A tight lower bound for convexly independent subsets of the Minkowski sums of planar point sets

Kevin Buchin¹ Radoslav Fulek² Masashi Kiyomi³ Yoshio Okamoto⁴ Shin-ichi Tanigawa⁵ Csaba D. Tóth⁶

¹TU Eindhoven ²EPFL ³JAIST ⁴Tokyo Tech ⁵Kyoto Univ ⁶Univ Calgary

Japan Conference on Computational Geometry and Graphs, Kanazawa, November 11, 2009

$$P \subseteq \mathbb{R}^2$$
 a finite point set

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S

$$P \subseteq \mathbb{R}^2$$
 a finite point set

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S

$$P \subseteq \mathbb{R}^2$$
 a finite point set

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S

Convexly independent

$$P \subseteq \mathbb{R}^2$$
 a finite point set

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S

$$P \subseteq \mathbb{R}^2$$
 a finite point set

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S

Not convexly independent

$$P \subseteq \mathbb{R}^2$$
 a finite point set

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S

$$P \subseteq \mathbb{R}^2$$
 a finite point set

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S

Not convexly independent

For a finite point set $P \subseteq \mathbb{R}^2$

 $M(P) = \max\{|S| : S \subseteq P \text{ convexly independent}\}$

For a finite point set $P \subseteq \mathbb{R}^2$

 $M(P) = \max\{|S| : S \subseteq P \text{ convexly independent}\}$

M(P) = 7

For a finite point set $P \subseteq \mathbb{R}^2$

 $M(P) = \max\{|S| : S \subseteq P \text{ convexly independent}\};$

For a natural number n

$$M(n) = \max\{M(P) : P \subseteq \mathbb{R}^2, |P| = n\}$$

Question

Determine M(n)

For a finite point set $P \subseteq \mathbb{R}^2$

 $M(P) = \max\{|S| : S \subseteq P \text{ convexly independent}\};$

For a natural number n

$$M(n) = \max\{M(P) : P \subseteq \mathbb{R}^2, |P| = n\}$$

Questionand AnswerDetermine M(n)—Well, it's easy: M(n) = nImage: the second secon

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth Convexly independent subsets of the Minkowski sums

Let $P \oplus Q$ be the Minkowski sum of P and Q, as defined in the next slide...

Notation

For two finite point sets $P, Q \subseteq \mathbb{R}^2$

 $M(P,Q) = \max\{|S| : S \subseteq P \oplus Q \text{ convexly independent}\};$

For two natural numbers m, n

$$M(m,n)=\max\{M(P,Q):P,Q\subseteq\mathbb{R}^2,|P|=m,|Q|=n\}$$

Question

Determine M(m, n)

Definition: Minkowski sum

$$P\oplus Q=\{p+q:p\in P,q\in Q\}$$

Definition: Minkowski sum

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Definition: Minkowski sum

$$P\oplus Q=\{p+q:p\in P,q\in Q\}$$

Definition: Minkowski sum

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Definition: Minkowski sum

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Definition: Minkowski sum

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Definition: Minkowski sum

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Definition: Minkowski sum

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Definition: Minkowski sum

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Definition: Minkowski sum

$$\mathsf{P}\oplus \mathsf{Q}=\{\mathsf{p}+\mathsf{q}:\mathsf{p}\in\mathsf{P},\mathsf{q}\in\mathsf{Q}\}$$

Definition: Minkowski sum

The Minkowski sum of P and Q is

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Remark

 $|P \oplus Q| \leq |P||Q|$, and it's possible that $|P \oplus Q| < |P||Q|$

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth Convexly independent subsets of the Minkowski sums

Definition: Minkowski sum

The Minkowski sum of P and Q is

$${\sf P}\oplus {\sf Q}=\{{\sf p}+{\sf q}:{\sf p}\in{\sf P},{\sf q}\in{\sf Q}\}$$

Remark

 $|P \oplus Q| \leq |P||Q|$, and it's possible that $|P \oplus Q| < |P||Q|$

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth Convexly independent subsets of the Minkowski sums

For two finite point sets $P, Q \subseteq \mathbb{R}^2$

$$M(P,Q) = M(P \oplus Q)$$

= max{ $|S| : S \subseteq P \oplus Q$ convexly independent};

For two natural numbers m, n

$$M(m,n)=\max\{M(P,Q):P,Q\subseteq\mathbb{R}^2,|P|=m,|Q|=n\}$$

Question

Determine M(m, n)

For example, is it true that M(m, n) = mn?

 $|P \oplus Q| = 18$ Ρ Q $P \oplus Q$

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth Convexly independent subsets of the Minkowski sums

 $|P \oplus Q| = 18$, while $M(P, Q) = M(P \oplus Q) = 12$

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth Convexly independent subsets of the Minkowski sums

Known result

Theorem (Eisenbrand, Pach, Rothvoß, Sopher '08)

$$M(m, n) = O(m^{2/3}n^{2/3} + m + n)$$

They only knew a linear lower bound:

$$M(m,n) = \Omega(m+n)$$

Our result

Theorem (Eisenbrand, Pach, Rothvoß, Sopher '08)

$$M(m, n) = O(m^{2/3}n^{2/3} + m + n)$$

They only knew a linear lower bound:

$$M(m,n) = \Omega(m+n)$$

Our result

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

Our result was independently found by Bílka, but only when m = n

Our result (independently found by Bílka)

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

Contents

- Basic idea
- Fine tuning

Our result (independently found by Bílka)

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

Contents

- Basic idea
- Fine tuning

Our result (independently found by Bílka)

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

- Look at a lower-bound example for the point-line incidence problem
- 2 Construct two point sets from such an example
- Simulate the point-line incidences as a large convexly independent subset of the two point sets

Our result (independently found by Bílka)

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

Contents Basic idea Fine tuning

Look at a lower-bound example for the point-line incidence problem

- 2 Construct two point sets from such an example
- Simulate the point-line incidences as a large convexly independent subset of the two point sets

p a point, ℓ a line

Definition: Point-line incidence

p is **incident** to ℓ if $p \in \ell$

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth Convexly independent subsets of the Minkowski sums

p a point, ℓ a line

Definition: Point-line incidence

p is **incident** to ℓ if $p \in \ell$

P a set of points, L a set of lines

Notation

$$I(P,L) = |\{(p,\ell) \in P \times L : p \in \ell\}|$$

p a point, ℓ a line

Definition: Point-line incidence

p is **incident** to ℓ if $p \in \ell$

P a set of points, L a set of lines

Notation

$$I(P,L) = |\{(p,\ell) \in P \times L : p \in \ell\}|$$

I(P,L) = 8

Point-line incidences: Lower bound

Notation

$$I(P, L) = |\{(p, \ell) \in P \times L : p \in \ell\}|$$

$$I(m, n) = \max\{I(P, L) : |P| = m, |L| = n\}$$

Theorem (Erdős '46)

$$I(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

Remark: This is tight (due to Szeméredi and Trotter '83)

Contents

Our result (independently found by Bílka)

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

- Look at a lower-bound example for the point-line incidence problem
- **2** Construct two point sets from such an example
- Simulate the point-line incidences as a large convexly independent subset of the two point sets

Crucial idea

Take P and L such that $I(P, L) = \Omega(m^{2/3}n^{2/3} + m + n)$

Crucial idea

Set up a point $q_i \in Q$ for each line $\ell_i \in L$ so that $P \oplus Q$ has a convexly independent subset S satisfying

$$p \in \ell_i \iff p + q_i \in S$$

Expected consequence

$$M(P,Q) \ge |S| = \Omega(m^{2/3}n^{2/3} + m + n)$$

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth

Convexly independent subsets of the Minkowski sums

How to construct Q(1/3): Sort the lines by their slopes

• ℓ_i = the *i*th line in the sorted list of the lines in *L*

► Consider a polygonal chain C consisting of n line segments s.t. the *i*th segment s_i has the same slope as l_i

► Consider a polygonal chain C consisting of n line segments s.t. the *i*th segment s_i has the same slope as l_i

- ► Consider a polygonal chain C consisting of n line segments s.t. the *i*th segment s_i has the same slope as l_i
 - ► C is a convex chain (:: the lines are sorted by their slopes)

- ► Consider a polygonal chain C consisting of n line segments s.t. the *i*th segment s_i has the same slope as l_i
 - ► C is a convex chain (:: the lines are sorted by their slopes)
- Set the length of each segment sufficiently long

▶ Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

▶ Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

▶ Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

▶ Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

▶ Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

▶ Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

▶ Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

▶ Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

Contents

Our result (independently found by Bílka)

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

- Look at a lower-bound example for the point-line incidence problem
- 2 Construct two point sets from such an example
- **3** Simulate the point-line incidences as a large convexly independent subset of the two point sets

 $(P \oplus Q) \cap C$ is our candidate for a large convexly independent subset

 $(P \oplus Q) \cap C$ is our candidate for a large convexly independent subset

 $(P \oplus Q) \cap C$ is our candidate for a large convexly independent subset

Contents

Our result (independently found by Bílka)

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

Contents

- Basic idea
- Fine tuning

Issue

The set $(P \oplus Q) \cap C$ is not necessarily convexly independent since

• For each *i*, the points in $(P \oplus Q) \cap s_i$ are collinear

Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small $\varepsilon > 0$: $(x, y) \mapsto (x, y + \varepsilon x^2)$

Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small $\varepsilon > 0$:

Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small $\varepsilon > 0$:

We repeat the same construction as before, and then $(P \oplus Q) \cap C$ is convexly independent

Whole picture: illustration

Our result

Theorem (Eisenbrand, Pach, Rothvoß, Sopher '08)

$$M(m, n) = O(m^{2/3}n^{2/3} + m + n)$$

They only knew a linear lower bound:

$$M(m,n) = \Omega(m+n)$$

Our result

$$M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n)$$

Our result was independently found by Bílka, but only when m = n

Instead of two point sets, what if we are given k point sets?

Notation

For k finite point sets $P_1, \ldots, P_k \subseteq \mathbb{R}^2$

 $M(P_1, \ldots, P_k) = \max\{|S| : S \subseteq P_1 \oplus \cdots \oplus P_k \text{ conv'ly independent}\};$

For k natural numbers n_1, \ldots, n_k

$$M(n_1,\ldots,n_k) = \max\{M(P_1,\ldots,P_k): P_i \subseteq \mathbb{R}^2, |P_i| = n_i\}$$

Open problem 1

Determine $M(n_1, \ldots, n_k)$

• Our result:
$$M(n_1, n_2) = \Omega(n_1^{2/3} n_2^{2/3} + n_1 + n_2)$$

What about algorithms?

Open problem 2

Given
$$P, Q \subseteq \mathbb{R}^2$$
, $|P| = m, |Q| = n$,
how quickly can we find a largest convexly independent subset of
 $P \oplus Q$?

Remark

A largest convexly independent subset of a single point set P can be found in $O(n^3)$ time where |P| = n (Chvátal, Klincsek '80)

- Improving the O(n³) bound is a long-standing open problem (see Edelsbrunner's book '87)
- A naive application of Chvátal–Klincsek's algorithm just yields an O(m³n³)-time algorithm → Improve!

Open problem 1

Determine $M(n_1, \ldots, n_k)$

Open problem 2

Given $P, Q \subseteq \mathbb{R}^2$, |P| = m, |Q| = n, how quickly can we find a largest convexly independent subset of $P \oplus Q$?

Open problem 1

Determine $M(n_1, \ldots, n_k)$

Open problem 2

Given $P, Q \subseteq \mathbb{R}^2$, |P| = m, |Q| = n, how quickly can we find a largest convexly independent subset of $P \oplus Q$?

Bottom line

Surpringly, we know only little about Minkowski sums, even for planar point sets

Open problem 1

Determine $M(n_1, \ldots, n_k)$

Open problem 2

Given $P, Q \subseteq \mathbb{R}^2$, |P| = m, |Q| = n, how quickly can we find a largest convexly independent subset of $P \oplus Q$?

Bottom line

Surpringly, we know only little about Minkowski sums, even for planar point sets

[Thank you]