A tight lower bound for convexly independent subsets of the Minkowski sums of planar point sets

Kevin Buchin1 Radoslav Fulek2 Masashi Kiyomi3 Yoshio Okamoto4 Shin-ichi Tanigawa5 Csaba D. Tóth6

1TU Eindhoven 2EPFL 3JAIST 4Tokyo Tech 5Kyoto Univ 6Univ Calgary

Japan Conference on Computational Geometry and Graphs, Kanazawa, November 11, 2009
Convexly independent subset

$P \subseteq \mathbb{R}^2$ a finite point set

Definition: Convexly independent subset

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S.
Convexly independent subset

\(P \subseteq \mathbb{R}^2 \) a finite point set

Definition: Convexly independent subset

A set \(S \subseteq P \) is called **convexly independent** if every point in \(S \) is an extreme point of the convex hull of \(S \)
$P \subseteq \mathbb{R}^2$ a finite point set

Definition: Convexly independent subset

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S.
$P \subseteq \mathbb{R}^2$ a finite point set

Definition: Convexly independent subset

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S.

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth
A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S.

Convexly independent subset

$P \subseteq \mathbb{R}^2$ a finite point set
$P \subseteq \mathbb{R}^2$ a finite point set

Definition: Convexly independent subset

A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S.
A set $S \subseteq P$ is called **convexly independent** if every point in S is an extreme point of the convex hull of S.
Largest convexly independent subset

Notation

For a finite point set $P \subseteq \mathbb{R}^2$

$$M(P) = \max\{|S| : S \subseteq P \text{ convexly independent}\}$$
Notation

For a finite point set $P \subseteq \mathbb{R}^2$

$$M(P) = \max\{|S| : S \subseteq P \text{ convexly independent}\}$$
An extremal problem

Notation

For a finite point set $P \subseteq \mathbb{R}^2$

$$M(P) = \max\{|S| : S \subseteq P \text{ convexly independent}\};$$

For a natural number n

$$M(n) = \max\{M(P) : P \subseteq \mathbb{R}^2, |P| = n\}$$

Question

Determine $M(n)$
An extremal problem

Notation
For a finite point set $P \subseteq \mathbb{R}^2$

$$M(P) = \max\{|S| : S \subseteq P \text{ convexly independent}\}$$

For a natural number n

$$M(n) = \max\{M(P) : P \subseteq \mathbb{R}^2, |P| = n\}$$

Question and Answer
Determine $M(n)$

—Well, it’s easy: $M(n) = n$
More interesting extremal problem

Let $P \oplus Q$ be the Minkowski sum of P and Q, as defined in the next slide...

Notation

For two finite point sets $P, Q \subseteq \mathbb{R}^2$

$$M(P, Q) = \max\{|S| : S \subseteq P \oplus Q \text{ convexly independent}\};$$

For two natural numbers m, n

$$M(m, n) = \max\{M(P, Q) : P, Q \subseteq \mathbb{R}^2, |P| = m, |Q| = n\}$$

Question

Determine $M(m, n)$
$P, Q \subseteq \mathbb{R}^2$ finite point sets

Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{ p + q : p \in P, q \in Q \}$$

Remark

$|P \oplus Q| \leq |P| + |Q|$, and it's possible that $|P \oplus Q| < |P| + |Q|$.
Minkowski sums

$P, Q \subseteq \mathbb{R}^2$ finite point sets

Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{ p + q : p \in P, q \in Q \}$$
Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{p + q : p \in P, q \in Q\}$$
Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{ p + q : p \in P, q \in Q \}$$
Minkowski sums

$P, Q \subseteq \mathbb{R}^2$ finite point sets

Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{ p + q : p \in P, q \in Q \}$$
Minkowski sums

$P, Q \subseteq \mathbb{R}^2$ finite point sets

Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{p + q : p \in P, q \in Q\}$$
Minkowski sums

\[P, Q \subseteq \mathbb{R}^2 \text{ finite point sets} \]

Definition: Minkowski sum

The **Minkowski sum** of \(P \) and \(Q \) is

\[P \oplus Q = \{ p + q : p \in P, q \in Q \} \]

Remark

\[|P \oplus Q| \leq |P| + |Q|, \text{ and it's possible that } |P \oplus Q| < |P| + |Q| \]
Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{p + q : p \in P, q \in Q\}$$
$P, Q \subseteq \mathbb{R}^2$ finite point sets

Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{ p + q : p \in P, q \in Q \}$$
Minkowski sums

$P, Q \subseteq \mathbb{R}^2$ finite point sets

Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{ p + q : p \in P, q \in Q \}$$

Remark

$|P \oplus Q| \leq |P||Q|$, and it's possible that $|P \oplus Q| < |P||Q|$.
Minkowski sums

\(P, Q \subseteq \mathbb{R}^2 \) finite point sets

Definition: Minkowski sum

The **Minkowski sum** of \(P \) and \(Q \) is

\[
P \oplus Q = \{p + q : p \in P, q \in Q\}
\]

Remark

\[|P \oplus Q| \leq |P| \cdot |Q|, \text{ and it's possible that } |P \oplus Q| < |P| \cdot |Q| \]
Definition: Minkowski sum

The **Minkowski sum** of P and Q is

$$P \oplus Q = \{p + q : p \in P, q \in Q\}$$

Remark

$$|P \oplus Q| \leq |P||Q|$$, and it’s possible that $|P \oplus Q| < |P||Q|$
More interesting extremal problem

Notation

For two finite point sets $P, Q \subseteq \mathbb{R}^2$

$$M(P, Q) = M(P \oplus Q) = \max\{|S| : S \subseteq P \oplus Q \text{ convexly independent}\};$$

For two natural numbers m, n

$$M(m, n) = \max\{M(P, Q) : P, Q \subseteq \mathbb{R}^2, |P| = m, |Q| = n\}$$

Question

Determine $M(m, n)$

For example, is it true that $M(m, n) = mn$?
Example

\[|P \oplus Q| = 18 \]
Example

\[|P \oplus Q| = 18, \text{ while } M(P, Q) = M(P \oplus Q) = 12 \]
Theorem (Eisenbrand, Pach, Rothvoß, Sopher ’08)

\[M(m, n) = O\left(\frac{m^2}{3} \frac{n^2}{3} + m + n\right) \]

They only knew a linear lower bound:

\[M(m, n) = \Omega(m + n) \]
Our result

Theorem (Eisenbrand, Pach, Rothvoß, Sopher ’08)

\[M(m, n) = O(m^{2/3} n^{2/3} + m + n) \]

They only knew a linear lower bound:

\[M(m, n) = \Omega(m + n) \]

Our result

\[M(m, n) = \Omega(m^{2/3} n^{2/3} + m + n) \]

Our result was independently found by Bílka, but only when \(m = n \)
Our result (independently found by Bílka)

\[M(m, n) = \Omega\left(m^{2/3} n^{2/3} + m + n\right) \]
Our result (independently found by Bílka)

\[M(m, n) = \Omega\left(\frac{m^2}{3} \cdot\frac{n^2}{3} + m + n\right) \]

Contents

- Basic idea
- Fine tuning
Our result (independently found by Bílka)

\[M(m, n) = \Omega \left(m^{2/3} n^{2/3} + m + n \right) \]

Contents

- Basic idea
- Fine tuning

1. Look at a lower-bound example for the point-line incidence problem
2. Construct two point sets from such an example
3. Simulate the point-line incidences as a large convexly independent subset of the two point sets
Our result (independently found by Bílka)

\[M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n) \]

Contents

- Basic idea
- Fine tuning

1. **Look at a lower-bound example for the point-line incidence problem**

2. Construct two point sets from such an example

3. Simulate the point-line incidences as a large convexly independent subset of the two point sets
Point-line incidences

p a point, ℓ a line

Definition: Point-line incidence

p is **incident** to ℓ if $p \in \ell$

\[
I(P, L) = |\{(p, \ell) \in P \times L : p \in \ell\}|
\]

incident

not incident
p a point, ℓ a line

Definition: Point-line incidence

p is *incident* to ℓ if $p \in \ell$

P a set of points, L a set of lines

Notation

$$I(P, L) = \left| \{(p, \ell) \in P \times L : p \in \ell \} \right|$$
Point-line incidences

p a point, ℓ a line

Definition: Point-line incidence

p is **incident** to ℓ if $p \in \ell$

P a set of points, L a set of lines

Notation

\[
I(P, L) = |\{(p, \ell) \in P \times L : p \in \ell\}|
\]

\[
I(P, L) = 8
\]
Point-line incidences: Lower bound

Notation

\[I(P, L) = |\{(p, \ell) \in P \times L : p \in \ell\}| \]
\[I(m, n) = \max \{I(P, L) : |P| = m, |L| = n\} \]

Theorem (Erdős ’46)

\[I(m, n) = \Omega(m^{2/3} n^{2/3} + m + n) \]

Remark: This is tight (due to Szeméredi and Trotter ’83)
Our result (independently found by Bílka)

\[M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n) \]

Contents

- Basic idea
- Fine tuning

1. Look at a lower-bound example for the point-line incidence problem
2. Construct two point sets from such an example
3. Simulate the point-line incidences as a large convexly independent subset of the two point sets
Crucial idea

Take P and L such that $I(P, L) = \Omega(m^{2/3}n^{2/3} + m + n)$

Expected consequence

$M(P, Q) \geq |S| = \Omega(m^{2/3}n^{2/3} + m + n)$
How to construct $Q (1/3)$: Sort the lines by their slopes

$\ell_i =$ the ith line in the sorted list of the lines in L
How to construct $Q (2/3)$: Align the lines to form a curve

Consider a polygonal chain C consisting of n line segments s.t. the ith segment s_i has the same slope as ℓ_i
How to construct Q (2/3): Align the lines to form a curve

Consider a polygonal chain C consisting of n line segments s.t. the ith segment s_i has the same slope as ℓ_i
Consider a polygonal chain C consisting of n line segments s.t. the ith segment s_i has the same slope as ℓ_i.

- C is a convex chain (∵ the lines are sorted by their slopes)
How to construct Q (2/3): Align the lines to form a curve

Consider a polygonal chain C consisting of n line segments s.t. the ith segment s_i has the same slope as ℓ_i.

- C is a convex chain (∵ the lines are sorted by their slopes)
- Set the length of each segment sufficiently long
How to construct Q (3/3): Place a point for each line

Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

This is possible since each segment is long enough

In particular, $|(P \oplus \{q_i\}) \cap C| = |(P \cap \ell_i) \oplus \{q_i\}| = |P \cap \ell_i|$
How to construct Q (3/3): Place a point for each line

Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

- This is possible since each segment is long enough

- In particular, $|(P \oplus \{q_i\}) \cap C| = |(P \cap \ell_i) \oplus \{q_i\}| = |P \cap \ell_i|$
How to construct Q (3/3): Place a point for each line

Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

- This is possible since each segment is long enough

- In particular, $|(P \oplus \{q_i\}) \cap C| = |(P \cap \ell_i) \oplus \{q_i\}| = |P \cap \ell_i|$
How to construct Q (3/3): Place a point for each line

Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

- This is possible since each segment is long enough

- In particular, $|(P \oplus \{q_i\}) \cap C| = |(P \cap \ell_i) \oplus \{q_i\}| = |P \cap \ell_i|$
How to construct Q (3/3): Place a point for each line

- Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$
 - This is possible since each segment is long enough
- In particular, $|(P \oplus \{q_i\}) \cap C| = |(P \cap \ell_i) \oplus \{q_i\}| = |P \cap \ell_i|$
Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$
- This is possible since each segment is long enough
- In particular, $|(P \oplus \{q_i\}) \cap C| = |(P \cap \ell_i) \oplus \{q_i\}| = |P \cap \ell_i|$
How to construct Q (3/3): Place a point for each line

Place $Q = \{q_1, \ldots, q_n\}$ s.t. $(P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\}$

- This is possible since each segment is long enough

- In particular, $|(P \oplus \{q_i\}) \cap C| = |(P \cap \ell_i) \oplus \{q_i\}| = |P \cap \ell_i|$
Place \(Q = \{q_1, \ldots, q_n\} \) s.t. \((P \oplus \{q_i\}) \cap C = (P \cap \ell_i) \oplus \{q_i\} \)

- This is possible since each segment is long enough
- In particular, \(|(P \oplus \{q_i\}) \cap C| = |(P \cap \ell_i) \oplus \{q_i\}| = |P \cap \ell_i|\)
Our result (independently found by Bílka)

\[M(m, n) = \Omega\left(m^{2/3} n^{2/3} + m + n\right) \]

Contents

- Basic idea
- Fine tuning

1. Look at a lower-bound example for the point-line incidence problem
2. Construct two point sets from such an example
3. Simulate the point-line incidences as a large convexly independent subset of the two point sets
$(P \oplus Q) \cap C$ is our candidate for a large convexly independent subset.

\[I(P, L) = \sum_{i=1}^{n} |P \cap \ell_i| = \sum_{i=1}^{n} |(P_i \oplus \{q_i\}) \cap C| = |(P \oplus Q) \cap C| \]
$(P \oplus Q) \cap C$ is our candidate for a large convexly independent subset

\[I(P, L) = \sum_{i=1}^{n} |P \cap \ell_i| = \sum_{i=1}^{n} |(P_i \oplus \{q_i\}) \cap C| = |(P \oplus Q) \cap C| \]

\[\therefore |(P \oplus Q) \cap C| = I(P, L) = \Omega(m^{2/3} n^{2/3} + m + n) \]
\((P \oplus Q) \cap C\) is our candidate for a large convexly independent subset.

\[
I(P, L) = \sum_{i=1}^{n} |P \cap \ell_i| = \sum_{i=1}^{n} |(P_i \oplus \{q_i\}) \cap C| = |(P \oplus Q) \cap C| \\
\therefore |(P \oplus Q) \cap C| = I(P, L) = \Omega(m^{2/3} n^{2/3} + m + n)
\]

We take \((P \oplus Q) \cap C\) as our large subset.
Our result (independently found by Bílka)

\[M(m, n) = \Omega(m^{2/3} n^{2/3} + m + n) \]

Contents

- Basic idea
- **Fine tuning**
An issue to resolve

The set \((P \oplus Q) \cap C\) is not necessarily convexly independent since

- For each \(i\), the points in \((P \oplus Q) \cap s_i\) are collinear
Applying a nonlinear transformation — to resolve the issue

Transform \(P, L \) by the following map with suff. small \(\varepsilon > 0 \):

\[
(x, y) \quad \mapsto \quad (x, y + \varepsilon x^2)
\]
Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small $\varepsilon > 0$:

$$(x, y) \mapsto (x, y + \varepsilon x^2)$$

The line $y = a_i x + b_i$ \mapsto \begin{align*}
\text{The parabola } y &= \varepsilon x^2 + a_i x + b_i
\end{align*}
Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small $\varepsilon > 0$:

$$(x, y) \quad \mapsto \quad (x + \varepsilon x^2, y + \varepsilon x^2)$$

The line $y = a_i x + b_i$ \quad \mapsto \quad The parabola $y = \varepsilon x^2 + a_i x + b_i$

We repeat the same construction as before, and then $(P \oplus Q) \cap C$ is convexly independent
Convexly independent subsets of the Minkowski sums
Our result

Theorem (Eisenbrand, Pach, Rothvoß, Sopher '08)

\[M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n) \]

They only knew a linear lower bound:

\[M(m, n) = \Omega(m + n) \]

Our result

\[M(m, n) = \Omega(m^{2/3}n^{2/3} + m + n) \]

Our result was independently found by Bílka, but only when \(m = n \)
Open problem (1): More summands

Instead of two point sets, what if we are given k point sets?

Notation

For k finite point sets $P_1, \ldots, P_k \subseteq \mathbb{R}^2$

$$M(P_1, \ldots, P_k) = \max \{|S| : S \subseteq P_1 \oplus \cdots \oplus P_k \text{ conv'ly independent}\};$$

For k natural numbers n_1, \ldots, n_k

$$M(n_1, \ldots, n_k) = \max \{M(P_1, \ldots, P_k) : P_i \subseteq \mathbb{R}^2, |P_i| = n_i\}$$

Open problem 1

Determine $M(n_1, \ldots, n_k)$

- Our result: $M(n_1, n_2) = \Omega(n_1^{2/3} n_2^{2/3} + n_1 + n_2)$
What about algorithms?

Open problem 2

Given \(P, Q \subseteq \mathbb{R}^2 \), \(|P| = m\), \(|Q| = n\), how quickly can we find a largest convexly independent subset of \(P \oplus Q \)?

Remark

A largest convexly independent subset of a single point set \(P \) can be found in \(O(n^3) \) time where \(|P| = n\) \hspace{1em} (Chvátal, Klincsek ’80)

- Improving the \(O(n^3) \) bound is a long-standing open problem (see Edelsbrunner’s book ’87)
- A naive application of Chvátal–Klincsek’s algorithm just yields an \(O(m^3 n^3) \)-time algorithm \(\rightarrow \) Improve!
Open problem 1
Determine $M(n_1,\ldots,n_k)$

Open problem 2
Given $P, Q \subseteq \mathbb{R}^2$, $|P| = m$, $|Q| = n$,
how quickly can we find a largest convexly independent subset of
$P \oplus Q$?
Open problem 1
Determine $M(n_1, \ldots, n_k)$

Open problem 2
Given $P, Q \subseteq \mathbb{R}^2$, $|P| = m$, $|Q| = n$, how quickly can we find a largest convexly independent subset of $P \oplus Q$?

Bottom line
Surprisingly, we know only little about Minkowski sums, even for planar point sets
Open problem 1
Determine $M(n_1, \ldots, n_k)$

Open problem 2
Given $P, Q \subseteq \mathbb{R}^2$, $|P| = m$, $|Q| = n$,
how quickly can we find a largest convexly independent subset of $P \oplus Q$?

Bottom line
Surprisingly, we know only little about Minkowski sums, even for planar point sets.

[Thank you]