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Motivation and result

Joe Mitchell said...

In Handbook of Discrete and Computational Geometry (’97, ’04)

How efficiently can one compute a geodesic
diameter for a polygonal domain?

Result

I Interesting geometric observations
(that constitute the main theorem)

I The first polynomial-time algorithm for this problem
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An improvement claimed, but ...

Claimed improvement (Koivisto, Polishchuk @ arXiv, June 2010)

The geodesic diameter can be computed faster than our algorithm

I There’s a serious bug in their argument

I So, our algorithm is still the fastest...
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Polygonal domains
...that we won’t define, but we define “by example”

I n = the number of corners (= 29)

I h = the number of holes (= 3)
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Paths and shortest paths
...okay, we don’t define it as usual

Remark

A shortest path between any two points always exists
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Paths and shortest paths
...okay, we don’t define it as usual

This is NOT a path between the two points

Remark

A shortest path between any two points always exists
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Paths and shortest paths
...okay, we don’t define it as usual

This is a path between the two points
but not a shortest path

Remark

A shortest path between any two points always exists
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...okay, we don’t define it as usual

This is a shortest path between the two points
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A shortest path between any two points always exists
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Geodesic diameter

Definition: (Geodesic) diameter of P
The diameter of P is the max shortest path-length of two pts in P

A maximizer is called a diametral pair
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Geodesic diameter computation: What’s known?

n = # corners, h = # holes

When h = 0 (simple polygons)

I O(n2)-time algo
(Chazelle ’82)

I O(n log n)-time algo
(Suri ’87)

I O(n)-time algo
(Hershberger & Suri ’97)

When h > 0

I No existing work

I Open problem
(Mitchell ’97)
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Why are simple polygons easy?

Crucial observation

The diameter is determined by two corners for simple polygons

... This is not necessarily the case for general polygonal domains

...

(as we’ll see)
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Our results

Results

For a polygonal domain with (possibly many) holes

I Classification of the patterns of diametral pairs
...according to the location in a given polygonal domain

I The first polynomial-time algorithm
...based on the classification above

Precise statements will come soon
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Non-uniqueness of diametral pairs

Notice 1

A diametral pair is not unique, in general, even for simple polygons
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Non-uniqueness of shortest paths

Notice 2

Between two points, a shortest path is not unique in general
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Maximal pairs

Definition: maximal pair

A pair of points (p, q) ∈ P × P is maximal if
(p, q) is a local maximum of the distance function

Not a maximal pair,
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Maximal pairs

Definition: maximal pair

A pair of points (p, q) ∈ P × P is maximal if
(p, q) is a local maximum of the distance function

A maximal pair, and diametral as well

Bae Korman Okamoto The Geodesic Diameter of Polygonal Domains



Terminology and Concepts
Theorem
Algorithm

Maximal pairs

Definition: maximal pair

A pair of points (p, q) ∈ P × P is maximal if
(p, q) is a local maximum of the distance function

Observation (easy but important)

Every diametral pair is maximal

Consequence

List all maximal pairs, then you find a diametral pair
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Main theorem

P a polygonal domain
V the set of corners, E the set of edges, I the interior of P
Theorem

(p, q) a maximal pair
π(p, q) # of shortest paths btw p, q

(V-V) p ∈ V , q ∈ V ⇒ π(p, q) ≥ 1
(V-E) p ∈ V , q ∈ E ⇒ π(p, q) ≥ 2
(V-I) p ∈ V , q ∈ I ⇒ π(p, q) ≥ 3
(E-E) p ∈ E , q ∈ E ⇒ π(p, q) ≥ 3
(E-I) p ∈ E , q ∈ I ⇒ π(p, q) ≥ 4
(I-I) p ∈ I , q ∈ I ⇒ π(p, q) ≥ 5
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Main theorem: Case (V-V)

Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ V , q ∈ V ⇒ π(p, q) ≥ 1
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Main theorem: Case (V-E)

Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ V , q ∈ E ⇒ π(p, q) ≥ 2
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Main theorem: Case (V-E)

Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ V , q ∈ E ⇒ π(p, q) ≥ 2
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Main theorem: Case (V-I)

Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ V , q ∈ I ⇒ π(p, q) ≥ 3
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(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q
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Main theorem: Case (E-E)

Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ E , q ∈ E ⇒ π(p, q) ≥ 3
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Main theorem: Case (E-I)

Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ E , q ∈ I ⇒ π(p, q) ≥ 4
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(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ E , q ∈ I ⇒ π(p, q) ≥ 4
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Main theorem: Case (I-I)

Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ I , q ∈ I ⇒ π(p, q) ≥ 5

In this example, π(p, q) = 9
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(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ I , q ∈ I ⇒ π(p, q) ≥ 5

In this example, π(p, q) = 9
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Main theorem: Case (I-I)

Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ I , q ∈ I ⇒ π(p, q) ≥ 5

In this example, π(p, q) = 6
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Theorem

(p, q) a maximal pair, π(p, q) # of shortest paths btw p, q

p ∈ I , q ∈ I ⇒ π(p, q) ≥ 5
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In this example, π(p, q) = 5
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Main theorem

P a polygonal domain
V the set of corners, E the set of edges, I the interior of P
Theorem

(p, q) a maximal pair
π(p, q) # of shortest paths btw p, q

(V-V) p ∈ V , q ∈ V ⇒ π(p, q) ≥ 1
(V-E) p ∈ V , q ∈ E ⇒ π(p, q) ≥ 2
(V-I) p ∈ V , q ∈ I ⇒ π(p, q) ≥ 3
(E-E) p ∈ E , q ∈ E ⇒ π(p, q) ≥ 3
(E-I) p ∈ E , q ∈ I ⇒ π(p, q) ≥ 4
(I-I) p ∈ I , q ∈ I ⇒ π(p, q) ≥ 5
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Proof

7 pages long, too long to present even the idea only

Theorem 1 Let F be a finite family of real-valued convex functions defined on an open and convex
subsetC ⊆ Rd and g(x) := minf∈F f(x) be their pointwise minimum. Suppose thatg attains a
local maximum atx∗ ∈ C and there are exactlym functionsf1, . . . , fm ∈ F such thatm ≤ d and
fi(x

∗) = g(x∗) for all i = 1, . . . ,m. If none of thefi attains a local minimum atx∗, then there exists a
(d+ 1−m)-flat ϕ ⊂ Rd throughx∗ such thatg is constant onϕ ∩ U for some neighborhoodU ⊂ Rd

of x∗ with U ⊂ C.

Proof. Let x∗ ∈ C andm be as in the statement. For eachi, consider the sublevel setLi := {x ∈ C |
fi(x) ≤ fi(x

∗)}. Since eachfi is convex andx∗ does not minimizefi, the setLi is convex andx∗ lies
on the boundary∂Li of Li. Therefore, there exists a supporting hyperplanehi toLi atx∗. Denote byh⊕i
the closed half-space that is bounded byhi and does not containLi. Note thatfi(x∗) ≤ fi(x) for any
x ∈ h⊕i ∩C andfi(x∗) < fi(x) for anyx ∈ (h⊕i \hi)∩C. LetHi := {x−x∗ | x ∈ h⊕i , ‖x−x∗‖ = 1}
be a closed hemisphere on the unit sphereSd−1 centered at the origin.

Sinceg(x∗) = fi(x
∗) for anyi ∈ {1, . . . ,m} andx∗ is a local maximum ofg, the intersection

⋂
Hi

has an empty interior relative toSd−1; otherwise, there existsy ∈ Sd−1 such thatfi(x∗ + λy) > fi(x
∗)

for anyi ∈ {1, . . . ,m} and anyλ > 0 with x∗ + λy ∈ C. Hence, by Lemma 1,
⋂
Hi has a nonempty

intersection including a great(d−m)-sphereG onSd−1. Letϕ be the corresponding(d−m+ 1)-flat
in Rd throughx∗ defined asϕ := {x∗ + λy ∈ Rd | y ∈ G andλ ∈ R}. Consider the restrictionfi|ϕ∩C
of fi on ϕ ∩ C. Sincefi is convex andϕ is an affine subspace (thus convex),fi|ϕ∩C is also convex
and their pointwise minimumg|ϕ∩C attains a local maximum atx∗. Furthermore, eachfi|ϕ∩C attains a
local minimum atx∗; sinceϕ ⊆ h⊕i , we havefi(x∗) ≤ f(x) for any pointx ∈ ϕ ∩ C. Hence,g|ϕ∩C
also attains a local minimum atx∗ sinceg(x∗) = fi(x

∗) for any i ∈ {1, . . . ,m}. Consequently,g is
locally constant atx∗ on ϕ; more precisely, there is a sufficiently small neighborhoodU ⊂ Rd of x∗

with U ⊂ C such thatg is constant onU ∩ ϕ, completing the proof.

Remark that the theorem should have its own interest and find an application in problems of maxi-
mizing the pointwise minimum of several convex functions.

4 Properties of Geodesic-Maximal Pairs

We call a pair(s∗, t∗) ∈ P×P maximalif (s∗, t∗) is a local maximum of the geodesic distance function
d. That is,(s∗, t∗) is maximal if and only if there are two neighborhoodsUs, Ut ⊂ R2 of s∗ and oft∗,
respectively, such that for anys ∈ Us ∩P and anyt ∈ Ut ∩P we haved(s∗, t∗) ≥ d(s, t). For any pair
(s, t), let Π(s, t) = {π1, . . . , πm} be the set of all distinct shortest paths froms to t, wherem denotes
the number of shortest paths. Letui andvi be the first and the last corners inV alongπi from s to t, and
let Vs := {u1, . . . , um} andVt := {v1, . . . , vm}.

LetE be the set of all sides ofP without their endpoints andB be their union. Note thatB = ∂P\V ,
the boundary ofP except the cornersV . The goal of this section is to prove the following theorem, which
is the main geometric result of this paper.

Theorem 2 Suppose that(s∗, t∗) is a maximal pair inP andΠ(s∗, t∗), Vs∗ , andVt∗ be defined as above.
Then, we have the following implications.

(VV) s∗ ∈ V , t∗ ∈ V implies |Π(s∗, t∗)| ≥ 1, |Vs∗ | ≥ 1, |Vt∗ | ≥ 1;

(VB) s∗ ∈ V , t∗ ∈ B implies |Π(s∗, t∗)| ≥ 2, |Vs∗ | ≥ 1, |Vt∗ | ≥ 2;

(VI) s∗ ∈ V , t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 3, |Vs∗ | ≥ 1, |Vt∗ | ≥ 3;

(BB) s∗ ∈ B, t∗ ∈ B implies |Π(s∗, t∗)| ≥ 3, |Vs∗ | ≥ 2, |Vt∗ | ≥ 2;

(BI) s∗ ∈ B, t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 4, |Vs∗ | ≥ 2, |Vt∗ | ≥ 3;

(II) s∗ ∈ intP, t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 5, |Vs∗ | ≥ 3, |Vt∗ | ≥ 3.

Moreover, each of the above bounds is best possible by examples.
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Figure 2:(a) How to determineu′
i. (left to right)ui = u′

i; s
∗, ui, and the second corner are collinear;s∗ and the

first three corners are collinear (b) For points in a small diskB centered ats∗ with B ⊂ VP(u′
i) ∪ VP(ui), the

functionhs
i measures the length of the shortest path fromu′

i to each.

To see the tightness of the bounds, we present examples with remarks in Figure 1 and Appendix A.
In particular, one can easily see the tightness of the bounds on|Vs∗ | and|Vt∗ | from shortest path maps
SPM(s∗) andSPM(t∗), whenV ∪ {s∗, t∗} is in general position.

Throughout this section, for easy discussion, we assume that there is auniqueshortest path between
any two cornersu, v ∈ V . This assumption does not affect Theorem 2 since multiple shortest paths
between corners inV can only increase|Π(s∗, t∗)|. Note that this assumption implies that the pairs
(ui, vi) are distinct, while theui (also thevi) are not necessarily distinct. We thus have|Vs∗ | ≤ m,
|Vt∗ | ≤ m, and|{(ui, vi) | 1 ≤ i ≤ m}| = m, wherem = |Π(s∗, t∗)|.

The following lemma proves the bounds on|Vs∗ | and |Vt∗ | of Theorem 2. Proofs of the lemmas
presented in this section can be found in Appendix B.

Lemma 2 Let (s∗, t∗) be a maximal pair. Then,|Vt∗ | ≥ 2 if t∗ ∈ B; |Vt∗ | ≥ 3 if t∗ ∈ intP. Moreover,
if t∗ ∈ e ∈ E, then there existsv ∈ Vt∗ such thatv is off the line supportinge; if t∗ ∈ intP, thent∗ lies
in the interior of the convex hull ofVt∗ .

Lemma 2 immediately implies the lower bound on|Π(s∗, t∗)| when s∗ ∈ V or t∗ ∈ V since
|Π(s∗, t∗)| ≥ max{|Vs∗ |, |Vt∗ |}. This finishes the proof for Cases(V–). Note that Case(VV) is trivial.

From now on, we assume that boths∗ andt∗ are not corners inV . This assumption, together with
Lemma 2, implies multiple shortest paths betweens∗ andt∗, and thusd(s∗, t∗) > ‖s∗ − t∗‖. Hence, as
discussed in Section 2, any maximal pair falling into one of Cases(BB), (BI), and(II) appears as a local
maximum of the lower envelope of some path-length functions.

Case (II): When both s∗ and t∗ lie in intP. We will apply Theorem 1 to prove Theorem 2 for Case
(II). For the purpose, we findm = |Π(s∗, t∗)| convex functionsfi defined on a convex neighborhood
C of (s∗, t∗) such that the following requirements are satisfied: (i) the pointwise minimumg of the
fi coincides with the geodesic distanced on C, (ii) fi(s

∗, t∗) = g(s∗, t∗) = d(s∗, t∗) for any i ∈
{1, . . . ,m}, (iii) g attains a local maximum at(s∗, t∗) ∈ C, and (iv) none of thefi attains a local
minimum at(s∗, t∗).

If there are exactlym pairs(u, v) of corners such thatlenu,v(s∗, t∗) = d(s∗, t∗), then we can apply
Theorem 1 simply with them path-length functionslenui,vi . Unfortunately, this is not always the case;
a single shortest pathπi ∈ Π(s∗, t∗) may result in several pairs(u, v) of corners withu, v ∈ πi such that
(u, v) 6= (ui, vi) andlenu,v(s∗, t∗) = d(s∗, t∗). This happens only when eitheru, ui, s∗ or v, vi, t∗ are
collinear. In this degenerate case, the path-length functionslenui,vi violate the first requirement above.
In the following, we thus define themergedpath-length functions that satisfy all the requirements even
under the degenerate case.

Recall that the combinatorial structure of each shortest pathπi ∈ Π(s∗, t∗) can be represented by
a sequence(ui = ui,1, . . . , ui,k = vi) of corners inV . We defineu′i to be one of theui,j as follows:
If s∗ does not lie on the lineℓ ⊂ R2 throughui andui,2, thenu′i := ui; otherwise, ifs∗ ∈ ℓ, then
u′i := ui,j , wherej is the largest index such that for any open neighborhoodU ⊂ R2 of s∗ there exists
a points ∈ (U ∩ VP(ui,j)) \ ℓ. Note that suchu′i always exists, and if no three ofV are collinear, then
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s
s′ t′t
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δ
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Figure 3: Illustration to Lemma 4; for any(s, t) ∈ Di and any sufficiently smallδ if we pick (s′, t′) such that
s′ is δ closer toui thans andt′ is δ farther fromvi thant, then we havefi(s′, t′) = fi(s, t). Symmetrically,
fi(s

′′, t′′) = fi(s, t) with ‖s′′ − ui‖ = ‖s− ui‖+ δ and‖t′′ − vi‖ = ‖t− vi‖ − δ.

we always have eitheru′i = ui or u′i = ui,2; Figure 2(a) illustrates how to determineu′i. Also, we define
v′i in an analogous way. Lethsi andhti be two functions defined as

hsi (s) :=

{
‖s− u′i‖ if s ∈ VP(u′i),

‖s− ui‖+ ‖ui − u′i‖ if s ∈ VP(ui) \ VP(u′i);

hti(t) :=

{
‖t− v′i‖ if t ∈ VP(v′i),

‖t− vi‖+ ‖vi − v′i‖ if t ∈ VP(vi) \ VP(v′i).

Then, the merged path-length functionfi : Di → R is defined as

fi(s, t) := hsi (s) + d(u′i, v
′
i) + hti(t),

whereDi := (VP(u′i) ∪ VP(ui)) × (VP(v′i) ∪ VP(vi)) ⊆ P × P. We considerP × P as a subset of
R4 and each pair(s, t) ∈ P × P as a point inR4. Also, we denote by(sx, sy) the coordinates of a
point s ∈ P and we writes = (sx, sy) or (s, t) = (sx, sy, tx, ty) by an abuse of notation. Observe that
fi(s, t) = min{lenui,vi(s, t), lenu′

i,vi
(s, t), lenui,v′i

(s, t), lenu′
i,v

′
i
(s, t)} for any(s, t) ∈ Di if we define

lenu,v(s, t) = ∞ whens 6∈ VP(u) or v 6∈ VP(v); see Figure 2(b).
We first show the convexity of the functionsfi.

Lemma 3 For anyi ∈ {1, . . . ,m} and any convex subsetC ⊂ Di, fi is convex onC.

Observe that each of thefi is indeed not strictly convex. Figure 3 illustrates one such line inR4 for
a fixed(s, t) ∈ Di thatfi stays constant when(s, t) moves locally along the line. We show that such a
line inR4 is unique for any fixed(s, t) ∈ Di.

Lemma 4 For anyi ∈ {1, . . . ,m} and any(s, t) ∈ intDi, there exists a unique lineℓi ⊂ R4 through
(s, t) such thatfi is constant onℓi ∩ U for some neighborhoodU of (s, t) with U ⊂ Di. Moreover,fi
is constant onℓi ∩ C for any convex neighborhoodC of (s, t) with C ⊂ Di.

Now, we letg :
⋂
Di → R be the pointwise minimum of thefi defined asg(s, t) = mini fi(s, t) for

any(s, t) ∈ ⋂
Di. Note that the intersection

⋂
Di contains a nonempty interior and(s∗, t∗) ∈ int

⋂
Di

by our construction. We show that thefi satisfy the aforementioned requirements to apply Theorem 1.

Lemma 5 The functionsfi and their pointwise minimumg satisfy the following conditions.

(i) There exists a convex neighborhoodC ⊂ R4 of (s∗, t∗) with C ⊆ ⋂
Di such thatd(s, t) = g(s, t)

for any(s, t) ∈ C.
(ii) fi(s

∗, t∗) = g(s∗, t∗) = d(s∗, t∗) for anyi ∈ {1, . . . ,m}.
(iii) g attains a local maximum at(s∗, t∗).
(iv) None of thefi attains a local minimum at(s∗, t∗).

Now, we take a convex neighborhoodC ⊂ R4 of (s∗, t∗) that is as described in Lemma 5. We restrict
f1, . . . , fm andg onC. Then, eachfi is convex by Lemma 3 and, by Lemma 5, them functionsfi and
their pointwise minimumg satisfy the conditions of Theorem 1 with open convex domainC ⊂ R4.

Suppose thatm < 5. Then, Theorem 1 implies that there exists at least one lineℓ ⊂ R4 through
(s∗, t∗) such thatg is constant onℓ ∩ C. On the other hand, Lemma 4 implies that there is a unique line
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ℓi through(s∗, t∗) such thatfi is constant onℓi ∩C, and no other line along whichfi is locally constant
at (s∗, t∗). Hence, there exists at least one indexi such thatℓ = ℓi. We also observe the following.

Lemma 6 There are at most two indicesi ∈ {1, . . . ,m} such thatℓ = ℓi.

The last task is to check two possibilities; one or two of thefi are constant onℓ ∩ C. Also, recall
thatm ≥ 3 by Lemma 2. Without loss of generality, we first assume thatℓ = ℓ1 6= ℓi for any i ≥ 2.
Along ℓ1, eachfi with i ≥ 2 is not constant but convex. Sincef1(s, t) = g(s, t) = mini fi(s, t) for any
(s, t) ∈ ℓ∩C, by Lemma 4,fi with i ≥ 2 must strictly increase from(s∗, t∗) in both directions alongℓ.
Thus, for any(s, t) ∈ ℓ∩C with (s, t) 6= (s∗, t∗), we have a strict inequalityg(s, t) = f1(s, t) < fi(s, t).
Then, by Lemmas 3 and 4 at any such(s, t) ∈ ℓ ∩ C there is a direction in whichf1 strictly increases:
more precisely, for any arbitrarily small neighborhoodU ⊂ C of (s∗, t∗), g(s, t) = f1(s, t) < fi(s, t)
for (s, t) ∈ ∂U ∩ ℓ and thus there exist a sufficiently small neighborhoodU ′ ⊂ C of (s, t) and(s′, t′) ∈
U ′ such thatf1(s, t) < f1(s

′, t′) < fi(s
′, t′) for any i ≥ 2, which implies thatg(s∗, t∗) = g(s, t) <

g(s′, t′), a contradiction to thatg attains a local maximum at(s∗, t∗).
Thus, two of thefi must be constant onℓ ∩ C. We assume thatℓ = ℓ1 = ℓ2 6= ℓi for i ≥ 3. In

this case, for any(s, t) ∈ ℓ ∩ C with (s, t) 6= (s∗, t∗), we have a strict inequalityg(s, t) = f1(s, t) =
f2(s, t) < fi(s, t). Then there exists a direction from(s, t) in which both off1 andf2 strictly increase
by Lemmas 3 and 4. Sinceg(s, t) = f1(s, t) = f2(s, t) < fi(s, t) for anyi ≥ 3, we get a contradiction
analogously to the above.

Hence, we achieve a boundm = |Π(s∗, t∗)| ≥ 5, as claimed in Case(II) of Theorem 2.

Case (BB): When boths∗ and t∗ lie onB. In this case, we assume thats∗ ∈ es ∈ E andt∗ ∈ et ∈ E.
Let p be an endpoint ofes andls be the length ofes. We denote bys(ζs) the unique point ones such that
‖s(ζs) − p‖ = ζs for any0 < ζs < ls. Here, we considers : (0, ls) → es as a bijective map between a
real open interval(0, ls) ⊂ R and a segmentes ⊂ R2 except its endpoints. Analogously, we also define
t(ζt). Let ζ∗s andζ∗t be real numbers such thats∗ = s(ζ∗s ) andt∗ = t(ζ∗t ).

The outline of proof is analogous to the above discussion for Case(II). We redefinefi : Di → R as

fi(ζs, ζt) := hsi (s(ζs)) + d(u′i, v
′
i) + hti(t(ζt)),

whereDi := s−1((VP(u′i) ∪ VP(ui)) ∩ es) × t−1((VP(v′i) ∪ VP(vi)) ∩ et). We considerDi as a
subset ofR2 and each pair(ζs, ζt) ∈ Di as a point inR2. Also, letg(ζs, ζt) := mini fi(ζs, ζt) for any
(ζs, ζt) ∈

⋂
Di.

The convexity offi on any convex subset ofDi is deduced from Lemma 3. Analogously to Lemma 5,
one can show that (i) there exists a convex neighborhoodC ⊂ R2 of (ζ∗s , ζ

∗
t ) with C ⊂ ⋂

Di such
that g(ζs, ζt) = mini fi(ζs, ζt) = d(s(ζs), t(ζt)) for any (ζs, ζt) ∈ C, (ii) fi(ζ

∗
s , ζ

∗
t ) = g(ζ∗s , ζ

∗
t ) =

d(s(ζ∗s ), t(ζ
∗
t )) for any i ∈ {1, . . . ,m}, (iii) g attains a local maximum at(ζ∗s , ζ

∗
t ). Also, observe that

(iv) none of thefi attains a local minimum at(ζ∗s , ζ
∗
t ) if m < 3: Assume that somefi attains a local

minimum at(ζ∗s , ζ
∗
t ) andm < 3. This happens only whens∗ = s(ζ∗s ) is the perpendicular foot ofui on

es andt∗ = t(ζ∗t ) is the perpendicular foot ofvi onet. In this case, there always exists a direction along
es such that if we moves∗ in the direction, thenhsi strictly increases for every1 ≤ i ≤ m < 3, which
contradicts to the assumption that(s∗, t∗) is maximal.

In addition, we observe the following.

Lemma 7 If there exists a lineℓ ⊂ R2 such thatfi is constant onℓ∩C, thenui lies on the line supporting
es andvi lies on the line supportinget.

We assume thatm < 3, and restrict the functionsfi andg onC ⊂ R2. Then, Theorem 1 implies that
there exists a lineℓ ⊂ R2 through(ζ∗s , ζ

∗
t ) such thatg is constant onℓ∩C. Moreover, Lemma 4 implies

that at least one of thefi is constant onℓ∩C. Assume that onlyf1 is constant onℓ∩C. Then, by the same
argument as above for Case(II), for any point (ζs, ζt) ∈ ℓ ∩ C with (ζs, ζt) 6= (ζ∗s , ζ

∗
t ), we have a strict

inequalityg(ζs, ζt) = f1(ζs, ζt) < fi(ζs, ζt) for i ≥ 2, leading to a contradiction: for any arbitrarily
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small neighborhoodU ⊂ C of (ζ∗s , ζ
∗
t ), g(ζs, ζt) = f1(ζs, ζt) < fi(ζs, ζt) for (ζs, ζt) ∈ ∂U ∩ ℓ

and thus there exist a sufficiently small neighborhoodU ′ ⊂ C of (ζs, ζt) and(ζ ′s, ζ
′
t) ∈ U ′ such that

f1(ζs, ζt) < f1(ζ
′
s, ζ

′
t) < fi(ζ

′
s, ζ

′
t), which implies thatd(s∗, t∗) = g(ζ∗s , ζ

∗
t ) = g(ζs, ζt) < g(ζ ′s, ζ

′
t).

Hence, bothf1 andf2 are constant onℓ∩C. Then, by Lemma 7,u1, u2, ands∗ are collinear andv1,
v2, andt∗ are collinear. Sincem < 3, this situation violates the second part of Lemma 2. Thus, we get
a contradiction again, concluding thatm = |Π(s∗, t∗)| ≥ 3 for Case(BB) when boths∗ andt∗ lie onB.

Case (BI): Whens∗ ∈ B and t∗ ∈ intP. We assume thats∗ ∈ es ∈ E andt∗ ∈ intP. Defines(ζs)
as done in Case(BB) with s(ζ∗s ) = s∗. We redefine the functionfi : Di → R to be

fi(ζs, tx, ty) := hsi (s(ζs)) + d(u′i, v
′
i) + hti(tx, ty),

whereDi := s−1((VP(u′i) ∪ VP(ui)) ∩ es)× (VP(v′i) ∪ VP(vi)) is a subset ofR3. Let g(ζs, tx, ty) :=
mini fi(ζs, tx, ty) for any(ζs, tx, ty) ∈

⋂
Di.

Analogously to Lemmas 3 and 5, eachfi is convex on any convex subset ofDi and there exists
a convex neighborhoodC ⊂ R3 of (ζ∗s , t

∗
x, t

∗
y) with C ⊂ ⋂

Di such that the four requirements are
satisfied. Suppose thatm = |Π(s∗, t∗)| < 4. Then, Theorem 1 implies that there exists a lineℓ ⊂ R3

through(ζ∗s , t
∗
x, t

∗
y) ∈ R3 such thatg is constant onℓ∩C, thus at least one of thefi is constant onℓ∩C

by Lemma 4.
If only one of thefi is constant onℓ ∩ C, then we have a contradiction as done in Cases(II) and

(BB). Thus, assume thatf1 andf2 are constant onℓ ∩ C. By Lemmas 4 and 7,v1, v2, andt∗ should
be collinear. Further, by the second part of Lemma 2,t∗ must lie in the interior of the convex hull of
Vt∗ . In order to have an interior point of the convex hull on the segment betweenv1 andv2, we need at
least two more points. Nonetheless, we have|Vt∗ | ≤ |Π(s∗, t∗)| < 4, a contradiction. Thus, we have
m = |Π(s∗, t∗)| ≥ 4 for Case(BI), as claimed.

Finally, we complete a proof of Theorem 2: The claimed bounds on|Vs∗ | and |Vt∗ | are shown by
Lemma 2, and the bounds on|Π(s∗, t∗)| are shown case by case as above.

5 Computing the Geodesic Diameter

Since a diametral pair is in fact maximal, it falls into one of the cases shown in Theorem 2. In order to
find a diametral pair we examine all possible scenarios accordingly.

Cases(V–), where at least one point is a corner inV , can be handled inO(n2 log n) time by comput-
ing SPM(v) for everyv ∈ V and traversing it to find the farthest point fromv, as discussed in Section 2.
We thus focus on Cases(BB), (BI), and (II), where a diametral pair consists of two non-corner points.

From the computational point of view, the most difficult case corresponds to Case(II) of Theorem 2;
in particular,|Π(s∗, t∗)| = 5 in which 10 corners ofV are involved, resulting in|Vs∗ | = |Vt∗ | = 5
(see Appendix A.3). Note that we do not need to take a special care for the case of|Π(s∗, t∗)| > 5.
By Theorem 2 and its proof, it is guaranteed that there are five distinct pairs(u1, v1), . . . , (u5, v5) of
corners inV such thatlenui,vi(s

∗, t∗) = d(s∗, t∗) for any i ∈ {1, . . . , 5} and the system of equations
lenu1,v1(s, t) = · · · = lenu5,v5(s, t) indeed determines a0-dimensional zero set, corresponding to a
constant number of candidate pairs inintP × intP. Moreover, each path-length functionlenu,v is an
algebraic function of degree at most4. Thus, given five distinct pairs(ui, vi) of corners, we can compute
all candidate pairs(s, t) in O(1) time by solving the system.2 Then, for each candidate pair we compute
the geodesic distance between the pair to check its validity. Since the geodesic distance between any
two pointss, t ∈ P can be computed inO(n logn) time [12], we obtain a brute-forceO(n11 log n)-time
algorithm, checkingO(n10) candidate pairs obtained from all possible combinations of10 corners inV .

2Here, we assume that fundamental operations on a constant number of polynomials of constant degree with a constant
number of variables can be performed in constant time.
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B Proofs Omitted from the Body

Proof of Lemma 1 We only give a proof for the second statement, which implies the first. The case of
d = 1 is trivial, so we assumed > 1. LetH1, . . . , Hm be anym closed hemispheres onSd−1, andhi be
the hyperplane through the origin inRd such thatHi lies in a closed half-space supported byhi. In this
proof, we denote byÙHi the open hemisphere, defined to beÙHi = Hi \ hi. Also, letHj :=

⋂
1≤i≤j Hi

andÙHj :=
⋂

1≤i≤j
ÙHi.

Suppose thatÙHm = ∅. Let k be the smallest integer such thatÙHk = ∅. By definition,k ≥ 2 and
ÙHk−1 6= ∅. Since the intersection of anyk−1 non-parallel hyperplanes ofRd includes a(d−k+1)-flat
and eachhi contains the origin,

⋂
1≤i≤k−1 hi includes a(d − k + 1)-flat through the origin and thus

Hk−1 includes a great(d− k)-sphereG onSd−1. Sincex ∈ G implies−x ∈ G for anyx ∈ Sd−1, we
must haveG ⊆ hk, in order to have an empty intersectionÙHk. This implies that

⋂
1≤i≤k hi also includes

a (d− k+1)-flat through the origin, and further that
⋂

1≤i≤m hi includes a(d−m+1)-flat through the
origin. We hence conclude thatHm =

⋂
1≤i≤mHi includes a great(d−m)-sphere onSd−1.

Proof of Lemma 2 Since(s∗, t∗) is a maximal pair,ds∗(t) := d(s∗, t) is maximized att∗ over a small
neighborhoodU ⊂ P of t∗. Thus, as discussed in Section 2, ift∗ /∈ V , thent∗ must be either a vertex of
SPM(s∗) or an intersection point between an edge ofSPM(s∗) and∂P. If t∗ ∈ intP, thent∗ should fall
into the former case and we have at least three cornersv1, v2, v3 ∈ V determining a vertex ofSPM(s∗).
If t∗ ∈ B, thent∗ may fall into either case. Even in the latter case,t∗ must lie onB and we have at least
two cornersv1, v2 ∈ V determining an edge ofSPM(s∗).

The second part of the lemma can be shown as follows. Ift∗ ∈ intP but lies out of the interior of
the convex hull ofVt∗ , then we can find another pointt ∈ U for any neighborhoodU ⊂ intP of t∗

such that‖t − vi‖ > ‖t∗ − vi‖ for everyvi ∈ Vt∗ , implying thatd(s∗, t) > d(s∗, t∗). If t∗ ∈ e ∈ E
but everyvi ∈ Vt∗ lies on the supporting lineℓ of e, then when we movet∗ in a perpendicular direction
to ℓ, we obtain a strictly larger distance as above. (Remark that a similar argument can be found also
in [15, Lemma 2.2].)

Proof of Lemma 3 Since the sum of convex functions is a convex function, it suffices to show thathsi
andhti are convex. More precisely, for any(s1, t1), (s2, t2) ∈ C and0 ≤ λ ≤ 1, we have

fi(λ(s1, t1) + (1− λ)(s2, t2)) = hsi (λs1 + (1− λ)s2) + d(u′i, v
′
i) + hti(λt1 + (1− λ)t2)

≤ λhsi (s1) + (1− λ)hsi (s2) + d(u′i, v
′
i) + λhti(t1) + (1− λ)hti(t2)

= λfi(s1, t1) + (1− λ)fi(s2, t2)

if hsi andhti are convex.
We thus show the convexity ofhsi on any convex subsetCs ⊂ VP(u′i) ∪ VP(ui). The convexity of

hti can be shown in the same way. There are two cases:u′i = ui or u′i 6= ui. For the former case,hsi is
convex onCs since it measures the Euclidean distance betweenui and a given point inCs. Lettingℓ0 be
the line throughui, u′i, and alsos∗, for the latter case,Cs may be partitioned byℓ0 into two regionsA1

andA2, whereA1 = Cs ∩ VP(u′i) andA2 = Cs \ A1. Note thathsi is convex onA1 and onA2. Thus,
we are done by checking every point onℓ0 ∩ Cs.

Pick anys ∈ ℓ0 ∩ Cs and any lineℓ ⊂ R2 throughs. Let θ be the angle betweenℓ0 andℓ. If we
restrict the domain ofhsi on ℓ ∩ Cs, then one can check with basic calculus that both the derivatives of
‖s− ui‖+ ‖ui − u′i‖ and of‖s− u′i‖ are equal toc cos θ ats for some constantc. Hence,hsi is smooth
and convex alongℓ. Since we have taken any lineℓ through any point onℓ0 ∩ Cs, this suffices to prove
the convexity ofhsi onCs.

iv

Proof of Lemma 4 There are four cases according to the position ofs and t: eithers ∈ VP(u′i) or
s ∈ VP(ui) \ VP(u′i); eithert ∈ VP(v′i) or t ∈ VP(vi) \ VP(v′i). We give a proof only for the case of
s ∈ VP(ui) \ VP(u′i) andt ∈ VP(vi) \ VP(v′i) but the proofs for the other cases are almost identical.

Recall thats 6= ui andt 6= vi. Any ray (or half-line)γ ⊂ R4 with endpoint(s, t) can be determined
by three parameters(θs, θt, λ) with 0 ≤ θs, θt ≤ π andλ ≥ 0 as follows: Letγs andγt be the projections
of γ onto the(sx, sy)-plane and the(tx, ty)-plane, respectively. Note thatγs is a ray in the(sx, sy)-plane
with endpoints andγt is a ray in the(tx, ty)-plane with endpointt. Let θs be the smaller angle ats
made byγs and another ray starting froms in direction away fromui. Defineθt analogously. Then,
the derivative offi at (s, t) alongγ is represented asc(cos θs + λ cos θt) for some constantsλ ≥ 0 and

c > 0. Also, the second derivative offi at (s, t) alongγ is derived asc
(

sin2 θs
‖s−ui‖ + λ sin2 θt

‖t−vi‖
)
.

Suppose thatfi is constant alongγ locally around(s, t). Then, its first and second derivatives should
be zero in a small neighborhoodU ⊂ R4 of (s, t) with U ⊂ Di. First, we observe thatλ should be
positive; ifλ = 0, thent is fixed whiles moves alongγs so thatfi does not stay constant. Since every
term of the second derivative is nonnegative andλ > 0, we get(θs, θt) = (0, π) or (π, 0). We hence
obtain only two solutions(θs, θt, λ) = (0, π, 1) or (π, 0, 1). The two raysγ corresponding to these two
solutions form a unique lineℓi ⊂ R4 through(s, t) such thatfi is constant onℓi ∩ U .

Now, we pick any(s′, t′) ∈ ℓi ∩ intDi such that both(s, t) and(s′, t′) lie on a common connected
component ofℓi ∩ intDi. Then, we observe thatfi(s′, t′) = fi(s, t). Since any convex neighborhoodC
of (s, t) with C ⊂ Di intersectsℓi in a single connected component, for any(s′, t′) ∈ ℓi ∩ C, it holds
thatfi(s′, t′) = fi(s, t), proving the second part of the lemma.

Remark thatℓi ∩ intDi may consist of more than one connected components; a typical situation
whereℓi ∩ intDi is disconnected is whenℓi passes through(ui, t′′) or (s′′, vi) on ∂Di for somes′′ ∈
VP(u′i) ∪ VP(ui) and somet′′ ∈ VP(v′i) ∪ VP(vi). See Figure 3 for more intuitive and geometric
description onℓi.

Proof of Lemma 5 (i) In this proof, we definelenu,v(s, t) = ∞ if s /∈ VP(u) or t /∈ VP(v). By
definition, there exists a small neighborhoodUi ⊂ Di of (s∗, t∗) such thatfi(s, t) = min{lenui,vi(s, t),
lenu′

i,vi
(s, t), lenui,v′i

(s, t), lenu′
i,v

′
i
(s, t)} = minu,v∈πi∩V lenu,v(s, t) for all (s, t) ∈ Ui. We claim that

there exists a convex neighborhoodC ⊂ ⋂
i Ui such that for any(s, t) ∈ C

d(s, t) = min
1≤i≤m

fi(s, t) = g(s, t).

To prove our claim, assume to the contrary that for every convex neighborhoodC ⊂ R4 of (s∗, t∗) ∈
R4 there exist a pair(u, v) of corners and(s, t) ∈ C such thatd(s, t) = lenu,v(s, t) < mini fi(s, t).
Note that none of the shortest pathsπi ∈ Π(s∗, t∗) betweens∗ andt∗ passes through both of suchu and
v since otherwiselenu,v(s, t) = mini fi(s, t).

Consider a sequenceC1, C2, . . . of neighborhoods of(s∗, t∗) ∈ R4 that converges to the singleton
{(s∗, t∗)}. Since there are onlyn2 pairs of corners, there exist a fixed pair(u0, v0) of corners and a
subsequenceCk1 , Ck2 , . . . converging to the singleton{(s∗, t∗)} such that none of theπi passes through
both ofu0, v0 and for any integerj > 0 there is a point(sj , tj) ∈ Ckj with

d(sj , tj) = lenu0,v0(sj , tj) < min
1≤i≤m

fi(sj , tj).

Sincelimj→∞(sj , tj) = (s∗, t∗), it holds thatlimj→∞ d(sj , tj) = limj→∞mini fi(sj , tj) = d(s∗, t∗).
By the sandwich theorem, we thus have

lim
j→∞

lenu0,v0(sj , tj) = lenu0,v0(s
∗, t∗) = d(s∗, t∗).

This implies the existence of the(m+1)-st shortest path betweens∗ and t∗ since none of theπi ∈
Π(s∗, t∗) contains bothu0 andv0, a contradiction.

v

(ii) The claim follows from the fact thatfi(s∗, t∗) = lenui,vi(s
∗, t∗).

(iii) From (i), g(s, t) = d(s, t) for all (s, t) ∈ C. Sinced attains a local maximum at(s∗, t∗), so doesg.
(iv) Consider any pair(s, t) such thats ∈ s∗ui and t ∈ t∗vi but s 6= s∗ andt 6= t∗. Then,fi(s, t) =
lenui,vi(s, t) < fi(s

∗, t∗). Hence, there is no neighborhoodU ⊂ R4 of (s∗, t∗) such thatfi(s∗, t∗) ≤
fi(s, t) for any(s, t) ∈ U , implying that(s∗, t∗) is not a local minimum of anyfi.

Proof of Lemma 6 Let ℓi ⊂ R4 be the unique line through(s∗, t∗) such thatfi is constant onℓi ∩ C.
The uniqueness ofℓi is proven by Lemma 4.

Observe from the proof of Lemma 4 that the projection ofℓi onto the(sx, sy)-plane is the line
throughs∗ andui. Also, the projection ofℓi onto the(tx, ty)-plane is the line throught∗ andvi. Hence,
ℓi = ℓj implies thatui, uj , s∗ are collinear andvi, vj , t∗ are collinear. First, since the pairs(ui, vi) are
all distinct, we haveui 6= uj or vi 6= vj . If ui = uj andvi 6= vj , one can easily check thatℓi 6= ℓj . We
thus haveui 6= uj andvi 6= vj . Moreover,s∗ must lie in betweenui anduj andt∗ must lie in betweenvi
andvj by definition; ifuj lies in betweenui ands∗, then the first corner ofπi from s∗ becomesuj since
the three are collinear. Therefore, for eachi ∈ {1, . . . ,m}, there is at most one indexj ∈ {1, . . . ,m}
such thati 6= j andℓi = ℓj , completing the proof.

Proof of Lemma 7 The lemma immediately follows from Lemma 4 and its proof.

vi
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Terminology and Concepts
Theorem
Algorithm

Algorithmic ingredients

Basic idea

I List all maximal pairs, with their distances
I Exhaust all six cases

I Case (I-I) is the bottleneck

Ingredients

I Shortest-path map
I O(n log n) time construction
I O(log n) time per query (Mitchell ’96)

I Two-point shortest-path query data structure
I O(n5+10δ+ε) time construction
I O(n1−δ log n) time per query (Chiang and Mitchell ’99)

We won’t define them...
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Algorithmic consequence

Theorem

The geodesic diameter of a given polygonal domain P
with n corners and h holes can be computed in

I O(n7.33) time or

I O(n7(log n + h)) time

O(n7(log n + h)) is better when h = o(n0.33)
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Algorithm

Concluding remarks

I Running times are disappointing
I Exact: O(n7.33)
I Approx: O(n2 log n)

I Chiang-Mitchell two-pt shortest-path data str is disappointing
I O(n5+10δ+ε) time construction
I O(n1−δ log n) time per query

I How many maximal pairs can there be in worst case?
I Upper bound: O(n7) (from Main Theorem)
I Lower bound: Ω(n2)

I How about the geodesic center of a polygonal domain?

Thank you
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Approximation

Polynomial-time approximation scheme (by Ahn, priv. comm.)

I Idea: Overlay the fine grid, and compute all pairwise distances

I Running time: O(( n
ε2

+ n2

ε ) log n)
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Geodesic diameter computation: What’s known? (2)
...in a somewhat different scenario

For 3-dimensional convex polytopes with n vertices

I O(n14 log n)-time algo
(O’Rourke & Schevon ’89)

I O(n8 log n)-time algo
(Agarwal, Aronov, O’Rourke & Schevon ’97)

I O(n7 log n)-time algo
(Cook IV & Wenk ’09)

Crucial observation (O’Rourke & Schevon ’89)

The diameter is determined by two non-vertex points p, q
=⇒ ∃ at least 5 shortest paths between p, q
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