Fast Exponential-Time Algorithms for the Forest Counting
and the Tutte Polynomial Computation in Graph Classes

Heidi Gebauer Yoshio Okamotb

Abstract

We prove #P-completeness for counting the number of forests in regular graphs and chordal graphs. We also
present algorithms for this problem, running ifi(@.8494 ™) time for 3-regular graphs, and®1.9706™) time

for unit interval graphs, where is the number of edges in the graph ant-@tation ignores a polynomial

factor. The algorithms can be generalized to the Tutte polynomial computation.

Keywords: chordal graph; exponential-time algorithm; forest; regular graph; Tutte polynomial; unit interval
graph.

1991 Mathematics Subject Classification: 22E46, 53C35, 57520

1 Introduction

Counting is a fundamental task in combinatorics, and algorithmic aspects of counting problems have also been
studied. One of the most interesting phenomena around algorithmic counting is that we can count the number
of spanning trees in a graph in polynomial time [8] while it is #P-complete to count the number of forests in a
graph, even in a bipartite planar graph [13]. These two counting problems fit into a general concept of the Tutte
polynomial of a graph (or of a matroid), and this connection yields a fruitful development in algorithmic counting.

The #P-complete counting problems have been tackled mainly via two different approaches. One is the approx-
imate approach, and the other is the exact approach. In the approximate method, we try to quickly approximate
the desired value within a certain guarantee by, for example, a Markov chain Monte Carlo method. See Jerrum’s
book [7]. In the exact approach, we stick to the exact correct value, and try to reduce the running time as much
as possible. When a given problem is #P-complete, we cannot expect the algorithm to run in polynomial time.
Hence, we try to make the exponent of the exponential running time closer to constant, or try to make the base
closer tol.

This paper takes the latter exact approach. First we prove that the forest counting problem is #P-complete for
regular graphs and chordal graphs. Then, we design exact algorithms for the problem when the input graphs are
restricted to the regular graphs or to the unit interval graphs. The running time of our algorithrfli8494™)
time for 3-regular graphs, and*®1.9706™) for unit interval graphs, whera. is the number of edges in the graph
and O -notation ignores a polynomial factor. It has to be noted here that the algorithms can be generalized to the
Tutte polynomial computation.

Note that for general graphs the contraction-deletion formula for the number of forests yields an algorithm
running in O (min{2™, 1.6181™*™1) time, wheren andm represent the numbers of vertices and edges in a given
graph (refer to a book by Wilf [16] where he obtained this bound for the chromatic polynomial but the idea can
be applied to any quantity that is governed by the contraction-deletion formulaj-régular graphs it holds that
m = 3n/2, and hence the latter expression in this bound give81™*™ = 1.61812™/3+™m — 1 6181°™/3 >
2.2301™. This means that our algorithm with running tilhe494™ is much faster than a direct application of
the contraction-deletion formula.

Related Work There are several papers studying the forest counting problem (or the Tutte polynomial compu-
tation, more generally) via the exact approach. The basis is the hardness result due to Jaeger, Vertigan & Welsh [6]
showing that counting the number of forests in a graph is #P-complete. Vertigan [12] proved that the problem is

*Institute of Theoretical Computer Science, ETH Zurich, Zurich, CH-8092, Switzerland
fDepartment of Information and Computer Sciences, Toyohashi University of Technology, Hibarigaoka 11, Tempaku, Toyohashi, Aichi,
441-8580, Japan

#P-complete for planar graphs, and Vertigan & Welsh [13] proved that it is #P-complete even for bipartite planar
graphs.

On the exact algorithmic side, not much is known for the forest counting problem. Andrzejak [1] and Noble [9]
independently obtained a polynomial-time algorithm for the forest counting problem in graphs of bounded tree-
width. To the authors’ knowledge, this is the only non-trivial case where a polynomial-time solution is known. As
mentioned above, for general graphs the contraction-deletion formula for the number of forests yields an algorithm
running in O (min{2™,1.6181™*™1) time, wheren andm represent the numbers of vertices and edges in a given
graph throughout this article. GEnez, Hlireny & Noy [4] gave an algorithm in graphs of bounded clique-width.
Their algorithm runs in ex®(n'~1/(x+2))) time wherek is the clique-width of a given graph. Furthermore,
Sekine, Imai & Tani [10] gave an exP(,/n))-time algorithm in planar graphs.

As for the approximation, Annan [2] gave a fully polynomial-time approximation scheme for the forest count-
ing in dense graphs.

For some counting problems in regular graphs, Vadhan [11] gave #P-completeness results by utilizing the
so-called interpolation technique and Fibonacci technique. These techniques are also used in this paper.

Preliminaries In this article, all graphs are finite and undirected. Get= (V,E) be a graph. Theegreeof a
vertexv € Vin G is the number of edges incident¥pand denoted by dedv). A graph isk-regular if every
vertex of it has degrek. A graph isplanarif it can be drawn on the plane without any edge crossing. A graph
is bipartite if the vertex set can be partitioned into two parts such that every edge has the endpoints in both parts.
Other terms on graphs will be defined when they are first used, or can be found in any textbook on graphs like
West [15].

A forestof a graphG = (V, E) is a subseE C E which embraces no cycle. Our goal is to count the number of
forests in a given graph. The following is our problem template, where a class of graphs is denioted by

Problem: T-#FORESTS
Input: a graphG € T;
Output: the number of forests .

We writef(n) = O*(g(n)) if f(n) = O(g(n)p(n)) for some constant-degree polynomigi). Namely, in
the O'-notation we ignore the polynomial factor.

Basic terminology on complexity theory like #P-completeness can be found in the book by Garey & John-
son [3].

2 Intractability

In this section, we concentrate on the intractability results. We prove #P-completene#sORESTS for
variousr.

2.1 Bounded-degree graphs

Denote by3A the class of all graphs of maximum degree at most thre@8Myhe class of all bipartite planar
graphs, and bgABP the class of all bipartite planar graphs of maximum degree at most three. We prove the
following.

Theorem 2.1. The problenBABP-#FORESTS is #P-complete.
This theorem immediately gives the following corollary.
Corollary 2.2. The problemBA-#FORESTS is #P-complete.

To prove the theorem, we us®-#FORESTS, which is shown to be #P-complete by Vertigan & Welsh [13].
We first prove that the following variant BABP-#FORESTS is #P-complete.

Problem: T-#FORESTS with inclusive edges
Input: agraphG = (V,E) € I', and an edge sé&tC E;
Output: the number of forests i which containsS.

Lemma 2.3. The problenBABP-#FORESTS with inclusive edges is #P-complete.

Figure 1: Replacing a vertex with a path (a local picture).

G G2

Figure 2: Replacing edges with paths. The thick edges beloSg &nd each of them is replaced by a path of
length three inG,.

Proof. We reduceBP-#FORESTS to 3ABP-#FORESTS with inclusive edges. LeE = (V,E) be a bipartite
planar graph given as an input fBP-#FORESTS. Without loss of generality, we may assume tlkahas no
vertex of degree zero. We fix a plane embedding @ivhich can be obtained in linear time). Frasnwe construct
another grapl&’ which is also bipartite planar and furthermore whose maximum degree is at most three. First we
replace each vertexe V with a pathP,, of length2 deg; (v) — 2, and the path is embedded as if it surrounded the
vertexv. The neighbors of are joined to every second vertexRf in the same circular order. See Figure 1. We
perform this operation for all vertices &f, andG’ is the resulting graph. Note th&t’ is bipartite planar sinc&
is so, and that the maximum degree®@fis at most three.

SetS to be the set of edges i, for all v € V. Then we can find a natural bijection from the family of forests
in G to the family of forests irG’ which includeS. Thus the lemma is proved. O

Proof of Theorem 2.1We reduce3ABP-#ORESTS with inclusive edges tGABP-#FORESTS. Let G =
(V,E) be a bipartite planar graph with maximum degree at most threesaqdt. Lets = |S|, and for each
¢ e{1,...,s+ 1} we construct a graps, = (V,, E¢) from G by replacing each edge € S with a pathP, of
length2{ — 1. EspeciallyG; is isomorphic toG. Figure 2 shows an example foe= 2.

Fix £ € {1,...,s + 1}. We define a map from the family of forests @y to the family of forests inG as
follows: We map a forest, C E; of G, to a forestF C E of G if and only if

e whene € SN F, all edges oP. belong toF,
e whene € S\ F, at least one edge & does not belong té,, and
e whene ¢ S, e belongs tdF, if and only if e belongs toF.

We can observe that every fordsin G is the image of22¢~1 — 1)IS\Fl forests inG,. Therefore the number of
forests inG, is equal to

Z(zzeq _)IS\FI i Z (22T 1)t = i aix,
i=0

F i=0 F:S\F|=i
wherex, = 22" — 1 anda; is the number of forestg in G such thatS \ F| = i. Sincex, # x,. for all
6L e{1,...,s+ 1}, £ # L', by knowing the number of forests @&, for all £ € {1,...,s 4+ 1} we can compute
ao, ..., as in polynomial time. Sincen, is the number of forests iG which containS, this completes the
reduction. O

Ce

o -
G G’

Figure 3: Attaching a graph to a degree-one vertex and a degree-two vertex.

2.2 Regular graphs
Denote bykREG the class ok-regular graphs, and Y REGP the class ok-regular planar graphs.
Theorem 2.4. The problenBREGP-#FORESTS is #P-complete.

Proof. We reducaABP-#FORESTS to 3REGP-#FORESTS. Let G = (V, E) be a bipartite planar graph with
maximum degree at most three. Without loss of generality, we may assume bzt no vertex of degree zero.

We construct 8-regular planar graps’ from G as follows. We attach the graph shown in Figure 3 (top) to each
vertex of degree one, and attach the graph shown in Figure 3 (bottom) to each vertex of degree two. We can see
that the resulting grapt’ is 3-regular and still planar. Denote by, andn, the number of degree-one vertices

and degree-two vertices i@, respectively. Then the number of forestsdhis equal to the number of forests in

G timesc]''c}? wherec; andc, are the numbers of forests in the appended graphs (in Figure 3), thus constants.
This completes our reduction. O

For generak > 3, we similarly have the following theorem.
Theorem 2.5. For everyk > 3, the problemkREG-#FORESTS is #P-complete.
The proof is a bit more involved, and we have to distinguish the cases according to the phrity of

Proof of Theorem 2.5 for odkl. We reduc8REG-#FORESTS to kREG-#FORESTS. Let G = (V, E) be a3-
regular graph. We constructaregular graphG’ from G by attaching the graph shown in Figure 4 to each vertex
of G. Namely, it is a graph havingk — 3)/2 copies ofK,_, ; (a complete graph ok+1 vertices with one edge
removed) and another vertex with edges tolthe 3 vertices on the copies which were incident to the removed
edges. Then, we can see that the resulting g@pis k-regular, and the number of forests@ is equal to the
number of forests i timesc™, wherec is the number of forests in the appended graph which only depenids on
This completes our reduction. O

Whenk is even, we produce a sequence of reductions. First we consider the following problem.

Problem: T-#FORESTS with exclusive edges
Input: a graphG = (V,E) € T, and an edge sé&tC E;
Output: the number of forests iG which do not contain any edges$n

Lemma 2.6. For evenk > 4, the problenkREG-#FORESTS with exclusive edges is #P-complete.

Proof. We reduce(k—1)REG-#FORESTS to kREG-#FORESTS with exclusive edges. Note that sinkds
even and at least fou—1 is odd and at least three. Hen¢ke;-1)REG-#FORESTS is #P-complete by Theorem
2.5.

Let G = (V,E) be a(k—1)-regular graph. Sinc&—1 is odd, G has even number of vertices. Take an
arbitrary partition ofV into [V|/2 parts of size two, and for each pdtt;,vi}, 1 € {1,...,|V|/2}, we attach
an edgee; = {ui,vi} to G. The resulting graplG’ = (V,EU{e;: 1 < 1 < |V|/2}) is k-regular. We set
S={ei:i1e€{l,...,|V|/2}}, the set of attached edges. Then we may observe that the set of for€sis thie set
of forests of G’ which contain no edge &. This completes the reduction. O

G G’

Figure 4: Attaching a graph to a degree-three vertex. Kegrg represents a complete graphlonl vertices with
one edge removed, and two edges leave &gch from the vertices of degrde— 1, i.e., the vertices incident to
the removed edge.

Next we consider the following auxiliary problem. Denote (Byk)REG the class of graphs in which every
vertex has degrezor k.

Lemma 2.7. For evenk > 4, the problem 2, k)REG-#FORESTS is #P-complete.

Proof. We reducekREG-#FORESTS with exclusive edges t62, k)REG-#FORESTS. LetG = (V,E) be a
k-regular graph, wherke > 4 is even, ané C E. Lets = |S|, and for eacll € {1,...,s+ 1} we construct a graph
G¢ = (Vi, E¢) from G by replacing each edgec< S with a pathP. of length{. We can see that every vertex of
G¢ has degreé or k.

Fix £ € {1,...,s + 1} and we define a map from the family of forests@np to the family of forests irG as
follows: We map a forest; C E; of G, to a forestt C E of G if and only if

e whene € SNF, all edges oP. belong toF,,
e whene € S\ F, at least one edge & does not belong té,,
e whene ¢ S, e belongs tdr, if and only if e belongs toF.

As in the proof of Lemma 2.3, we can observe that every fdr@isiG is the image of 2¢ — 1)/5\Fl forests inG,.
Therefore, the number of forests@y is equal to

Z(ZZ_U\S\F\:i > (22—1)i:iai><%,
i=0

F i=0 F: |S\F|=i

wherex, = 2' — 1 and a; is the number of forest§ in G such that/S \ F| = i. Sincex, # x,. for all
0,0 €{1,...,s+1}, by knowing the numbers of forests@y forall £ € {1,...,s+1}we can computey, ..., as
in polynomial time. Sincex; is the number of forests i@ which excludeS, this completes the reduction. [

We are now ready to prove Theorem 2.5 for eken 4.

Proof of Theorem 2.5 for evén> 4. We reducg2, k)REG-#FORESTS to kREG-#FORESTS whenk > 4 is

even. LetG = (V, E) be a graph whose vertices are of degree twk. Ve construct &-regular graptG’ from G

by attaching the graph shown in Figure 5 to each degree-two veri@x iamely, it is a graph havingc — 2)/2

copies ofK,, ; (a complete graph ok+1 vertices with one edge removed) and another vertex with edges to the

k — 2 vertices on the copies which were incident to the removed edges. Then we can see that the resulting graph
G’ is k-regular and the number of forests@1 is equal to the number of forests @timesc™2, wherec is the

number of forests in the appended graph ands the number of degree-two vertices. Note thaepends ork

only. O

Note that the resulting grap®’ in the proof of Theorem 2.5 is not planar unléss- 3.

G G’

Figure 5: Attaching a graph to a degree-two vertex. Hgfe, represents a complete graphlonl vertices with
one edge removed, and two edges leave &gch from the vertices of degrde— 1, i.e., the vertices incident to

the removed edge.
G Gz

Figure 6: Joining paths of length two.

2.3 Chordal graphs
A graphG is chordalif every induced cycle is of length three. Denote@{ORDAL the class of chordal graphs.
Theorem 2.8. The problemCHORDAL-#FORESTS is #P-complete.
To prove Theorem 2.8, we use the following lemma about exclusive edges.
Lemma 2.9. The problenCHORDAL-#FORESTS with exclusive edges is #P-complete.

Proof. We use any graph clagssuch thal-#FORESTS is #P-complete. For example, $e= BP. From a given
graphG = (V,E) € T, we construct a chordal grah’ = (V/,E’) by V/ = V andE’ = (}). Namely,G’ is a
complete graph ol. SetS = (‘Z/) \ E. Then, we can see that the forest<have a one-to-one correspondence
to the forests ofs’ which excludeS. O

Now comes the main part of the proof.

Proof of Theorem 2.8We reduceCHORDAL-#FORESTS with exclusive edges t€ HORDAL-#FORESTS.
Let G = (V,E) be a chordal graph an®l C E. Lets = |S|, and for eacH € {0,...,s} we construct a graph
Gy = (Vi, Ey) from G by joining £ paths of length two, in parallel, to the endpoints of every eelge S.
Especially,G is isomorphic toG. Figure 6 shows an example foe 2.

Fix £ € {0,...,s}, and denote bP!, P2, ..., P! the newly added paths i@, between the endpoints ef We
define a map from the family of forests @y to the family of forests irG as follows: We map a fore$y C E, of
G, to aforestr C E of G if and only if

e whene € SNF, F, contains one of the paths amoR}, . .., P¢ completely or containe,
e whene € S\ F, F, contains none of the paths amoR}, . .., P completely or does not contaén and

e whene ¢ S, e belongs tdr, if and only if e belongs tdr.

We can observe that every fordsin G is the image of(3¢ + ¢3¢ 1)ISTFI3US\FI forests inG,. Therefore the
number of forests i, is equal to

Z(3Z+e3€ 1 \SOF|3€|S\F\ _Z Z 3€+£3E 1 1385 i)

i=0 F: |SNF|=1

=3“Z Y (+e3) S“Zalx@,

i=0 F: |SNF|=i

wherex; = 1+ (/3 and a; is the number of forests in G such thatS N F| = 1. Sincex, # x¢ for all
£,2" €{0,...,s},£+# ', by knowing the number of forests @& for all £ € {0, ..., s} we can computey, ..., das
in polynomial time. Sincex is the number of forests i which excludeS, this completes the reduction. [

Note that the proof actually shows that counting the number of forests in a split graph is #P-complete, where a
graph issplit if the vertex set can be partitioned into a clique and an independent set. Derfefd blythe class
of split graphs.

Theorem 2.10. The problenSPLIT-#FORESTS is #P-complete.

Proof. The proof of Lemma 2.9 shows that it is #P-complete to count the number of forests in a complete graph
which do not contain any edges in a given edge subsa@herefore, the given graph in the proof of Theorem

2.8 can be restricted to a complete graph, and then we can see that the constructe@ graph& s are all split
graphs. O

3 Algorithms

In this section, we concentrate on faster (exponential-time) algorithms for the forest counting problem. The trivial
algorithm runs in O(2™) time, and the goal is to beat this bound. Throughout the seati@mdm denote the
numbers of vertices and edges in a given graph respectively.

Denote byF(G) the family of forests inG. To state a fundamental property|3f(G)|, we need to introduce
the deletion and the contraction of an edge in a graph. For a giaph(V, E) and an edge € E, thedeletion
of e from G is an operation to obtain another graph, denote&ky, where the vertex set @\e is the same as
that of G and the edge set @\e is E \ {e}. Thecontractionof e in G is an operation to obtain another graph,
denoted byG/e in the following way: we first remove the edgeand then identify the endpoints ef Note that
contraction may introduce a loop or multiple edges in the graph. Here, an edge is dalipdfdts endpoints are
identical. As a basic property GF (G)|, the following so-called contraction-deletion formula is well-known (see
also Section 4);

1 if G has no edge
[F(G) = < | F(G\e)l if an edgee is a loop ofG,
|F(G/e)l 4+ |F(G\e)| ifanedgeeis nota loop ofG.
As mentioned in the introduction, the direct application of this formula will yield the running time bound

O*(min(2™,1.6181™*™}). In the sequel, we give improved algorithms for regular graphs, bounded-degree
graphs, and unit interval graphs.

3.1 Regular graphs and bounded-degree graphs

To illustrate the general strategy, we start with an algorithmr3REG-#FORESTS (i.e., counting the number of
forests in3-regular graphs).

Theorem 3.1. We can count the number of forests id-aegular graph withm edges in ©(1.8494™) time.

Proof. The idea for our algorithm is as follows. Lét= (V, E) be a giverB-regular graph. Each vertexof G is
incident to exactly three edges, say, ez, e3. Then by the contraction-deletion formula, we have

[F(G) =IF(G/e1/ez/e3)l +F(G/er/ex\e3)| + | F(G/er\ezr/e3)l + [F(G/er\e2\e3)l
+[F(G\er/ez/e3)l +[F(G\er/ex\e3)| + [F(G\er\ez/e3)| + [F(G\er\ez\e3).

The central observation is that the four gragh&\ez\es3, G\ej/e2\e3, G\er\e2/e3 andG\ej\ez\e3 are all
isomorphic (up to the existence of isolated vertices). Therefore, the formula above may be written in the following
way:

[F(G) =IF(G/e1/ez/e3)l + F(G/er/ex\e3)| +|F(G/er\ez/e3)| + |F(G\ei/ez/e3)l
+4F(G\er\ez\e3)l.

Note that in each of the grapl@&/e;/e2/e3, G/e1/e2\e3, G/e1\e2/e3, G\ej/ez/e; andG\e;\ez2\e3 on the
right-hand side the number of edges is exasntly- 3. Thus, from the given instance withvertices andn edges,
we obtained five subinstances with— 1 vertices andn — 3 edges.

The discussion above leads to the following algorithm.

1. Choose an arbitrary maximal independentiseft G.

2. Output the value returned by the callAqG, I).

Below is a description oA (G, I), which outputs the number of forests @ with the information thaf is an
independent set db.

1. If Tis non-empty,

(a) choose an arbitrary vertexc 1. Leteq, e, e3 be the edges incident 1o

(b) Output the sum of the values returned BYG/e;/ex/es, I \ {v}), A(G/e1/ez\es, I \ {v}),
A(G/er\ez/es, I\{v}), A(G\ej/ez/es, I\{v}) and4 times the value returned By(G\ei\e2\e3, I\
{v}).

2. Otherwise, computgF(G)| by the contraction-deletion formula and output it.

Note that in the call teA (G, I) (at any point) the vertex is incident to three edges sintés an independent
set of G (at any point). Therefore, by the discussion above, the algorithm correctly outputs the number of forests
in a given3-regular graph.

We now bound the running time of our algorithm. The number of subinstances we get in the end (hamely,
subinstance$G, I) with I =) is 5/, and each of such subinstance has |I| vertices andn — 3|I| edges. By
the contraction-deletion formula, the number of forests in each subinstance can be computed in

O* (min[2m =311 '1.6181(n—IIN+(m=3I111)
time. Note thath = 2m/3 for 3-regular graphs, and so
161811 +(m=3I11) — 1 g1871(5m/3=4I11) 2 2301™ /6.85531.

Therefore, mifz™ 3111 1,6181(n—ID+(m=3[1)) — 2m=3I1l 'and hence, the total running time of the algorithm is
bounded from above by @51 x 2m=3/1) = O*(2™ x (5/8)!1]).
Thus, we need a lower bound for the size of a maximal independent set.

Lemma 3.2. Every maximal independent set of a graph of maximum degreé@h n vertices contains at least
n/(k + 1) vertices.

Proof. Let G = (V, E) be a graph of maximum degr&eandI C V be an arbitrary maximal independent seGof
We count the number of edges betwdeandV \ I in two ways. On one hand, each vertexla$ incident to at
mostk edges. Therefore, the number of edges betvieamdV \ I is at mostk|I|. On the other hand, every vertex
of V\ I has at least one of its neighborslisincel is maximal. Therefore, the number of edges betwieand
V\ lis atleastV \ I|. Thus, we obtairk|I| > [V \ I| = n — |I|. Thisresultsinl] > n/(k + 1). O

Consequently, the running time of our algorithm is bounded b2® x (5/8)!l) < O*(2™ x (5/8)™"/4) =
O*(2™ x (5/8)™/¢) = O*(1.8494™). This completes the proof. O

For k-regular graph& we may obtain a similar algorithm. To this end, we again take an arbitrary maximal
independent sdt of a givenk-regular graphG. Each vertex of 1 is incident to exactlyk edges, and they give
rise to2* subinstances from the contraction-deletion formula, but we can sek thatof them are isomorphic.
Therefore, the number of subinstances we get in the efzkis- k)!!l, and each of these instances mas- |]|
vertices andn — k|I| edges. Thus, by the same argument as Theorem 3.1, we obtain the running time bound

O*(2™ x ((2* —k)/2%)1). By Lemma 3.2 we gef| > 5 = 35, and hence obtain the following theorem.

Theorem 3.3. For anyk > 2, we can count the number of forests ik-aegular graph in ©((2(1— 2%) RTEFT) ™)
time.

Note that2REG-#FORESTS can be solved in polynomial time (not by the algorithm above) since every
connected component of2aregular graph is a cycle.

For graphs of maximum degree at mésthe same algorithm works and the worst-case running time is also
the same.

Theorem 3.4. For anyk > 2, we can count the number of forests in a graph of maximum dégie®*((2(1 —
J) ETETT ™) time.
Proof. The algorithm is exactly the same as oursKeregular graphs: we choose an arbitrary maximal indepen-
dent sefl and from each vertex dfwe obtain a number of subinstances. Then, compute the number of forests in
every subinstance we get in the end.

Foreach €{0,...,k}, letn; denote the number of verticeslinf degree.. Then, the number of subinstances
we get in the end isﬂlfzo(z'1 — i)™, and each of these instances mas- Z]f:o in; edges. Therefore, up to a
polynomial factor, the running time is bounded by

k k i AT k i . ni k . ng
L yni o gm-TEping _om I lio(ZT =™ 2Py 4
[T —im xam Brem —pmiiee e~ [T (55—) =2"[T(1- 5
i=0 i=0 i=0
k ny Sk am 1]
k K\ &= k
gzmH(1—Zk> :zm<1—2k) :2“(1—2k>

i=0

n 2m
. K\TT K\ Ktk+TT
(15T e (12

Here in the second last inequality we applied Lemma 3.2 and in the last inequality we used the faat than
(a consequence of double-counting). O

3.2 Unitinterval graphs

Theorem 2.8 states that counting the number of forests in a chordal graph is #P-complete. The main goal of this
section should have been to give a faster (exponential-time) algorithm for chordal graphs, but so far attempts were
not that successful. Therefore, we focus on a subclass of the chordal graphs, namely, the class of unit interval
graphs.

A graphG = (V, E) is aunit interval graphif there exist a familyZ = {1, ..., I} of unit closed intervals on
a line and a bijectionp: V — 7 such thafu, v} € E if and only if {(u) N (v) # @. For a unit interval graph
G, the setZ of unit intervals as in the definition is called thait interval representationf G. We can determine
whether a given graph is a unit interval graph or not, and if so generate a unit interval representation of the graph
in linear time [5]. Therefore, for our purpose, we may assume that a unit interval graph is given through a unit
interval representatiof of it.

The main result of this section is as follows.

Theorem 3.5. The number of forests in a unit interval graph can be counted i .@706™) time.

Proof. Let G = (V, E) be a unit interval graph and fix a unit interval representafiafi it with the corresponding
bijection. First of all, we may assume thét is 2-connected (namely it is connected and the removal of any
vertex does not make it disconnected) since the number of forests in a graph is the product of the numbers of
forests of all2-connected components (i.e., maxinZatonnected subgraphs). Then, we make the following
preprocessing. We look at the leftmost interi/ain Z, and collect the intervals iff which intersecti;. Denote

by C; the vertices inG corresponding to the collected intervals. Now, we dispose the collected intervalg from

and look for the leftmost intervdl in the remainingZ, collecting the intervals i which intersect,. Denote

by C, the vertices inG corresponding to the collected intervals. We dispose the collected intervalgfrand

proceed along the same way. Thus, we obtain a parfi@ign. . . , Ci} of the vertex seV, which we call theclique

partition of G (with respect tdZ), satisfying the following properties.

1. Foreach € {1,...,k}, the setC; is a clique ofG.

2. Foreachi,j € {1,...,k},i < j, there exists an edge betwe€pandC; ifand only ifj =1+ 1.

Note that the clique partition db can be obtained in linear time [5].

An edgee € E is callednon-bridgingif it connects two vertices of somg;. Otherwise, the edge kxidging.
From the construction and the assumption ta 2-connected, we may observe th@t| > 3 for eachi €
{1,...,k—1},and|Cx| > 1. The following is an important lemma for our algorithm.

Lemma 3.6. Under the assumption above, the number of bridging edgésigat most2zm/3, wherem is the
number of edges if.

Proof. Letn; be the size ofC;. Whenk = 1, we have no bridging edge; Thus the lemma holds.

To illustrate the general case, let us first consider whea 2. Then, we have to show that the number of
bridging edges is at most two thirds timgy') + (") plus the number of bridging edges. Since the number of
bridging edges is at mosh; —1)n, by construction, it suffices to show that; —1)n,; < n;(ny—1)4+n2(n,—

1). This inequality always holds, and we are done for this case.

For generak, the number of bridging edges is at mO}ﬂt‘;ﬂ (ny — 1)nyy1 and the number of non-bridging

edges is exactl{k ("1). By the same argument as the case= 2, it suffices to show tha}” ¥~} (n; —

niy1 < Y&, ny(ni — 1). This can be shown as follows with noting that+ y2 > 2xy for all x,y € R and
x%/2 —x > 0forall x > 2:

k k—1 Kk
Zm(ni Zn —an—z 2/2+ni2+1/2)+n$/2+nﬁ/2—Zni
i=1 i=1 i=1

k—1

k k—1 k
> ming+ni24ng2-m -) >) mingg -) 1y
i=2 i=1 i=2

im1
K—1 K—1 K—1

> E N4 — E Nyt = E i1 (n
im1 i1 i1

Thus the lemma is verified. O
We now describe our algorithm. The correctness again follows from the contraction-deletion formula.
1. Compute a clique partitiofCq, ..., Cyx} of G.
2. Enumerate all forests of the subgraphC;] = (C;i, E;) of G induced byC; foralli € {1,...,k}.

3. For each choice of the forests, . .., Fx from G[C4], ..., G[Cy]
(a) construct the grapa’ from G by deleting the edges i \ Fq, ..., Ex \ Fx and contracting the edges
ith...,Fk.

(b) ComputegF(G')| by the contraction-deletion formula.
4. Output the sum of thgF(G’)|'s computed in the previous step.

To bound the running time, we need to estimate the number of fore&Kdy (for Step 2), and the number
of edges inG’ (for Step 3). From Lemma 3.6 we already know tdthas at mos2m/3 edges since all edges in
G’ were bridging edges d&. Thus, it suffices to resolve the former one.

The number of forests iG[C;] is at mostZ“"1 ((“f)) So the number of exhaustive search executions can
be bounded by ¥, Z“"1 (n]). The following lemma gives an estimate.

Lemma 3.7. Forn > 3, it holds that

AV
(Z(Q)) -

10

Proof. Setf(n) = (ZJT‘:_O] ((?)))1/(3). A direct calculation show$(3) = 7'/3 > 1.9129,f(4) = 421/6 <

1.8644,f(5) = 386'/10 < 1.8141,f(6) = 132121/15 < 1.8825,f(7) = 82160'/2! < 1.7141. So, it suffices to
showf(n) < 1.9 forn > 8.

n

For simplicity, letz = (%). Sincen > 8, we havez > 28. Letg(z Z\/Z (3))'/% then we have
f(n) < g(z) wherez = (}). By using the boun[izo (¢) < (ea/b)", we obtaln

. <g(?))l/z<<<ﬁ%)m>1/z<\2ﬁ> 2/7..

Leth(z) = (%ﬁ)vz/"*. We have the monotonicityi(z’) > h(z) forz > z’ > 28. Thereforeg(z) < h(z) <
h(28) < 1.9. This completes the proof. O

Armed with Lemma 3.7, we may bound the running time from above as followsml’die the number of
edges inG’. Sincem’ < 2m/3, the running time is at most

ot ety VN
5 (D) xoe -1 (Z((;‘))) -
i=1 j=0 i=1 5=0

< (7V/3HZ 0 (Form)

= (7)™ ot 2m)

< O (7™/922M/3) = O*(1.9706™).

This completes the proof of Theorem 3.5. O

4 Extension to the Tutte polynomials

The Tutte polynomialof an undirected grap = (V,E) is a two-variate polynomial (G;x,y). A standard
reference for Tutte polynomials is a book by Welsh [14]. It is well-known that the Tutte polynomial can be
defined via the following contraction-deletion formula:

1 if G has no edge

xT(G/e;x,y) if an edgee is an isthmus of5,
T(Gix,y) = . .

yT(G\e;x,y) if an edgee is a loop ofG,

T(G/e;x,y) + T(G\e;x,y) if an edgee is neither an isthmus nor a loop Gf,

where aristhmusof a graph is an edge whose removal increases the number of connected components. Note that
T(G;2,1) is equal to the number of forests @

In this section, we discuss how the method of this paper can easily be generalized to the Tutte polynomial
computation.

4.1 Regular graphs and bounded-degree graphs

Let G = (V,E) be a3-regular graph. The basic idea is the same as the algorithm from Section 3.1. However, we
need a little change. To this end we introduce a notation. For an edg&, we may rewrite the contraction-
deletion formula above as follows:

1 if G has no edge
T(Gx,y) = .
oe(x,Y)T(G/e;x,y) + Belx,y)T(G\e;x,y) otherwise

wherea. (x,y) andp.(x,y) depend on the edge If e is an isthmus 06, we setx.(x, y)

= andﬁ (y) =0,
if e is a loop ofG, we setx.(x,y) = 0 andB.(x,y) = y; otherwise we sek.(x,y) = Bc(x,y) =

11

Consider an arbitrary vertexe V and the edges;, e, e3 € E incident tov. By applying the rule above, we
may writeT(G;x,y) as

T(G;x,y) =f123(x,y)T(G/e1/ez2/e3;x,y) + f12(x,y)T(G/e1/ea\e3;x,y)
+f1306,y)T(G/e1\e2/e3;x,y) + f1(x,y)T(G/er\ez2\e3;x,y)
+f23(x,y)T(G\er/e2/e3;%,y) + f2(x,y)T(G\er/ez\e3;%x,y)
+f3(x,y)T(G\er\e2/e3;%,y) + fp(x,y)T(G\er\e2\e3;x,y),

with some coefficienfs(x,y) for eachS C {eq, ez, e3} (here we use the abbreviatiéy (x,y) instead of writing
fre, e,1(x,y) for example). Note that the value 6f(x,y) only depends or,y and a local structure @& around
v. Hence, for eacl§ we can determinés(x,y) in polynomial time. Therefore the values ff(x, y) for all can

be obtained in polynomial time.
The following is our algorithm to evaluate the Tutte polynomialzoat an arbitrarily given pointx, y).

1. Choose an arbitrary maximal independentlseft G.

2. Output the value returned by the callAdq G, I).
Below is a description oA (G, I).

1. If Tis non-empty,

(a) choose an arbitrary vertexc 1. Leteq, e, e3 be the edges incident to

(b) calculate A(G/et/ex/es,I \ {v}), A(G/ei/ex\e3, I \ {v}), A(G/er\ea/e3, I \ {v}),
A(G\er/ez/es3, 1\ {v}) andA(G\er\ez\e3, [\ {v}).

(c) LetE, ={eq, ez, e3} (for notational convenience). For each sulfse&t E, determine the coefficient
fs(x,y) inthe formulaT(G;x,y) = 3 s, fs(x,y)T(G/S\(Ev \ S));x,y).

(d) Output 3 ¢ fs(x,y)A(G/S\(Ey, \ S)x,y) using the identity A(G\ei\ez\e3,I \ {v}) =
A(G/er\ex\es, I\ {v}) = A(G\er/ex\es, I\ {v}) = A(G\er\ez2/e3, I\ {v}).

2. Otherwise, comput&(G;x,y) by the contraction-deletion formula and output it.

The correctness argument goes along the same line as Section 3.1. As for the running time analysis, we only
need to observe that the number of subinstances we get in the end is at'mdstus, the analysis is verbatim.
Since the generalization to graphs of maximum degrisealso verbatim, we obtain the following theorem.

Theorem 4.1. For any fixedk > 2, we can compute the Tutte polynomial of a graph of maximum dekree

in O*((2(1 — ZLK) RTEFT))™) time. In particular, the Tutte polynomial of3aregular graph can be computed in
0*(1.8494™) time.

4.2 Unitinterval graphs

It is easy to see that the Tutte polynomial of a gr&pts the product of the Tutte polynomials of theconnected

components ofs. Hence, we may assume that our unit interval gréph (V, E) is 2-connected. Lef be a unit

interval representation @ with the corresponding bijectiah. Similarly to the algorithm given in Section 3.2, we

compute the Tutte polynomial, evaluated at an arbitrarily given daing) in the following way. However, here

we have to deal with isthmuses carefully. £€Y,..., Cy} be a clique partition o5, andF, ..., Fx be forests

of G[Cq], ..., G[C] respectively. The algorithm given in Section 3.2 constructed a g&lpby contracting the

edges inF; and deleting the edges H(G[C;]) \ F; for all i and then computed the number of forestsihin a

naive way. Since the Tutte polynomial is independent from the order of contraction/deletion operations performed

on the edges, we may first delete the edgds(i@[C;]) \ F; and then contract the edgesHpaccording to some

order. Some of the edgest can be isthmuses in the course of successive contractions, and we need to multiply

x to the Tutte polynomial per encountered isthmus. Namely, we compute the Tutte polynomial of the obtained

graphG’ and output the polynomial multiplied by* whereh is the total number of isthmuses we encountered.
Below is a more formal description of our algorithm.

1. Compute a clique partitiofC+, ..., Cy} of G.

12

2. Enumerate all forests of the subgrapfC;] = (C;, E;) of G induced byC; foralli € {1,... k}.

3. For each choice of the foredts, . .., Fi. from G[C4],..., G[Cy]
(a) construct the grapla’ from G by first deleting the edges iy \ Fq, ..., Ex \ Fx and then contracting
the edges irkq, ..., Fy.

(b) Leth be the number of contracted isthmuses in the step above.
(c) ComputeT (G’;x,y) by the contraction-deletion formula and stef&T (G’; x, y).

4. Output the sum of the"T(G’;x,y)’s computed in the previous step.

The correctness and the running time analysis go along the same line as Section 3.2. As a consequence, we obtain
the following theorem.

Theorem 4.2. We can compute the Tutte polynomial of a unit interval graph #1®706™) time.

5 Conclusion and open problems

We have seen #P-completeness results and fast (exponential-time) algorithms for the forest counting problem in
some classes of graphs. We have further observed that the method can be generalized to the Tutte polynomial
computation.

One of the major open questions is the complexity status of the forest counting (or the Tutte polynomial
computation) for unit interval graphs. We do not even know that the problem is #P-complete or not for (not
necessarily unit) interval graphs. For chordal graphs, we do not know any algorithm faster than the*t{2#a]-O
time algorithm. Finding such an algorithm seems a challenge.

Acknowledgments

The authors thank two anonymous referees for their valuable comments that improve the presentation of this paper
significantly. The second author is partially supported by Grant-in-Aid for Scientific Research from Ministry of
Education, Science and Culture, Japan, and Japan Society for the Promotion of Science.

References

[1] ANDRZEJAK, A. An algorithm for the Tutte polynomials of graphs of bounded treewiBiiscrete Mathe-
matics 190(1998), 39-54.

[2] ANNAN, J. A randomised approximation algorithm for counting the number of forests in dense graphs.
Combinatorics, Probability and Computing(B994), 273—-283.

[3] GAREY, M., AND JOHNSON, D. Computers and Intractability: A Guide to the Theory of NP-Completeness
W.H. Freeman, 1979.

[4] GIMENEZ, O., HLINENY, P.,AND Nov, M. Computing the Tutte polynomial on graphs of bounded clique-
width. SIAM Journal on Discrete Mathematics 22006), 932—946.

[5] HERRERA DEFIGUEIREDO, C., MEIDANIS, J.,AND PICININ DE MELLO, C. A linear-time algorithm for
proper interval graph recognitiommformation Processing Letters §6995), 179-184.

[6] JAEGER, F., VERTIGAN, D., AND WELSH, D. On the computational complexity of the Jones and Tutte
polynomials.Math. Proc. Camb. Phil. Soc. 1q&990), 35-53.

[7] JERRUM, M. Counting, Sampling and Integrating: Algorithms and Complextiykhauser, Basel, 2003.

[8] KIRCHHOFF, G. Uber die Aufbsung der Gleichungen, auf welche man bei der Untersuchung der linearen
Verteilung Galvanische Sime geiihrt wird. Annalen Physik Chemie {2847), 497-508.

13

[9] NOBLE, S. Evaluating the Tutte polynomial for graphs of bounded tree-wibmbinatorics, Probability
and Computing {1998), 307-321.

[10] SEKINE, K., IMAI, H.,AND TANI, S. Computing the Tutte polynomial of a graph and the Jones polynomial
of a knot of moderate size. IRroc. 6th ISAAQ1995), vol. 1004 ol ecture Notes in Computer Science
pp. 224-233.

[11] VADHAN, S. The complexity of counting in sparse, regular, and planar grapi#gv Journal on Computing
31(2001), 398-427.

[12] VERTIGAN, D. The computational complexity of Tutte invariants for planar grapB$AM Journal on
Computing 352006), 690-712. Originally, a part of his doctoral thesis: ‘The Computational Complexity of
Tutte, Jones, Homfly, and Kauffman Invariants’, DPhil thesis, Oxford University, Oxford, England, 1991.

[13] VERTIGAN, D., AND WELSH, D. The computational complexity of the Tutte plane: the bipartite case.
Combinatorics, Probability and Computing(1992), 181-187.

[14] WELSH, D. Complexity: Knots, Colourings and CountinGambridge University Press, 1993.
[15] WEsT, D. Introduction to Graph Theorysecond ed. Prentice Hall, 2001.
[16] WILF, H. Algorithms and ComplexityPrentice Hall, 1986.

14

