disjoint subsets E1, E2 ⊆ E,
does there exist a spanning tree of G which contains the edges in E1 but does not contain any edges
in E2?” This can be solved in linear time.

A general description of the binary partition method is given in Figure 1. To output all subsets
of X that satisfy P , we just need to call BinaryPartition(X, ∅, ∅). In the example above for
enumerating all spanning trees in G = (V,E), we set X = E, X1 = E1, X2 = E2, and the property
P corresponds to one that a subset T ⊆ E is a spanning tree of G.

To solve MC-MCST by the binary partition method, we have to solve the following problem at
Step 2.

Problem: BinaryPartition

Input: a connected undirected graph G = (V,E), two disjoint subsets E1, E2 ⊆ E and k
distinct non-negative edge-cost functions c1, . . . , ck : E → R+

Question: Does there exist a spanning tree of G which contains the edges in E1 but
does not contain any edges in E2 and is minimum-cost with respect to some convex
combination of c1, . . . , ck.

If the problem BinaryPartition can be solved in polynomial time, then the binary partition
method may yield an algorithm to solve MC-MCST in polynomial-time delay and polynomial
space. However, the following theorem shows that it is quite unlikely for us to achieve this goal.

Theorem 1. The problem BinaryPartition is NP-complete.

Hence, we give up adapting the binary partition method, and try another method.

Proof. We can easily see the membership of the problem in NP. We show NP-hardness. To this
end, we reduce the satisfiability problem (SAT) to BinaryPartition. An instance of SAT is given
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Figure 2: Reduction in the proof of Theorem 1. This is an example for the formula C1 ∧ C2 ∧ C3,
where C1 = x1∨x2∨x3, C2 = x2∨x3. C3 = x1∨x3∨x4. A black thin edge belongs to E \(E1∪E2);
a blue thick edge belongs to E1; a red broken edge belongs to E2.

Table 1: Summary of the costs.

{vri , vti} {vri , v
f
i } {vti , v

f
i } {vri , r} {vri′ , vti′} {vri′ , v

f
i′} {vti′ , v

f
i′} {vri′ , r}

ci 0 1 1/n 1 0 0 1/n 1
ci 1 0 1/n 1 0 0 1/n 1

{wr
j , w

q
j} {wr

j , r} {wq
j , u

ℓ
j} {wr

j , u
ℓ
j}

ci 2− 1/(2n) 1 1 1 if ℓ = xi, 2 otherwise
ci 2− 1/(2n) 1 1 1 if ℓ = xi, 2 otherwise

as a set of boolean variables x1, . . . , xn and a set of clauses C1, . . . , Cm each of which consists of
(possibly several) literals. Each literal is either a variable or its negation.

From the given instance of SAT, we construct a connected graph G = (V,E). For each variable

xi we set up three vertices vri , v
t
i , v

f
i . For each clause Cj we set up two vertices wr

j , w
q
j , and for each

literal ℓ of Cj we set up one vertex uℓj . We also use an extra vertex r. They are the vertices of G.

Next, we draw the edges of G. For each variable xi, we draw edges {vti , v
f
i } ∈ E1, {vri , vti} ∈

E \ (E1 ∪ E2), {vri , v
f
i } ∈ E \ (E1 ∪ E2), and {vri , r} ∈ E1. For each clause Cj we draw an edge

{wr
j , w

q
j} ∈ E2, {wr

j , r} ∈ E1, and for each literal ℓ of Cj we draw edges {wr
j , u

ℓ
j} ∈ E \ (E1 ∪ E2),

{wq
j , u

ℓ
j} ∈ E1. This completes the description of G. Figure 2 shows an example.

Now, we set up 2n cost functions, each of which is identified with a variable or its negation
(i.e., a literal). Namely, for each positive literal xi, we define the cost function ci and, Similarly,
for a negative literal xi, we define the cost function ci. The definition, summarized in Table 1,

is as follows: ci({vri , vti}) = 0, ci({vri , v
f
i }) = 1, ci({vti , v

f
i }) = 1/n, ci({vri , r}) = 1; for every

i′ ∈ {1, . . . , n} \ {i}, ci({vri′ , vti′}) = 0, ci({vri′ , v
f
i′}) = 0, ci({vti′ , v

f
i′}) = 1/n, ci({vri′ , r}) = 1; for

every j ∈ {1, . . . ,m} and every literal ℓ of the clause Cj , ci({wr
j , w

q
j}) = 2−1/(2n), ci({wr

j , r}) = 1,

ci({wq
j , u

ℓ
j}) = 1, and

ci({wr
j , u

ℓ
j}) =

{
1 if ℓ = xi,

2 otherwise.

Similarly, ci({vri , vti}) = 1, ci({vri , v
f
i }) = 0, ci({vti , v

f
i }) = 1/n, ci({vri , r}) = 1; for every i′ ∈
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{1, . . . , n} \ {i}, ci({vri′ , vti′}) = 0, ci({vri′ , v
f
i′}) = 0, ci({vti′ , v

f
i′}) = 1/n, ci({vri′ , r}) = 1; for every

j ∈ {1, . . . ,m} and every literal ℓ of the clause Cj , ci({wr
j , w

q
j}) = 2 − 1/(2n), ci({wr

j , r}) = 1,

ci({w
q
j , u

ℓ
j}) = 1, and

ci({w
r
j , u

ℓ
j}) =

{
1 if ℓ = xi,

2 otherwise.

Thus, we complete the construction of an instance of MC-MCST.
We now prove that there exists a spanning tree of G which is minimum-cost with respect to

some convex combination of the ci and the ci, i ∈ {1, . . . , n}, if and only if the given SAT instance
is satisfiable.

Let us call a spanning tree T of G admissible if E1 ⊆ T and T ∩E2 = ∅. Now, we observe some
facts. First, for each i ∈ {1, . . . , n}, an admissible spanning tree of G contains either {vri , vti} or

{vri , v
f
i }, but not both. This is because {vti , v

f
i } ∈ E1. Second, because of a similar reason, for each

j ∈ {1, . . . ,m} an admissible spanning tree of G contains exactly one {wr
j , u

ℓ
j} among all literals ℓ

of Cj .
Consider a convex combination c of c1, . . . , cn, c1, . . . , cn. Denote by λi the coefficient of ci in c,

and by λi that of ci. We claim that, if T is an admissible minimum-cost spanning tree with respect
to c and contains the edge {vri , vti} for some i ∈ {1, . . . , n}, then it holds that λi ≥ 1/n. To verify

the claim, denote by T ′ the spanning tree of G obtained from T by excluding {vti , v
f
i } and including

{vri , v
f
i }. Note that T ′ is not admissible since it does not contain {vti , v

f
i } ∈ E1. We calculate

c(T ′)−c(T ) =
∑n

i′=1(λi′ci′({vri′ , v
f
i′})+λi′ci′({v

r
i′ , v

f
i′}))−

∑n
i′=1(λi′ci′({vti′ , v

f
i′})+λi′ci′({v

t
i′ , v

f
i′})) =

(λi + 0) −
∑n

i′=1(λi′/n + λi′/n) = λi − 1/n. Since T is minimum-cost with respect to c, we have
c(T ′) ≥ c(T ). Hence, λi ≥ 1/n. The claim is verified. Similarly, we can observe that, if T is an

admissible minimum-cost spanning tree with respect to c and contains the edge {vri , v
f
i } for some

i ∈ {1, . . . , n}, then λi ≥ 1/n. Since
∑n

i′=1(λi′+λi′) = 1, we can see that, for every i ∈ {1, . . . , n}, if
T contains {vri , vti} then λi = 1/n and λi = 0, and if T contains {vri , v

f
i } then λi = 0 and λi = 1/n.

Now, we show that there exists an admissible minimum-cost spanning tree of G with respect to
some convex combination of the ci and the ci, i ∈ {1, . . . , n}, if and only if the given SAT instance
is satisfiable. First, assume that there exists an admissible spanning tree T which is minimum-
cost with respect to a convex combination c =

∑n
i=1(λici + λici). By the claim above, for each

i ∈ {1, . . . , n} the tree T contains exactly one of {vri , vti} and {vri , v
f
i }. According to the choice,

we construct a truth assignment for the given SAT instance: namely, if T contains {vri , vti}, then
we set the variable xi to be true; if T contains {vri , v

f
i }, then we set xi to be false. This gives a

well-defined truth assignment, and we have to show that this indeed satisfies the given instance
formula.

Since T is an admissible spanning tree of G, for each j ∈ {1, . . . ,m}, it contains exactly one
{wr

j , u
ℓ
j} among all literals ℓ of the clause Cj . We claim that, if T is furthermore a minimum-cost

spanning tree with respect to c and T contains an edge {wr
j , u

ℓ
j} for some j ∈ {1, . . . ,m} and some

literal ℓ of Cj , then ℓ must be set to true by the assignment constructed above. If this claim holds,
then we can conclude that the given SAT instance is satisfiable. To see the claim, suppose that ℓ is
set to false. Then, we consider an inadmissible spanning tree T ′ of G obtained from T by excluding
{wr

j , u
ℓ
j} and including {wr

j , w
q
j}. By the previous claim and the construction above, we have λℓ = 0.

Hence, we can calculate the difference as c(T ′) − c(T ) =
∑n

i=1(λici({wr
j , w

q
j}) + λici({wr

j , w
q
j})) −∑n

i=1(λici({wr
j , u

ℓ
j}) + λici({wr

j , u
ℓ
j})) =

∑n
i=1(λi + λi)(2 − 1/(2n)) − (

∑n
i=1(2(λi + λi)) − λℓ) =
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(2− 1/(2n))− (2− 0) = −1/(2n) < 0. Therefore, T is not a minimum-cost spanning tree of G with
respect to c. This is a contradiction.

Conversely, assume that the given SAT instance is satisfiable. Fix a satisfying truth assignment.
If the assignment sets xi to be true, then we put λi = 0 and λi = 1/n; otherwise (i.e., if the
assignment sets xi to be false), then we put λi = 1/n and λi = 0. Let c =

∑n
i=1(λici + λici). By

calculation, we obtain the following:

• for every i ∈ {1, . . . , n}, c({r, vri }) = 1, c({vti , v
f
i }) = 1/n;

• if xi is set to true, then c({vri , vti}) = 0 and c({vri , v
f
i }) = 1/n;

• otherwise, c({vri , vti}) = 1/n and c({vri , v
f
i }) = 0;

• for each j ∈ {1, . . . ,m} and each literal ℓ in the clause Cj , c({r, wr
j}) = 1, c({wr

j , w
q
j}) =

2− 1/(2n), c({wq
j , u

ℓ
j}) = 1;

• if ℓ is set to be true, then c({wr
j , u

ℓ
j}) = 2− 1/n; otherwise, c({wr

j , u
ℓ
j}) = 2.

Let us choose, for each j ∈ {1, . . . ,m}, a literal ℓj of the clause Cj which is set to be true
by the truth assignment fixed above. Note that such a literal always exists by our assumption.
Consider the following spanning tree of G: T = E1 ∪ {{vri , vti} | xi is set to be true} ∪ {{vri , v

f
i } |

xi is set to be false} ∪ {{wr
j , u

ℓj
j } | j ∈ {1, . . . ,m}}. Then, we can see that T is admissible, and a

minimum-cost spanning tree with respect to c. Thus the whole reduction is completed.

3.2 Reverse Search Method

The reverse search method, proposed by Avis & Fukuda [1], is one of the most powerful techniques
in enumeration algorithmics. Let G = (V,E) be a given connected undirected graph, and we want
to enumerate the spanning trees in G. To do this, we set up a rooted tree R on the spanning trees
of G, namely, each node of R is a spanning tree of G. The enumeration will be done by traversing
R in a depth-first-search manner, but we do not store the entire rooted tree itself; we just specify
a parent-child relation which implicitly defines R. In enumeration, we recursively move to children
by the depth first search. Therefore, to design an efficient reverse-search algorithm it is enough
for us to provide a parent-child relation so that we can find a parent/child efficiently. Since we
do not need to store the entire family of spanning trees, but only a spanning tree under current
investigation, this enables us to obtain an algorithm which runs in amortized polynomial-time delay
and polynomial space. See Avis & Fukuda [1].

To make the algorithm run in worst-case polynomial-time delay and polynomial space, we can
make use of the prepostorder traversal of a rooted tree (See Knuth [6]). An old theorem by Sekanina
[9] implies that the prepostorder traversal yields a worst-case polynomial-time delay algorithm. See
Nakano & Uno [7] for a concrete application of this technique in enumeration algorithms.

First of all, we define an adjacency relation on the family of spanning trees of G. Two distinct
spanning trees T and T ′ of G are adjacent if the symmetric difference of T and T ′, namely (T ∪
T ′) \ (T ∩ T ′), is of size two. Through this adjacency relation, we naturally define the undirected
graph G(G) which has the spanning trees of G as the node set. We can easily see that the number
of nodes adjacent to one node in G(G) is O(|V ||E|), and it is well-known [12, Exercise 2.1.62] that
G(G) is connected.
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On G(G) we define a rooted tree R. For this purpose, we assume that the edges of G are labeled
according to some fixed total order ≺ as e1 ≺ e2 ≺ · · · ≺ em. Then, the root of R is defined as a
(unique) lexicographically maximum spanning tree with respect to ≺, and a parent of a spanning
tree T of G in the rooted tree R is a (unique) lexicographically maximum neighbor of T in G(G).
This parent-child relation gives a well-defined rooted tree, and we have the following algorithmic
properties.

• We can find the root of R in polynomial time. This can be done any polynomial-time
algorithm to find a maximum-cost spanning tree, such as Kruskal’s algorithm.

• Given a non-root spanning tree T of G, we can find its parent in polynomial time. This can
be done by looking at all adjacent spanning trees of T , and compute their position in the
lexicographic order. Remind that the number of spanning trees adjacent to T is bounded by
O(|V ||E|).

• Given a non-leaf spanning tree T , we can generate all its children in R in polynomial time.
This can be done by looking at all spanning trees T ′ adjacent to T , and check whether T is
a parent of T ′ in polynomial time.

These three routines enable us to traverse the implicitly defined rooted tree R, and this leads to an
algorithm running in polynomial-time delay and polynomial space for enumerating the spanning
trees in an connected undirected graph. Note that there are more efficient implementations of these
routines [10].

A general description of the reverse search method is given in Figure 3. To enumerate all nodes
of R, we just run ReverseSearch(X,R, 0) where R is the root of R. To make the reverse search
efficient, we need polynomial-time procedures for the following tasks.

• To find the root of the rooted tree R (root finding); this is needed for initialization.

• To find all children of a given node Y of R (children finding); this is needed in Step 2.

• To find a unique parent of a given node Y of R (parent finding); this is needed when we trace
back the recursion tree (when we implement the whole algorithm in an iterative manner).

With these three routines, the method immediately gives a polynomial-time-delay polynomial-space
enumeration algorithm. See [1].

Let us try to apply this approach to MC-MCST. We are given a connected undirected graph
G = (V,E) and k edge-cost functions c1, . . . , ck. In this case, we consider the subgraph of G(G)
induced by the feasible spanning trees (i.e., to be enumerated in MC-MCST). Denote this induced
subgraph by GM (G). Although GM (G) depends on the edge-cost functions, we think them fixed
thus do not include in the notation for convenience. Ehrgott [2] showed that the graph GM (G) is
always connected. Therefore, we can define a rooted tree R on GM (G). The most natural way is to
use the same strategy as in enumeration of the spanning trees of a connected graph. Namely, we
assume that the edges of G are labeled according to some fixed total order ≺ as e1 ≺ e2 ≺ · · · ≺ em.
Then, the root of R is defined as a (unique) lexicographically maximum spanning tree with respect
to ≺, and a parent of a spanning tree T of G in the rooted tree R is a (unique) lexicographically
maximum neighbor of T in GM (G).

However, as opposed to the spanning trees enumeration case, for MC-MCST we have (at least)
two problems here. The first problem is that we do not know how to find a root in polynomial
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ReverseSearch(X,Y, p)

Input (explicitly given): a finite set X, a subset Y ⊆ X and a bit p ∈ {0, 1};
Input (implicitly given): a rooted tree R on a family of subsets of X:
Precondition: Y is a node of R;
Output: all descendants of Y in R;

1 If p = 0, then output Y ;
2 For each child Z of Y

Call ReverseSearch(X,Z, 1− p);
3 If p = 1, then output Y .

Figure 3: A general description of the reverse search method, combined with the prepostorder
traversal.

time. For example, a greedy method such as Kruskal’s algorithm fails since there can be a lot of
≺-maximal feasible spanning trees in GM (G). Actually, finding a ≺-maximum feasible spanning
tree is NP-hard, as shown in the appendix.2

The second problem is even worse: the graph R may not be connected. Therefore, the rooted
tree is not well-defined in general. Concrete examples with these problems are given in the appendix.

Hence, we need to devise another way to specify a rooted tree on GM (G) if we wish to solve
MC-MCST via reverse search.

4 The Proposed Algorithm

In our reverse-search algorithm for MC-MCST, we use GM (G) defined in the previous section. Then,
we have to define a promised rooted tree R. For this purpose, we associate the following type of
sequence to each feasible spanning tree. We assume that the edges of G are labeled according to
some fixed total order ≺ as e1 ≺ e2 ≺ · · · ≺ em. This order ≺ will be used to break a possible
tie. For a feasible spanning tree T of G, let λT ∈ Rk be a lexicographically maximum barycentric
coordinate of a convex combination of c1, . . . , ck which T minimizes. The following lemma shows
that λT can be computed in polynomial time.

Lemma 2. For every spanning tree T of G, we can determine whether T is feasible in polynomial
time. If it is feasible, then we can find λT in polynomial time.

Proof. We phrase the problem in the following form.

lex-max. λ

subj. to
∑
e∈T

k∑
i=1

λici(e) ≤
∑
e∈T ′

k∑
i=1

λici(e) for all T ′ adjacent to T,

k∑
i=1

λi = 1,

λi ≥ 0 for all i ∈ {1, . . . , k}.
2We thank one of the referees for pointing out this fact.
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Note that in the first constraint we do not need to take into account all spanning trees of G, but
we only need the spanning trees adjacent to T . This is due to the convexity (or matroid property)
of the minimum-cost spanning tree problem (we omit the detail). Since the number of spanning
trees adjacent to T is O(|V ||E|), the number of constraints is polynomial. This lexicographic
maximization problem can be solved by maximizing λi one by one in increasing order of i ∈
{1, . . . , k}, and each maximization is reduced to a linear program. Thus, using any polynomial-
time algorithm for linear programming, we can solve the problem in polynomial time. If it has a
solution, then T is feasible and λT is obtained as an optimal solution. If it has no solution, then T
is not feasible.

4.1 The root of our tree

The root of R is chosen as a feasible spanning tree R of G which has a lexicographically maximum
λT among all feasible spanning trees T . Namely, such a barycentric coordinate λR should satisfy
(λR)1 = 1 and (λR)i = 0 for all i ∈ {2, . . . , k}. Thus, R is a minimum-cost spanning tree with
respect to c1. If there are several minimum-cost spanning trees with respect to c1, then we choose
a ≺-maximum one as a root. Such a tree R is unique, and can be found in polynomial time by any
polynomial-time minimum-cost spanning tree algorithm.

4.2 The parent of a feasible spanning tree

To specify the parent of a non-root feasible spanning tree T of G, we distinguish two cases. In
the first case, we assume that λT = (1, 0, 0, . . . , 0)⊤. Then, T and R both minimize c1. Therefore,
as the following lemma certifies, we can obtain another minimum-spanning tree with respect to c1
from T by deleting one edge from T and adding one edge from R.

Lemma 3. Let G = (V,E) be a connected undirected graph, c : E → R+ be a non-negative edge-cost
function, and T1, T2 ⊆ E be minimum-cost spanning trees of G with respect to c. Then, there exist
two edges e1 ∈ T1 \T2 and e2 ∈ T2 \T1 such that (T2∪{e1})\{e2} is also a minimum-cost spanning
tree of G with respect to c.

Although this is a well-known fact as, for example, in [12, Exercise 2.3.13], we give a proof
here since we actually use the argument in the constructive proof below for the construction of our
rooted tree.

Proof. Let us choose a minimum-cost edge e1 ∈ T1 \ T2, namely c(e1) ≤ c(e) for every e ∈ T1 \ T2.
Then, we can see that T2∪{e1} embraces a unique cycle, say C. Note that C contains e1. Now, we
choose a maximum-cost edge e2 ∈ C \ {e1} ⊆ T2, namely, c(e2) ≥ c(e) for every edge e ∈ C \ {e1}.
Then, T = (T2 ∪ {e1}) \ {e2} is a spanning tree of G.

Now we look at the cost. If c(e1) < c(e2), then it follows that c(T ) = c(T2)+c(e1)−c(e2) < c(T2).
Hence it contradicts the minimality of T2. On the other hand, suppose that c(e1) > c(e2). Then by
the choice of e1 it follows that c(e) > c(e2) for all e ∈ T1 \ T2. We consider a (unique) cycle C ′ in
T1∪{e2} and pick an arbitrary edge from e′ ∈ C ′ \{e2}. Then, T ′ = (T1∪{e2})\{e′} is a spanning
tree of G and the cost is c(T ′) = c(T1) + c(e2)− c(e′) < c(T1). Hence it contradicts the minimality
of T1. Thus, it must hold that c(e1) = c(e2) and hence T is also a minimum-cost spanning tree of
G with respect to c.
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The parent of T is constructively defined as follows. First we choose a minimum-cost edge
eR ∈ R\T (with respect to c1), and if there are several choices, we choose a ≺-maximum one. This
makes the choice of eR unique. Then, T ∪ {eR} contains a cycle C and we choose a maximum-cost
edge eT ∈ C \ {eR} (with respect to c1), and if there are several choices, we choose a ≺-minimum
one. From these choices, define the parent of T as T ′ = (T ∪ {eR}) \ {eT }. From the discussion
above, we can see that T ′ is a feasible spanning tree and |R△ T ′| < |R△ T |.3 Note that T ′ can be
found in polynomial time from T .

In the next case, we assume that λT ̸= (1, 0, 0, . . . , 0)⊤. Let j ∈ {2, . . . , k} be the minimum index
such that (λT )j ̸= 0. Then, we take µ ∈ Rk obtained from λT by increasing the first component
by a sufficiently small ε > 0 and decreasing the j-th component by ε. Namely, µ1 = (λT )1 + ε,
µj = (λT )j − ε, and µi = (λT )i for all i ∈ {2, . . . , j − 1, j + 1, . . . , k}. By our assumption for the
second case, we can see that such an ε exists which keeps µ to be a barycentric coordinate. Let S
be a minimum-cost spanning tree of G with respect to

∑k
i=1 µici. If there are several minimum-cost

spanning trees, then we choose a ≺-maximum one. By the lexicographic maximality of λT and
the fact that µ is lexicographically larger than λT , we see that S is different from T . Since ε is
sufficiently small, S is also a minimum-cost spanning tree with respect to c =

∑k
i=1(λT )ici. Hence,

by Lemma 3 similarly to the first case, we choose an edge eS ∈ S \ T such that c(eS) ≤ c(e) for
all e ∈ S \ T (if there are more than one such edges, then we choose the ≺-maximal one), and for
a (unique) cycle C of T ∪ {eS} we choose an edge eT ∈ C \ {eS} such that c(eT ) ≤ c(e) for all
e ∈ C \ {eS} (if there are more than one such edges, then we choose the ≺-minimal one). Then,
we can see (from the proof of Lemma 3) that T ′ = (T ∪ {eS}) \ {eT } is a minimum-cost spanning
tree with respect to c, and |S △ T ′| < |S △ T | holds. We define the parent of T as T ′. In this way,
the definition of a parent is completed. By the construction, the parent of T is adjacent to T in
GM (G), and it is unique. Furthermore, the next lemma is important.

Lemma 4. Let G = (V,E) be a connected undirected graph and c1, . . . , ck : E → R+ be non-negative
edge-cost functions. Then, the parent-child relation defined above is well-defined. Namely, from a
non-root feasible spanning tree T ⊆ E, by moving to the parent step by step we can arrive at the
root R.

Proof. Let T be a non-root feasible spanning tree and T ′ its parent. The investigation is divided
into two parts according to the case distinctions above. Let us first consider when the first case is
applied. In this case it holds that λT ′ = λT = (1, 0, 0, . . . , 0)⊤ and |R△ T ′| < |R△ T |. Therefore,
we can arrive at R at some point.

Next let us consider when the second case is applied. Let T = T0, T
′ = T1, and in general

denote the parent of Tj by Tj+1. This construction can continue unless λTj = (1, 0, 0, . . . , 0)⊤.
Hence, it suffices to show that for every j there exists some j′ > j such that λTj′ is lexicographically
larger than λTj . If this is true, then at some point (when the index is j, say) it must hold that

λTj = (1, 0, 0, . . . , 0)⊤ and the case is reduced to the first one.
Fix an arbitrary j. We are done if λTj+1 is lexicographically larger than λTj . Therefore, we

assume λTj+1 = λTj . Let Sj be a spanning tree used to obtain Tj as S was used to obtain T in
the text above. Since Sj and Sj+1 are dependent only on λTj and λTj+1 respectively, it holds that
Sj = Sj+1. However, for any i it holds that |Si △ Ti+1| < |Si △ Ti|. Therefore, there cannot be an
infinitely long sequence Si = Si+1 = Si+2 = · · · of identical spanning trees. Thus, there must exist
some j′ > j such that λTj′ is lexicographically larger than λTj .

3The notation X △ Y denotes the symmetric difference (X ∪ Y ) \ (X ∩ Y ).
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To find T ′ from T in polynomial time, it is enough to find S in polynomial time. Remind
that S is a minimum-cost spanning tree with respect to

∑k
i=1 µici =

∑
i=1(λT )ici + ε(c1 − cj)

where j is chosen as explained above. Note that a minimum-cost spanning tree only depends on
the order on the edges induced by an edge-cost function. This indicates that we do not need to
take a sufficiently small number ε explicitly, but we can take a symbolic look at the problem.
The cost of an edge e is

∑k
i=1(λT )ici(e) + ε(c1(e) − cj(e)). Therefore, in the edge-cost function∑k

i=1 µici, the cost of e is larger than that of e′ for any sufficiently small positive ε if and only if

(1)
∑k

i=1(λT )ici(e) >
∑k

i=1(λT )ici(e
′) or (2)

∑k
i=1(λT )ici(e) =

∑k
i=1(λT )ici(e

′) and c1(e)− cj(e) >

c1(e
′)− cj(e

′). The cost of e is equal to that of e′ in
∑k

i=1 µici for any sufficiently small positive ε if

and only if
∑k

i=1(λT )ici(e) =
∑k

i=1(λT )ici(e
′) and c1(e)− cj(e) = c1(e

′)− cj(e
′). Having this order

on the edges, we can find a ≺-maximal minimum-cost spanning tree S with respect to
∑k

i=1 µici in
polynomial time. Thus, the parent of a non-root feasible spanning tree can be found in polynomial
time.

4.3 The children of a feasible spanning tree

Since we have a well-defined rooted tree R in GM (G), it is clear how to find all children of a feasible
spanning tree T . First we look at all spanning trees T ′ adjacent to T , and examine their feasibility.
If T ′ is feasible, then we check whether T is a parent of T ′. If so, we see that T ′ is a child of T .
This can be done in polynomial time.

From the discussion above, we finally obtain the following theorem.

Theorem 5. By the reverse search algorithm described above, we can solve MC-MCST in polynomial-
time delay and polynomial space.

5 Generalization

The reverse search algorithm in the previous section can be generalized to more general problems.
A close inspection of the discussion shows that we only used the matroid property of the minimum-
cost spanning tree problem in the algorithm. Therefore, we can conclude that the multi-criteria
minimum-cost base problem in matroids can be solved in polynomial-time delay and polynomial
space, when a matroid is given as the independent set oracle. More generally, we can solve the
multi-criteria minimum-cost base problem in submodular systems in polynomial-time delay and
polynomial space when a submodular function is given as a value-giving oracle. To this end, we
need to identify the adjacent bases of a given base in a submodular system. This task is an instance
of the submodular function minimization problem, which can be solved in polynomial time [4].

As an extreme generalization, we can consider the multi-criteria linear programming. In a linear
program, we are given a system of inequalities Ax ≥ b,x ≥ 0 where A ∈ Rm×n is a matrix, and
b ∈ Rm is a vector. Then we want to find, for a given c ∈ Rn, a solution x to the inequality system
which minimizes c⊤x.

The inequality system above defines a convex polyhedron, called the feasible region of the
problem. Here we assume (without loss of generality) that it is bounded and non-empty. With
this assumption, a feasible region has at least one extreme point, and furthermore there exists an
optimal solution which is an extreme point of the polyhedron. We call such a solution an extreme
optimal solution. In a multi-criteria linear program, we are given a system of linear inequalities
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Ax ≥ b,x ≥ 0, and we want to enumerate the extreme optimal solutions which minimize some
convex combination of given k cost vectors c1, . . . , ck ∈ Rn.

Problem: MC-LP

Input: a matrix A ∈ Rm×n, two vectors b ∈ Rm and c1, . . . , ck ∈ Rn

Enumerate: the extreme solutions x to the inequality system Ax ≥ b,x ≥ 0 which
minimize some convex combination of c1, . . . , ck.

We call an instance of MC-LP non-degenerated if every extreme point of the polyhedron deter-
mined by the given inequality system lies on n facets.

Theorem 6. The non-degenerated MC-LP can be solved in polynomial-time delay and polynomial
space.

sketch. In the feasible region every extreme solution is adjacent to other extreme solutions through
edges. This adjacency naturally defines an undirected graph, and in the same way as we did for
MC-MCST we can implicitly specify a rooted tree in this graph. For a non-degenerated linear
program, every extreme solution is adjacent to at most n other extreme solutions, and the adjacent
extreme solutions can be found by pivot operations in polynomial time. The connectedness of the
analogue of GM (G) is known [3]. Furthermore, we can obtain propositions similar to Lemmas 2, 3
and 4 (the proofs are similar), and thus Theorem 6 is proved.

Note that MC-LP with possible degeneracy seems very difficult to tackle. It is known that the
vertex enumeration of a degenerated convex polyhedron, which corresponds to the enumeration of
the extreme solutions to a single-criterion linear program, cannot be performed in polynomial total
time (hence not in polynomial-time delay and polynomial space) unless P = NP [5].

6 Concluding Remark

We have looked at some multi-criteria optimization problems from the viewpoint of enumerative
algorithmics. There seem a lot of problems in multi-criteria optimization to which the algorithm
theory can potentially contribute.

A key fact in our reverse search algorithm for MC-MCST is that there are at most polynomially
many spanning trees adjacent to one spanning tree. This is no longer the case if we consider
the bipartite matching problem. So far, we do not know how to obtain a polynomial-time-delay
and polynomial-space algorithm for the multi-criteria assignment problem (i.e., maximum bipartite
matching problem). We can show that a natural binary partition approach does not work in the
same way as we did in Section 3. We leave this issue as an open problem.

Another problem is concerned with Lemma 2, where we saw that λT can be obtained in polyno-
mial time. However, it uses a polynomial-time linear programming algorithm, hence not a strongly
polynomial-time algorithm. We do not know whether it can be computed in strongly polynomial
time.
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A An NP-hardness proof

We prove the following, as announced in Section 3.2.

Proposition 7. It is NP-hard to find a ≺-maximum feasible spanning tree in a given connected
undirected graph G = (V,E) with a total order e1 ≺ e2 ≺ · · · ≺ em on the edges and k edge-cost
functions c1, . . . , ck.

Proof. We use the same reduction as in the proof of Theorem 1, with an addition of a total order
≺ on the edges. In the order, we set e2 ≺ e ≺ e1 for all e1 ∈ E1, e2 ∈ E2, e ∈ E \ (E1 ∪ E2). The
order between two edges in E1 can be arbitrary. The same for E2 and E \ (E1 ∪ E2).

Consider a ≺-maximum spanning tree T . Since E1 contains no cycle, it holds that E1 ⊆ T .
Further, since E \E2 contains a cycle, it holds that T ⊆ E \E2. Therefore, a ≺-maximum spanning
tree T is feasible if and only if E1 ⊆ T ⊆ E \ E2. With the argument in the proof of Theorem 1,
we see that a ≺-maximum feasible spanning tree is ≺-maximal among all (not necessarily feasible)
spanning trees if and only if the given SAT instance is satisfiable.

B A Bad Example I

The following is an example to indicate there can be a lot of ≺-maximal spanning trees in GM (G)
when we apply a reverse search method to MC-MCST naively.

Example B.1. Look at Figure 4. We consider the graph G on the upper left. The edges of G
are labeled by e1, . . . , e5, and they are endowed with the order e1 ≺ e2 ≺ · · · ≺ e5. Consider the
following two cost functions c1 and c2: c1(e1) = 0, c1(e2) = 1, c1(e3) = 2, c1(e4) = 4, c1(e5) = 0;
c2(e1) = 0, c2(e2) = 2, c2(e3) = 1, c2(e4) = 0, c2(e5) = 4. They are shown in the upper middle
figure and the right middle figure, respectively. A calculation shows that GM (G) is as depicted
in the lower figure, and we can see that T1 and T2 are ≺-maximal feasible spanning trees. By
modifying this example, we can construct a graph (with edge-cost functions) which has arbitrarily
many ≺-maximal feasible spanning trees.

C A Bad Example II

The following is an example to indicate the graph GM (G) may not be connected when we apply a
reverse search method to MC-MCST naively.

Example C.1. Look at Figure 5. We consider the graph G on the upper left. The edges of G
are labeled by e1, . . . , e5, and they are endowed with the order e1 ≺ e2 ≺ · · · ≺ e5. Consider the
following two cost functions c1 and c2: c1(e1) = 7, c1(e2) = 11, c1(e3) = 1, c1(e4) = 2, c1(e5) = 5;
c2(e1) = 2, c2(e2) = 1, c2(e3) = 6, c2(e4) = 8, c2(e5) = 5. They are shown in the upper middle
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Figure 4: A bad example.

figure and the upper right figure, respectively. A calculation shows that GM (G) is as depicted in
the second row, and R is in the lower figure where the arrow means that the head is a parent of the
tail, and T4 (a yellow tree) is the possible root of R. Then, we can see that R is not connected.
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Figure 5: Another bad example.
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