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Convexly independent subset

P ⊆ R2 a finite point set

Definition: Convexly independent subset

A set S ⊆ P is called convexly independent if
every point in S is an extreme point of the convex hull of S

Not Convexly independent
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Largest convexly independent subset

Notation

For a finite point set P ⊆ R2

M(P) = max{|S | : S ⊆ P convexly independent}

M(P) = 7
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An extremal problem

Notation

For a finite point set P ⊆ R2

M(P) = max{|S | : S ⊆ P convexly independent};

For a natural number n

M(n) = max{M(P) : P ⊆ R2, |P| = n}

Question and Answer

Determine M(n) —Well, it’s easy: M(n) = n
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More interesting extremal problem

Let P ⊕ Q be the Minkowski sum of P and Q,
as defined in the next slide...

Notation

For two finite point sets P,Q ⊆ R2

M(P,Q) = max{|S | : S ⊆ P ⊕ Q convexly independent};

For two natural numbers m, n

M(m, n) = max{M(P,Q) : P,Q ⊆ R2, |P| = m, |Q| = n}

Question

Determine M(m, n)

Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth Convexly independent subsets of the Minkowski sums



Minkowski sums

P,Q ⊆ R2 finite point sets

Definition: Minkowski sum

The Minkowski sum of P and Q is

P ⊕ Q = {p + q : p ∈ P, q ∈ Q}

Q

P
P ⊕ Q

Remark

|P ⊕ Q| ≤ |P||Q|, and it’s possible that |P ⊕ Q| < |P||Q|
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More interesting extremal problem

Notation

For two finite point sets P,Q ⊆ R2

M(P,Q) = M(P ⊕ Q)

= max{|S | : S ⊆ P ⊕ Q convexly independent};

For two natural numbers m, n

M(m, n) = max{M(P,Q) : P,Q ⊆ R2, |P| = m, |Q| = n}

Question

Determine M(m, n)

For example, is it true that M(m, n) = mn?
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Example

|P ⊕ Q| = 18

, while M(P,Q) = M(P ⊕ Q) = 12

P

Q

P ⊕ Q
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Known result

Theorem (Eisenbrand, Pach, Rothvoß, Sopher ’08)

M(m, n) = O(m2/3n2/3 + m + n)

They only knew a linear lower bound:

M(m, n) = Ω(m + n)
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Our result

Theorem (Eisenbrand, Pach, Rothvoß, Sopher ’08)

M(m, n) = O(m2/3n2/3 + m + n)

They only knew a linear lower bound:

M(m, n) = Ω(m + n)

Our result

M(m, n) = Ω(m2/3n2/3 + m + n)

Our result was independently found by B́ılka, but only when m = n
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Contents

Our result (independently found by B́ılka)

M(m, n) = Ω(m2/3n2/3 + m + n)

Contents

I Basic idea

I Fine tuning

1 Look at a lower-bound example for the point-line
incidence problem

2 Construct two point sets from such an example

3 Simulate the point-line incidences as a large convexly
independent subset of the two point sets
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Point-line incidences

p a point, ` a line

Definition: Point-line incidence

p is incident to ` if p ∈ `

P a set of points, L a set of lines

Notation

I (P, L) = |{(p, `) ∈ P × L : p ∈ `}|

incident not incident

I (P, L) = 8
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Definition: Point-line incidence

p is incident to ` if p ∈ `

P a set of points, L a set of lines

Notation

I (P, L) = |{(p, `) ∈ P × L : p ∈ `}|

1
2

1

1

3

incident not incident

I (P, L) = 8
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Point-line incidences: Lower bound

Notation

I (P, L) = |{(p, `) ∈ P × L : p ∈ `}|
I (m, n) = max{I (P, L) : |P| = m, |L| = n}

Theorem (Erdős ’46)

I (m, n) = Ω(m2/3n2/3 + m + n)

Remark: This is tight (due to Szeméredi and Trotter ’83)
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Crucial idea

Take P and L such that I (P, L) = Ω(m2/3n2/3 + m + n)

P P and L L

Crucial idea

Set up a point qi ∈ Q for each line `i ∈ L so that
P ⊕ Q has a convexly independent subset S satisfying

p ∈ `i ⇐⇒ p + qi ∈ S

Expected consequence

M(P,Q) ≥ |S | = Ω(m2/3n2/3 + m + n)
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How to construct Q (1/3): Sort the lines by their slopes

P P and L L

`1 `2 `3 `4 `5 `6

I `i = the ith line in the sorted list of the lines in L
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How to construct Q (2/3): Align the lines to form a curve

`1 `2 `3 `4 `5 `6

I Consider a polygonal chain C consisting of n line segments
s.t. the ith segment si has the same slope as `i

I C is a convex chain (∵ the lines are sorted by their slopes)

I Set the length of each segment sufficiently long
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How to construct Q (3/3): Place a point for each line

s1

s2

s3

s4

s5

s6

C

P and L

I Place Q = {q1, . . . , qn} s.t. (P ⊕ {qi})∩ C = (P ∩ `i )⊕ {qi}
I This is possible since each segment is long enough

I In particular, |(P ⊕ {qi}) ∩ C | = |(P ∩ `i )⊕ {qi}| = |P ∩ `i |
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Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, & Tóth Convexly independent subsets of the Minkowski sums



How to construct Q (3/3): Place a point for each line

s1

s2

s3

s4

s5

s6

C

P and L

Q

q1

q2
q3 q4

q5

q6

I Place Q = {q1, . . . , qn} s.t. (P ⊕ {qi})∩ C = (P ∩ `i )⊕ {qi}
I This is possible since each segment is long enough

I In particular, |(P ⊕ {qi}) ∩ C | = |(P ∩ `i )⊕ {qi}| = |P ∩ `i |
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(P ⊕ Q) ∩ C is our candidate for a large convexly independent subset

s1

s2

s3

s4

s5

s6

C

P and L

Q

q1

q2
q3 q4

q5

q6

I I (P, L) =
n∑

i=1

|P ∩ `i | =
n∑

i=1

|(Pi ⊕{qi})∩C | = |(P ⊕Q)∩C |

I ∴ |(P ⊕ Q) ∩ C | = I (P, L) = Ω(m2/3n2/3 + m + n)

I We take (P ⊕ Q) ∩ C as our large subset
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(P ⊕ Q) ∩ C is our candidate for a large convexly independent subset
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Contents

Our result (independently found by B́ılka)

M(m, n) = Ω(m2/3n2/3 + m + n)

Contents

I Basic idea

I Fine tuning
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An issue to resolve
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Issue

The set (P ⊕Q) ∩ C is not necessarily convexly independent since

I For each i , the points in (P ⊕ Q) ∩ si are collinear
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Applying a nonlinear transformation — to resolve the issue

Transform P, L by the following map with suff. small ε > 0:

(x , y) 7→ (x , y + εx2)
The line y = aix + bi 7→ The parabola y = εx2 + aix + bi
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We repeat the same construction as before,
and then (P ⊕ Q) ∩ C is convexly independent
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Whole picture: illustration
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Our result

Theorem (Eisenbrand, Pach, Rothvoß, Sopher ’08)

M(m, n) = O(m2/3n2/3 + m + n)

They only knew a linear lower bound:

M(m, n) = Ω(m + n)

Our result

M(m, n) = Ω(m2/3n2/3 + m + n)

Our result was independently found by B́ılka, but only when m = n
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Open problem (1): More summands

Instead of two point sets, what if we are given k point sets?

Notation

For k finite point sets P1, . . . ,Pk ⊆ R2

M(P1, . . . ,Pk) = max{|S | : S ⊆ P1⊕· · ·⊕Pk conv’ly independent};

For k natural numbers n1, . . . , nk

M(n1, . . . , nk) = max{M(P1, . . . ,Pk) : Pi ⊆ R2, |Pi | = ni}

Open problem 1

Determine M(n1, . . . , nk)

I Our result: M(n1, n2) = Ω(n
2/3
1 n

2/3
2 + n1 + n2)
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Open problem (2): Algorithmic issue

What about algorithms?

Open problem 2

Given P,Q ⊆ R2, |P| = m, |Q| = n,
how quickly can we find a largest convexly independent subset of
P ⊕ Q?

Remark

A largest convexly independent subset of a single point set P can
be found in O(n3) time where |P| = n (Chvátal, Klincsek ’80)

I Improving the O(n3) bound is a long-standing open problem
(see Edelsbrunner’s book ’87)

I A naive application of Chvátal–Klincsek’s algorithm just yields
an O(m3n3)-time algorithm −→ Improve!
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The final slide

Open problem 1

Determine M(n1, . . . , nk)

Open problem 2

Given P,Q ⊆ R2, |P| = m, |Q| = n,
how quickly can we find a largest convexly independent subset of
P ⊕ Q?

Bottom line

Surpringly, we know only little about Minkowski sums, even for
planar point sets

[Thank you]
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