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Convexly independent subset

P C IR? a finite point set

Definition: Convexly independent subset

A set S C P is called convexly independent if
every point in S is an extreme point of the convex hull of S
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Largest convexly independent subset

For a finite point set P C R?

M(P) = max{|S| : S C P convexly independent}

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Téth Convexly independent subsets of the Minkowski sums



Largest convexly independent subset

For a finite point set P C R?

M(P) = max{|S| : S C P convexly independent}

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Téth Convexly independent subsets of the Minkowski sums



An extremal problem

For a finite point set P C R?
M(P) = max{|S| : S C P convexly independent};
For a natural number n

M(n) = max{M(P) : P C R? |P| = n}

Determine M(n)
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An extremal problem

Notation
For a finite point set P C R?

M(P) = max{|S| : S C P convexly independent};

For a natural number n

M(n) = max{M(P) : P C R? |P| = n}

Question and Answer
Determine M(n) —Well, it's easy: M(n) =n

AT
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More interesting extremal problem

Let P @ be the Minkowski sum of P and Q,
as defined in the next slide...

Notation
For two finite point sets P, Q@ C R?

M(P, Q) = max{|S|: S C P& Q convexly independent};

For two natural numbers m, n

M(m, n) = max{M(P, Q) : P,Q CR?,|P| = m,|Q| = n}

Determine M(m, n)
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P, Q@ C R? finite point sets

Definition: Minkowski sum
The Minkowski sum of P and Q is

PoQ={p+q:peP,qgeQ}
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P, Q@ C R? finite point sets

Definition: Minkowski sum
The Minkowski sum of P and Q is
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P, Q@ C R? finite point sets

Definition: Minkowski sum
The Minkowski sum of P and Q is

PoQ={p+q:peP,qgeQ}
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Q . .

P& Q| < |P||Q|, and it's possible that |P & Q| < |P|| Q|
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More interesting extremal problem
For two finite point sets P, @ C IR?

M(P,Q) = M(P&Q)
= max{|S]|: S C P& Q convexly independent};

For two natural numbers m, n

M(m,n) = max{M(P, Q) : P,Q CR? |P| = m,|Q| = n}

Determine M(m, n)

For example, is it true that M(m, n) = mn?
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|P® Q| =18
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|P & Q| =18, while M(P,Q) = M(P® Q) =12

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Téth Convexly independent subsets of the Minkowski sums



Known result

Theorem (Eisenbrand, Pach, RothvoB, Sopher '08)

M(m, n) = O(m?3n?/3 + m + n)

They only knew a linear lower bound:

M(m, n) = Q(m+ n)
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Our result

Theorem (Eisenbrand, Pach, RothvoB, Sopher '08)

M(m, n) = O(m?3n?/3 + m + n)

They only knew a linear lower bound:

M(m, n) = Q(m+ n)

M(m, n) = Q(m*3n?/3 + m + n)

Our result was independently found by Bilka, but only when m = n
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Our result (independently found by Bilka)

M(m, n) = Q(m*3n?/3> + m + n)

» Basic idea

> Fine tuning
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Our result (independently found by Bilka)

M(m, n) = Q(m*3n?/3> + m + n)

» Basic idea

> Fine tuning

@® Look at a lower-bound example for the point-line
incidence problem

® Construct two point sets from such an example

© Simulate the point-line incidences as a large convexly
independent subset of the two point sets
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Point-line incidences

p a point, £ a line

Definition: Point-line incidence

p is incident to / if p € ¢

incident not incident
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Point-line incidences

p a point, £ a line

Definition: Point-line incidence

p is incident to / if p € ¢

P a set of points, L a set of lines

I(P,L) = |{(p,£) € Px L:pel}

7
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Point-line incidences: Lower bound

I(P,L) = |{(p,l)e PxL:pel}
I(m,n) = max{/(P,L):|P|=m,|Ll = n}

Theorem (Erdds '46)

I(m, n) = Q(m*3n?/3 + m + n)

Remark: This is tight (due to Szeméredi and Trotter '83)
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Our result (independently found by Bilka)

M(m, n) = Q(m*3n?/3> + m + n)

» Basic idea

> Fine tuning

@ Look at a lower-bound example for the point-line
incidence problem

® Construct two point sets from such an example

© Simulate the point-line incidences as a large convexly
independent subset of the two point sets
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Crucial idea

Take P and L such that /(P, L) = Q(m*3n?/3 + m+ n)

P P and L L

Crucial idea

Set up a point g; € Q for each line ¢; € L so that
P & Q has a convexly independent subset S satisfying

peli < p+qg €eS

Expected consequence

M(P, Q) > |S| = Q(m?*n?/® + m+ n)
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How to construct @ (1/3): Sort the lines by their slopes

P P and L L

N

» {; = the ith line in the sorted list of the lines in L
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How to construct Q (2/3): Align the lines to form a curve

e

» Consider a polygonal chain C consisting of n line segments
s.t. the ith segment s; has the same slope as /;
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N~

S1

» Consider a polygonal chain C consisting of n line segments
s.t. the ith segment s; has the same slope as /;
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How to construct Q (2/3): Align the lines to form a curve

N~

S1

» Consider a polygonal chain C consisting of n line segments
s.t. the ith segment s; has the same slope as /;
» C is a convex chain (. the lines are sorted by their slopes)
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How to construct Q (2/3): Align the lines to form a curve

I long long "1 long "1 long "~ long " ilong

» Consider a polygonal chain C consisting of n line segments
s.t. the ith segment s; has the same slope as /;
» C is a convex chain (. the lines are sorted by their slopes)

> Set the length of each segment sufficiently long
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How to construct Q (3/3): Place a point for each line

» Place Q ={q1,...,qn} st. (P®{qgi})NC=(Pn¥)d{qi}

» This is possible since each segment is long enough

» In particular, |(P® {q;})NC|=|(PN¥¢)®{qi}| = PN
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Our result (independently found by Bilka)

M(m, n) = Q(m*3n?/3> + m + n)

» Basic idea

> Fine tuning

@ Look at a lower-bound example for the point-line
incidence problem

® Construct two point sets from such an example

© Simulate the point-line incidences as a large convexly
independent subset of the two point sets
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(P @ Q)N C is our candidate for a large convexly independent subset

/
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> I(P,L)=) PNt =) [(Pre{a})NCl=|(P&Q)NC]

i=1 i=1
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(P @ Q)N C is our candidate for a large convexly independent subset

o0 0 oS
oo%/t/oqﬁ
(X JOLN
[ 3O N
s)eo e 0o @

> I(P,L)=) PNt =) [(Pre{a})NCl=|(P&Q)NC]

i=1 i=1
» (P Q)NC|=I(P,L)=Q(m?3n%3 + m+ n)
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(P @ Q)N C is our candidate for a large convexly independent subset
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> I(P,L) =) |Pnt =) (P {a)nCl=|(P®Q)NC|
i=1 i=1

» (P Q)NC|=I(P,L)=Q(m?3n%3 + m+ n)
» We take (P ® Q)N C as our large subset
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Our result (independently found by Bilka)

M(m, n) = Q(m*3n?/3> + m + n)

» Basic idea

» Fine tuning
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An issue to resolve

/

oo/ﬁo
cHoa
e/e o e
OILN X

The set (P @ Q) N C is not necessarily convexly independent since
» For each i, the points in (P @& Q) N 's; are collinear
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Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small € > 0:
(x,¥) > (x,y + ex?)
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Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small € > 0:

(x,¥) > (x,y + ex?)
The line y = ajx + b; —  The parabola y = ex? 4 ajx + b;
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Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small € > 0:

(x,¥) > (x,y + ex?)
The line y = ajx + b; —  The parabola y = ex? 4 ajx + b;

15 15

0
05 ‘ \ ‘ 05

05 0 05 1 15

We repeat the same construction as before,
and then (P @ Q) N C is convexly independent O
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hole picture: illustration
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Our result

Theorem (Eisenbrand, Pach, RothvoB, Sopher '08)

M(m, n) = O(m?3n?/3 + m + n)

They only knew a linear lower bound:

M(m, n) = Q(m+ n)

M(m, n) = Q(m*3n?/3 + m + n)

Our result was independently found by Bilka, but only when m = n
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Open problem (1): More summands

Instead of two point sets, what if we are given k point sets?

Notation

For k finite point sets Py, ..., Py C R?
M(P1,...,Px) =max{|S|: S C Pi®- - -®Px conV'ly independent};

For k natural numbers nq,..., ng

I\/l(nl, o0 .,nk) = max{M(Pl, 000 Pk) o P,‘ - Rz, |P,’ = n,-}

Open problem 1

Determine M(ny, ..., ng)

» Our result: M(nq, np) = Q(n] 2/3 2/3 + n + m)
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Open problem (2): Algorithmic issue

What about algorithms?

Open problem 2

Given P,Q C R?, |P| = m,|Q| = n,
how quickly can we find a largest convexly independent subset of
P® Q7

RENEILS

A largest convexly independent subset of a single point set P can
be found in O(n3) time where |P| = n (Chvatal, Klincsek '80)

» Improving the O(n®) bound is a long-standing open problem
(see Edelsbrunner’s book '87)

» A naive application of Chvatal-Klincsek's algorithm just yields
an O(m3n3)-time algorithm — Improve!
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The final slide

Open problem 1

Determine M(ny, ..., nk)

Open problem 2

Given P,QQR% ‘P’ = m7|Q’ = n,

how quickly can we find a largest convexly independent subset of
P& Q7
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The final slide

Open problem 1

Determine M(ny, ..., nk)

Open problem 2

Given P, Q C R?, |P| = m,|Q| = n,
how quickly can we find a largest convexly independent subset of
P& Q7

Bottom line

Surpringly, we know only little about Minkowski sums, even for
planar point sets
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[Thank you]
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