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Abstract

We prove #P-completeness for counting the number of forests in regular graphs and chordal graphs. We also
present algorithms for this problem, running in O∗(1.8494m) time for3-regular graphs, and O∗(1.9706m) time
for unit interval graphs, wherem is the number of edges in the graph and O∗-notation ignores a polynomial
factor. The algorithms can be generalized to the Tutte polynomial computation.
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1 Introduction

Counting is a fundamental task in combinatorics, and algorithmic aspects of counting problems have also been
studied. One of the most interesting phenomena around algorithmic counting is that we can count the number
of spanning trees in a graph in polynomial time [8] while it is #P-complete to count the number of forests in a
graph, even in a bipartite planar graph [13]. These two counting problems fit into a general concept of the Tutte
polynomial of a graph (or of a matroid), and this connection yields a fruitful development in algorithmic counting.

The #P-complete counting problems have been tackled mainly via two different approaches. One is the approx-
imate approach, and the other is the exact approach. In the approximate method, we try to quickly approximate
the desired value within a certain guarantee by, for example, a Markov chain Monte Carlo method. See Jerrum’s
book [7]. In the exact approach, we stick to the exact correct value, and try to reduce the running time as much
as possible. When a given problem is #P-complete, we cannot expect the algorithm to run in polynomial time.
Hence, we try to make the exponent of the exponential running time closer to constant, or try to make the base
closer to1.

This paper takes the latter exact approach. First we prove that the forest counting problem is #P-complete for
regular graphs and chordal graphs. Then, we design exact algorithms for the problem when the input graphs are
restricted to the regular graphs or to the unit interval graphs. The running time of our algorithm is O∗(1.8494m)
time for3-regular graphs, and O∗(1.9706m) for unit interval graphs, wherem is the number of edges in the graph
and O∗-notation ignores a polynomial factor. It has to be noted here that the algorithms can be generalized to the
Tutte polynomial computation.

Note that for general graphs the contraction-deletion formula for the number of forests yields an algorithm
running in O∗(min{2m, 1.6181n+m}) time, wheren andm represent the numbers of vertices and edges in a given
graph (refer to a book by Wilf [16] where he obtained this bound for the chromatic polynomial but the idea can
be applied to any quantity that is governed by the contraction-deletion formula). For3-regular graphs it holds that
m = 3n/2, and hence the latter expression in this bound gives1.6181n+m = 1.61812m/3+m = 1.61815m/3 >

2.2301m. This means that our algorithm with running time1.8494m is much faster than a direct application of
the contraction-deletion formula.

Related Work There are several papers studying the forest counting problem (or the Tutte polynomial compu-
tation, more generally) via the exact approach. The basis is the hardness result due to Jaeger, Vertigan & Welsh [6]
showing that counting the number of forests in a graph is #P-complete. Vertigan [12] proved that the problem is
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#P-complete for planar graphs, and Vertigan & Welsh [13] proved that it is #P-complete even for bipartite planar
graphs.

On the exact algorithmic side, not much is known for the forest counting problem. Andrzejak [1] and Noble [9]
independently obtained a polynomial-time algorithm for the forest counting problem in graphs of bounded tree-
width. To the authors’ knowledge, this is the only non-trivial case where a polynomial-time solution is known. As
mentioned above, for general graphs the contraction-deletion formula for the number of forests yields an algorithm
running in O∗(min{2m, 1.6181n+m}) time, wheren andm represent the numbers of vertices and edges in a given
graph throughout this article. Giḿenez, Hliňeńy & Noy [4] gave an algorithm in graphs of bounded clique-width.
Their algorithm runs in exp(O(n1−1/(k+2))) time wherek is the clique-width of a given graph. Furthermore,
Sekine, Imai & Tani [10] gave an exp(O(

√
n))-time algorithm in planar graphs.

As for the approximation, Annan [2] gave a fully polynomial-time approximation scheme for the forest count-
ing in dense graphs.

For some counting problems in regular graphs, Vadhan [11] gave #P-completeness results by utilizing the
so-called interpolation technique and Fibonacci technique. These techniques are also used in this paper.

Preliminaries In this article, all graphs are finite and undirected. LetG = (V, E) be a graph. Thedegreeof a
vertexv ∈ V in G is the number of edges incident tov, and denoted by degG(v). A graph isk-regular if every
vertex of it has degreek. A graph isplanar if it can be drawn on the plane without any edge crossing. A graph
is bipartite if the vertex set can be partitioned into two parts such that every edge has the endpoints in both parts.
Other terms on graphs will be defined when they are first used, or can be found in any textbook on graphs like
West [15].

A forestof a graphG = (V, E) is a subsetF ⊆ E which embraces no cycle. Our goal is to count the number of
forests in a given graph. The following is our problem template, where a class of graphs is denoted byΓ .

Problem: Γ -#FORESTS
Input : a graphG ∈ Γ ;
Output : the number of forests inG.

We writef(n) = O∗(g(n)) if f(n) = O(g(n)p(n)) for some constant-degree polynomialp(n). Namely, in
the O∗-notation we ignore the polynomial factor.

Basic terminology on complexity theory like #P-completeness can be found in the book by Garey & John-
son [3].

2 Intractability

In this section, we concentrate on the intractability results. We prove #P-completeness ofΓ -#FORESTS for
variousΓ .

2.1 Bounded-degree graphs

Denote by3∆ the class of all graphs of maximum degree at most three, byBP the class of all bipartite planar
graphs, and by3∆BP the class of all bipartite planar graphs of maximum degree at most three. We prove the
following.

Theorem 2.1. The problem3∆BP-#FORESTS is #P-complete.

This theorem immediately gives the following corollary.

Corollary 2.2. The problem3∆-#FORESTS is #P-complete.

To prove the theorem, we useBP-#FORESTS, which is shown to be #P-complete by Vertigan & Welsh [13].
We first prove that the following variant of3∆BP-#FORESTS is #P-complete.

Problem: Γ -#FORESTS with inclusive edges
Input : a graphG = (V, E) ∈ Γ , and an edge setS ⊆ E;
Output : the number of forests inG which containS.

Lemma 2.3. The problem3∆BP-#FORESTS with inclusive edges is #P-complete.
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Figure 1: Replacing a vertex with a path (a local picture).

G G2

Figure 2: Replacing edges with paths. The thick edges belong toS, and each of them is replaced by a path of
length three inG2.

Proof. We reduceBP-#FORESTS to 3∆BP-#FORESTS with inclusive edges. LetG = (V, E) be a bipartite
planar graph given as an input forBP-#FORESTS. Without loss of generality, we may assume thatG has no
vertex of degree zero. We fix a plane embedding ofG (which can be obtained in linear time). FromG, we construct
another graphG ′ which is also bipartite planar and furthermore whose maximum degree is at most three. First we
replace each vertexv ∈ V with a pathPv of length2 degG(v)−2, and the path is embedded as if it surrounded the
vertexv. The neighbors ofv are joined to every second vertex ofPv in the same circular order. See Figure 1. We
perform this operation for all vertices ofG, andG ′ is the resulting graph. Note thatG ′ is bipartite planar sinceG
is so, and that the maximum degree ofG ′ is at most three.

SetS to be the set of edges inPv for all v ∈ V . Then we can find a natural bijection from the family of forests
in G to the family of forests inG ′ which includeS. Thus the lemma is proved.

Proof of Theorem 2.1.We reduce3∆BP-#FORESTS with inclusive edges to3∆BP-#FORESTS. Let G =
(V, E) be a bipartite planar graph with maximum degree at most three andS ⊆ E. Let s = |S|, and for each
` ∈ {1, . . . , s + 1} we construct a graphG` = (V`, E`) from G by replacing each edgee ∈ S with a pathPe of
length2` − 1. EspeciallyG1 is isomorphic toG. Figure 2 shows an example for` = 2.

Fix ` ∈ {1, . . . , s + 1}. We define a map from the family of forests inG` to the family of forests inG as
follows: We map a forestF` ⊆ E` of G` to a forestF ⊆ E of G if and only if

• whene ∈ S ∩ F, all edges ofPe belong toF`,

• whene ∈ S \ F, at least one edge ofPe does not belong toF`, and

• whene 6∈ S, e belongs toF` if and only if e belongs toF.

We can observe that every forestF in G is the image of(22`−1 − 1)|S\F| forests inG`. Therefore the number of
forests inG` is equal to

∑

F

(22`−1 − 1)|S\F| =

s∑

i=0

∑

F:|S\F|=i

(22`−1 − 1)i =

s∑

i=0

aix
i
`,

wherex` = 22`−1 − 1 andai is the number of forestsF in G such that|S \ F| = i. Sincex` 6= x` ′ for all
`, ` ′ ∈ {1, . . . , s + 1}, ` 6= ` ′, by knowing the number of forests inG` for all ` ∈ {1, . . . , s + 1} we can compute
a0, . . . , as in polynomial time. Sincea0 is the number of forests inG which containS, this completes the
reduction.
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Figure 3: Attaching a graph to a degree-one vertex and a degree-two vertex.

2.2 Regular graphs

Denote bykREG the class ofk-regular graphs, and bykREGP the class ofk-regular planar graphs.

Theorem 2.4. The problem3REGP-#FORESTS is #P-complete.

Proof. We reduce3∆BP-#FORESTS to 3REGP-#FORESTS. Let G = (V, E) be a bipartite planar graph with
maximum degree at most three. Without loss of generality, we may assume thatG has no vertex of degree zero.
We construct a3-regular planar graphG ′ from G as follows. We attach the graph shown in Figure 3 (top) to each
vertex of degree one, and attach the graph shown in Figure 3 (bottom) to each vertex of degree two. We can see
that the resulting graphG ′ is 3-regular and still planar. Denote byn1 andn2 the number of degree-one vertices
and degree-two vertices inG, respectively. Then the number of forests inG ′ is equal to the number of forests in
G timesc

n1

1 c
n2

2 wherec1 andc2 are the numbers of forests in the appended graphs (in Figure 3), thus constants.
This completes our reduction.

For generalk ≥ 3, we similarly have the following theorem.

Theorem 2.5. For everyk ≥ 3, the problemkREG-#FORESTS is #P-complete.

The proof is a bit more involved, and we have to distinguish the cases according to the parity ofk.

Proof of Theorem 2.5 for oddk. We reduce3REG-#FORESTS to kREG-#FORESTS. Let G = (V, E) be a3-
regular graph. We construct ak-regular graphG ′ from G by attaching the graph shown in Figure 4 to each vertex
of G. Namely, it is a graph having(k − 3)/2 copies ofK−

k+1 (a complete graph onk+1 vertices with one edge
removed) and another vertex with edges to thek − 3 vertices on the copies which were incident to the removed
edges. Then, we can see that the resulting graphG ′ is k-regular, and the number of forests inG ′ is equal to the
number of forests inG timescn, wherec is the number of forests in the appended graph which only depends onk.
This completes our reduction.

Whenk is even, we produce a sequence of reductions. First we consider the following problem.

Problem: Γ -#FORESTS with exclusive edges
Input : a graphG = (V, E) ∈ Γ , and an edge setS ⊆ E;
Output : the number of forests inG which do not contain any edges inS.

Lemma 2.6. For evenk ≥ 4, the problemkREG-#FORESTS with exclusive edges is #P-complete.

Proof. We reduce(k−1)REG-#FORESTS to kREG-#FORESTS with exclusive edges. Note that sincek is
even and at least four,k−1 is odd and at least three. Hence,(k−1)REG-#FORESTS is #P-complete by Theorem
2.5.

Let G = (V, E) be a(k−1)-regular graph. Sincek−1 is odd, G has even number of vertices. Take an
arbitrary partition ofV into |V |/2 parts of size two, and for each part{ui, vi}, i ∈ {1, . . . , |V |/2}, we attach
an edgeei = {ui, vi} to G. The resulting graphG ′ = (V, E ∪ {ei : 1 ≤ i ≤ |V |/2}) is k-regular. We set
S = {ei : i ∈ {1, . . . , |V |/2}}, the set of attached edges. Then we may observe that the set of forests ofG is the set
of forests ofG ′ which contain no edge ofS. This completes the reduction.
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Figure 4: Attaching a graph to a degree-three vertex. HereK−
k+1 represents a complete graph onk+1 vertices with

one edge removed, and two edges leave eachK−
k+1 from the vertices of degreek − 1, i.e., the vertices incident to

the removed edge.

Next we consider the following auxiliary problem. Denote by(2, k)REG the class of graphs in which every
vertex has degree2 or k.

Lemma 2.7. For evenk ≥ 4, the problem(2, k)REG-#FORESTS is #P-complete.

Proof. We reducekREG-#FORESTS with exclusive edges to(2, k)REG-#FORESTS. Let G = (V, E) be a
k-regular graph, wherek ≥ 4 is even, andS ⊆ E. Let s = |S|, and for each̀ ∈ {1, . . . , s+1} we construct a graph
G` = (V`, E`) from G by replacing each edgee ∈ S with a pathPe of length`. We can see that every vertex of
G` has degree2 or k.

Fix ` ∈ {1, . . . , s + 1} and we define a map from the family of forests inG` to the family of forests inG as
follows: We map a forestF` ⊆ E` of G` to a forestF ⊆ E of G if and only if

• whene ∈ S ∩ F, all edges ofPe belong toF`,

• whene ∈ S \ F, at least one edge ofPe does not belong toF`,

• whene 6∈ S, e belongs toF` if and only if e belongs toF.

As in the proof of Lemma 2.3, we can observe that every forestF in G is the image of(2` − 1)|S\F| forests inG`.
Therefore, the number of forests inG` is equal to

∑

F

(2` − 1)|S\F| =

s∑

i=0

∑

F : |S\F|=i

(2` − 1)i =

s∑

i=0

aix
i
`,

wherex` = 2` − 1 and ai is the number of forestsF in G such that|S \ F| = i. Sincex` 6= x` ′ for all
`, ` ′ ∈ {1, . . . , s+1}, by knowing the numbers of forests inG` for all ` ∈ {1, . . . , s+1} we can computea0, . . . , as

in polynomial time. Sinceas is the number of forests inG which excludeS, this completes the reduction.

We are now ready to prove Theorem 2.5 for evenk ≥ 4.

Proof of Theorem 2.5 for evenk ≥ 4. We reduce(2, k)REG-#FORESTS to kREG-#FORESTS whenk ≥ 4 is
even. LetG = (V, E) be a graph whose vertices are of degree two ork. We construct ak-regular graphG ′ from G

by attaching the graph shown in Figure 5 to each degree-two vertex ofG. Namely, it is a graph having(k − 2)/2

copies ofK−
k+1 (a complete graph onk+1 vertices with one edge removed) and another vertex with edges to the

k − 2 vertices on the copies which were incident to the removed edges. Then we can see that the resulting graph
G ′ is k-regular and the number of forests inG ′ is equal to the number of forests inG timescn2 , wherec is the
number of forests in the appended graph andn2 is the number of degree-two vertices. Note thatc depends onk
only.

Note that the resulting graphG ′ in the proof of Theorem 2.5 is not planar unlessk = 3.
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Figure 5: Attaching a graph to a degree-two vertex. HereK−
k+1 represents a complete graph onk+1 vertices with

one edge removed, and two edges leave eachK−
k+1 from the vertices of degreek − 1, i.e., the vertices incident to

the removed edge.
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Figure 6: Joining paths of length two.

2.3 Chordal graphs

A graphG is chordal if every induced cycle is of length three. Denote byCHORDAL the class of chordal graphs.

Theorem 2.8. The problemCHORDAL-#FORESTS is #P-complete.

To prove Theorem 2.8, we use the following lemma about exclusive edges.

Lemma 2.9. The problemCHORDAL-#FORESTS with exclusive edges is #P-complete.

Proof. We use any graph classΓ such thatΓ -#FORESTS is #P-complete. For example, setΓ = BP. From a given
graphG = (V, E) ∈ Γ , we construct a chordal graphG ′ = (V ′, E ′) by V ′ = V andE ′ =

(
V

2

)
. Namely,G ′ is a

complete graph onV . SetS =
(
V

2

)
\ E. Then, we can see that the forests ofG have a one-to-one correspondence

to the forests ofG ′ which excludeS.

Now comes the main part of the proof.

Proof of Theorem 2.8.We reduceCHORDAL-#FORESTS with exclusive edges toCHORDAL-#FORESTS.
Let G = (V, E) be a chordal graph andS ⊆ E. Let s = |S|, and for each̀ ∈ {0, . . . , s} we construct a graph
G` = (V`, E`) from G by joining ` paths of length two, in parallel, to the endpoints of every edgee ∈ S.
Especially,G0 is isomorphic toG. Figure 6 shows an example for` = 2.

Fix ` ∈ {0, . . . , s}, and denote byP1
e, P2

e, . . . , P`
e the newly added paths inG` between the endpoints ofe. We

define a map from the family of forests inG` to the family of forests inG as follows: We map a forestF` ⊆ E` of
G` to a forestF ⊆ E of G if and only if

• whene ∈ S ∩ F, F` contains one of the paths amongP1
e, . . . , P`

e completely or containse,

• whene ∈ S \ F, F` contains none of the paths amongP1
e, . . . , P`

e completely or does not containe, and

• whene 6∈ S, e belongs toF` if and only if e belongs toF.
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We can observe that every forestF in G is the image of(3` + `3`−1)|S∩F|3`|S\F| forests inG`. Therefore the
number of forests inG` is equal to

∑

F

(3` + `3`−1)|S∩F|3`|S\F| =

s∑

i=0

∑

F : |S∩F|=i

(3` + `3`−1)i3`(s−i)

= 3`s

s∑

i=0

∑

F : |S∩F|=i

(1 + `/3)i = 3`s

s∑

i=0

aix
i
`,

wherex` = 1 + `/3 andai is the number of forestsF in G such that|S ∩ F| = i. Sincex` 6= x` ′ for all
`, ` ′ ∈ {0, . . . , s}, ` 6= ` ′, by knowing the number of forests inG` for all ` ∈ {0, . . . , s} we can computea0, . . . , as

in polynomial time. Sincea0 is the number of forests inG which excludeS, this completes the reduction.

Note that the proof actually shows that counting the number of forests in a split graph is #P-complete, where a
graph issplit if the vertex set can be partitioned into a clique and an independent set. Denote bySPLIT the class
of split graphs.

Theorem 2.10. The problemSPLIT-#FORESTS is #P-complete.

Proof. The proof of Lemma 2.9 shows that it is #P-complete to count the number of forests in a complete graph
which do not contain any edges in a given edge subsetS. Therefore, the given graphG in the proof of Theorem
2.8 can be restricted to a complete graph, and then we can see that the constructed graphsG0, . . . , Gs are all split
graphs.

3 Algorithms

In this section, we concentrate on faster (exponential-time) algorithms for the forest counting problem. The trivial
algorithm runs in O∗(2m) time, and the goal is to beat this bound. Throughout the section,n andm denote the
numbers of vertices and edges in a given graph respectively.

Denote byF(G) the family of forests inG. To state a fundamental property of|F(G)|, we need to introduce
the deletion and the contraction of an edge in a graph. For a graphG = (V, E) and an edgee ∈ E, thedeletion
of e from G is an operation to obtain another graph, denoted byG\e, where the vertex set ofG\e is the same as
that ofG and the edge set ofG\e is E \ {e}. Thecontractionof e in G is an operation to obtain another graph,
denoted byG/e in the following way: we first remove the edgee and then identify the endpoints ofe. Note that
contraction may introduce a loop or multiple edges in the graph. Here, an edge is called aloop if its endpoints are
identical. As a basic property of|F(G)|, the following so-called contraction-deletion formula is well-known (see
also Section 4):

|F(G)| =





1 if G has no edge,

|F(G\e)| if an edgee is a loop ofG,

|F(G/e)| + |F(G\e)| if an edgee is not a loop ofG.

As mentioned in the introduction, the direct application of this formula will yield the running time bound
O∗(min{2m, 1.6181n+m}). In the sequel, we give improved algorithms for regular graphs, bounded-degree
graphs, and unit interval graphs.

3.1 Regular graphs and bounded-degree graphs

To illustrate the general strategy, we start with an algorithm for3REG-#FORESTS (i.e., counting the number of
forests in3-regular graphs).

Theorem 3.1. We can count the number of forests in a3-regular graph withm edges in O∗(1.8494m) time.

Proof. The idea for our algorithm is as follows. LetG = (V, E) be a given3-regular graph. Each vertexv of G is
incident to exactly three edges, say,e1, e2, e3. Then by the contraction-deletion formula, we have

|F(G)| =|F(G/e1/e2/e3)| + |F(G/e1/e2\e3)| + |F(G/e1\e2/e3)| + |F(G/e1\e2\e3)|

+ |F(G\e1/e2/e3)| + |F(G\e1/e2\e3)| + |F(G\e1\e2/e3)| + |F(G\e1\e2\e3)|.
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The central observation is that the four graphsG/e1\e2\e3, G\e1/e2\e3, G\e1\e2/e3 andG\e1\e2\e3 are all
isomorphic (up to the existence of isolated vertices). Therefore, the formula above may be written in the following
way:

|F(G)| =|F(G/e1/e2/e3)| + |F(G/e1/e2\e3)| + |F(G/e1\e2/e3)| + |F(G\e1/e2/e3)|

+ 4|F(G\e1\e2\e3)|.

Note that in each of the graphsG/e1/e2/e3, G/e1/e2\e3, G/e1\e2/e3, G\e1/e2/e3 andG\e1\e2\e3 on the
right-hand side the number of edges is exactlym− 3. Thus, from the given instance withn vertices andm edges,
we obtained five subinstances withn − 1 vertices andm − 3 edges.

The discussion above leads to the following algorithm.

1. Choose an arbitrary maximal independent setI of G.

2. Output the value returned by the call toA(G, I).

Below is a description ofA(G, I), which outputs the number of forests inG with the information thatI is an
independent set ofG.

1. If I is non-empty,

(a) choose an arbitrary vertexv ∈ I. Let e1, e2, e3 be the edges incident tov.

(b) Output the sum of the values returned byA(G/e1/e2/e3, I \ {v}), A(G/e1/e2\e3, I \ {v}),
A(G/e1\e2/e3, I\{v}), A(G\e1/e2/e3, I\{v}) and4 times the value returned byA(G\e1\e2\e3, I\

{v}).

2. Otherwise, compute|F(G)| by the contraction-deletion formula and output it.

Note that in the call toA(G, I) (at any point) the vertexv is incident to three edges sinceI is an independent
set ofG (at any point). Therefore, by the discussion above, the algorithm correctly outputs the number of forests
in a given3-regular graph.

We now bound the running time of our algorithm. The number of subinstances we get in the end (namely,
subinstances(G, I) with I = ∅) is 5|I|, and each of such subinstance hasn − |I| vertices andm − 3|I| edges. By
the contraction-deletion formula, the number of forests in each subinstance can be computed in

O∗(min{2m−3|I|, 1.6181(n−|I|)+(m−3|I|)})

time. Note thatn = 2m/3 for 3-regular graphs, and so

1.6181(n−|I|)+(m−3|I|) = 1.6181(5m/3−4|I|) > 2.2301m/6.8553|I|.

Therefore, min{2m−3|I|, 1.6181(n−|I|)+(m−3|I|)} = 2m−3|I|, and hence, the total running time of the algorithm is
bounded from above by O∗(5|I| × 2m−3|I|) = O∗(2m × (5/8)|I|).

Thus, we need a lower bound for the size of a maximal independent set.

Lemma 3.2. Every maximal independent set of a graph of maximum degreek with n vertices contains at least
n/(k + 1) vertices.

Proof. Let G = (V, E) be a graph of maximum degreek andI ⊆ V be an arbitrary maximal independent set ofG.
We count the number of edges betweenI andV \ I in two ways. On one hand, each vertex ofI is incident to at
mostk edges. Therefore, the number of edges betweenI andV \ I is at mostk|I|. On the other hand, every vertex
of V \ I has at least one of its neighbors inI sinceI is maximal. Therefore, the number of edges betweenI and
V \ I is at least|V \ I|. Thus, we obtaink|I| ≥ |V \ I| = n − |I|. This results in|I| ≥ n/(k + 1).

Consequently, the running time of our algorithm is bounded by O∗(2m × (5/8)|I|) ≤ O∗(2m × (5/8)n/4) =
O∗(2m × (5/8)m/6) = O∗(1.8494m). This completes the proof.

For k-regular graphsG we may obtain a similar algorithm. To this end, we again take an arbitrary maximal
independent setI of a givenk-regular graphG. Each vertexv of I is incident to exactlyk edges, and they give
rise to2k subinstances from the contraction-deletion formula, but we can see thatk + 1 of them are isomorphic.
Therefore, the number of subinstances we get in the end is(2k − k)|I|, and each of these instances hasn − |I|

vertices andm − k|I| edges. Thus, by the same argument as Theorem 3.1, we obtain the running time bound
O∗(2m × ((2k − k)/2k)|I|). By Lemma 3.2 we get|I| ≥ n

k+1
= 2m

k(k+1) , and hence obtain the following theorem.
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Theorem 3.3. For anyk ≥ 2, we can count the number of forests in ak-regular graph in O∗((2(1− k
2k )

2
k(k+1) )m)

time.

Note that2REG-#FORESTS can be solved in polynomial time (not by the algorithm above) since every
connected component of a2-regular graph is a cycle.

For graphs of maximum degree at mostk, the same algorithm works and the worst-case running time is also
the same.

Theorem 3.4. For anyk ≥ 2, we can count the number of forests in a graph of maximum degreek in O∗((2(1 −
k
2k )

2
k(k+1) )m) time.

Proof. The algorithm is exactly the same as ours fork-regular graphs: we choose an arbitrary maximal indepen-
dent setI and from each vertex ofI we obtain a number of subinstances. Then, compute the number of forests in
every subinstance we get in the end.

For eachi ∈ {0, . . . , k}, letni denote the number of vertices inI of degreei. Then, the number of subinstances
we get in the end is

∏k

i=0(2i − i)ni , and each of these instances hasm −
∑k

i=0 ini edges. Therefore, up to a
polynomial factor, the running time is bounded by

k∏

i=0

(2i − i)ni × 2m−
∑

k
i=0

ini = 2m

∏k

i=0(2i − i)ni

2
∑

k
i=0

ini

= 2m

k∏

i=0

(
2i − i

2i

)ni

= 2m

k∏

i=0

(
1 −

i

2i

)ni

≤ 2m

k∏

i=0

(
1 −

k

2k

)ni

= 2m

(
1 −

k

2k

)∑
k
i=0

ni

= 2m

(
1 −

k

2k

)|I|

≤ 2m

(
1 −

k

2k

) n
k+1

≤ 2m

(
1 −

k

2k

) 2m
k(k+1)

.

Here in the second last inequality we applied Lemma 3.2 and in the last inequality we used the fact that2m ≤ kn

(a consequence of double-counting).

3.2 Unit interval graphs

Theorem 2.8 states that counting the number of forests in a chordal graph is #P-complete. The main goal of this
section should have been to give a faster (exponential-time) algorithm for chordal graphs, but so far attempts were
not that successful. Therefore, we focus on a subclass of the chordal graphs, namely, the class of unit interval
graphs.

A graphG = (V, E) is aunit interval graphif there exist a familyI = {I1, . . . , In} of unit closed intervals on
a line and a bijectionψ : V → I such that{u, v} ∈ E if and only if ψ(u) ∩ ψ(v) 6= ∅. For a unit interval graph
G, the setI of unit intervals as in the definition is called theunit interval representationof G. We can determine
whether a given graph is a unit interval graph or not, and if so generate a unit interval representation of the graph
in linear time [5]. Therefore, for our purpose, we may assume that a unit interval graph is given through a unit
interval representationI of it.

The main result of this section is as follows.

Theorem 3.5. The number of forests in a unit interval graph can be counted in O∗(1.9706m) time.

Proof. Let G = (V, E) be a unit interval graph and fix a unit interval representationI of it with the corresponding
bijectionψ. First of all, we may assume thatG is 2-connected (namely it is connected and the removal of any
vertex does not make it disconnected) since the number of forests in a graph is the product of the numbers of
forests of all2-connected components (i.e., maximal2-connected subgraphs). Then, we make the following
preprocessing. We look at the leftmost intervalI1 in I, and collect the intervals inI which intersectI1. Denote
by C1 the vertices inG corresponding to the collected intervals. Now, we dispose the collected intervals fromI
and look for the leftmost intervalI2 in the remainingI, collecting the intervals inI which intersectI2. Denote
by C2 the vertices inG corresponding to the collected intervals. We dispose the collected intervals fromI, and
proceed along the same way. Thus, we obtain a partition{C1, . . . , Ck} of the vertex setV , which we call theclique
partition of G (with respect toI), satisfying the following properties.

1. For eachi ∈ {1, . . . , k}, the setCi is a clique ofG.
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2. For eachi, j ∈ {1, . . . , k}, i < j, there exists an edge betweenCi andCj if and only if j = i + 1.

Note that the clique partition ofG can be obtained in linear time [5].
An edgee ∈ E is callednon-bridgingif it connects two vertices of someCi. Otherwise, the edge isbridging.

From the construction and the assumption thatG is 2-connected, we may observe that|Ci| ≥ 3 for eachi ∈
{1, . . . , k − 1}, and|Ck| ≥ 1. The following is an important lemma for our algorithm.

Lemma 3.6. Under the assumption above, the number of bridging edges inG is at most2m/3, wherem is the
number of edges inG.

Proof. Let ni be the size ofCi. Whenk = 1, we have no bridging edge; Thus the lemma holds.
To illustrate the general case, let us first consider whenk = 2. Then, we have to show that the number of

bridging edges is at most two thirds times
(
n1

2

)
+

(
n2

2

)
plus the number of bridging edges. Since the number of

bridging edges is at most(n1−1)n2 by construction, it suffices to show that(n1−1)n2 ≤ n1(n1−1)+n2(n2−
1). This inequality always holds, and we are done for this case.

For generalk, the number of bridging edges is at most
∑k−1

i=1 (ni − 1)ni+1 and the number of non-bridging
edges is exactly

∑k

i=1

(
ni

2

)
. By the same argument as the casek = 2, it suffices to show that

∑k−1

i=1 (ni −

1)ni+1 ≤
∑k

i=1 ni(ni − 1). This can be shown as follows with noting thatx2 + y2 ≥ 2xy for all x, y ∈ IR and
x2/2 − x ≥ 0 for all x ≥ 2:

k∑

i=1

ni(ni − 1) =

k∑

i=1

n2
i −

k∑

i=1

ni =

k−1∑

i=1

(n2
i /2 + n2

i+1/2) + n2
1/2 + n2

k/2 −

k∑

i=1

ni

≥
k−1∑

i=1

nini+1 + n2
1/2 + n2

k/2 − n1 −

k∑

i=2

ni ≥
k−1∑

i=1

nini+1 −

k∑

i=2

ni

≥
k−1∑

i=1

nini+1 −

k−1∑

i=1

ni+1 =

k−1∑

i=1

ni+1(ni − 1).

Thus the lemma is verified.

We now describe our algorithm. The correctness again follows from the contraction-deletion formula.

1. Compute a clique partition{C1, . . . , Ck} of G.

2. Enumerate all forests of the subgraphG[Ci] = (Ci, Ei) of G induced byCi for all i ∈ {1, . . . , k}.

3. For each choice of the forestsF1, . . . , Fk from G[C1], . . . , G[Ck]

(a) construct the graphG ′ from G by deleting the edges inE1 \ F1, . . . , Ek \ Fk and contracting the edges
in F1, . . . , Fk.

(b) Compute|F(G ′)| by the contraction-deletion formula.

4. Output the sum of the|F(G ′)|’s computed in the previous step.

To bound the running time, we need to estimate the number of forests inG[Ci] (for Step 2), and the number
of edges inG ′ (for Step 3). From Lemma 3.6 we already know thatG ′ has at most2m/3 edges since all edges in
G ′ were bridging edges ofG. Thus, it suffices to resolve the former one.

The number of forests inG[Ci] is at most
∑ni−1

j=0

((ni
2 )
j

)
. So the number of exhaustive search executions can

be bounded by
∏k

i=1

∑ni−1

j=0

((ni
2 )
j

)
. The following lemma gives an estimate.

Lemma 3.7. Forn ≥ 3, it holds that




n−1∑

j=0

((
n

2

)

j

)


1/(n

2)

≤ 71/3.
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Proof. Setf(n) = (
∑n−1

j=0

((n

2)
j

)
)1/(n

2). A direct calculation showsf(3) = 71/3 ≥ 1.9129, f(4) = 421/6 ≤
1.8644, f(5) = 3861/10 ≤ 1.8141, f(6) = 132121/15 ≤ 1.8825, f(7) = 821601/21 ≤ 1.7141. So, it suffices to
showf(n) ≤ 1.9 for n ≥ 8.

For simplicity, letz =
(
n

2

)
. Sincen ≥ 8, we havez ≥ 28. Let g(z) = (

∑√
2z

j=0

(
z

j

)
)1/z, then we have

f(n) ≤ g(z) wherez =
(
n

2

)
. By using the bound

∑b

i=0

(
a

i

)
≤ (ea/b)b, we obtain

g(z) =




√
2z∑

j=0

(
z

j

)


1/z

≤

((
ez√
2z

)√
2z

)1/z

=

(
e√
2

√
z

)√
2/z

.

Let h(z) = ( e√
2

√
z)
√

2/z. We have the monotonicity:h(z ′) ≥ h(z) for z ≥ z ′ ≥ 28. Therefore,g(z) ≤ h(z) ≤
h(28) < 1.9. This completes the proof.

Armed with Lemma 3.7, we may bound the running time from above as follows. Letm ′ be the number of
edges inG ′. Sincem ′ ≤ 2m/3, the running time is at most

k∏

i=1

ni−1∑

j=0

((
ni

2

)

j

)
× O∗(2m ′

) =

k∏

i=1







ni−1∑

j=0

((
ni

2

)

j

)


1/(ni
2 )




(ni
2 )

× O∗(2m ′
)

≤ (71/3)
∑

k
i=1 (ni

2 )O∗(2m ′
)

= (71/3)m−m ′
O∗(2m ′

)

≤ O∗(7m/922m/3) = O∗(1.9706m).

This completes the proof of Theorem 3.5.

4 Extension to the Tutte polynomials

The Tutte polynomialof an undirected graphG = (V, E) is a two-variate polynomialT(G; x, y). A standard
reference for Tutte polynomials is a book by Welsh [14]. It is well-known that the Tutte polynomial can be
defined via the following contraction-deletion formula:

T(G; x, y) =





1 if G has no edge,

xT(G/e; x, y) if an edgee is an isthmus ofG,

yT(G\e; x, y) if an edgee is a loop ofG,

T(G/e; x, y) + T(G\e; x, y) if an edgee is neither an isthmus nor a loop ofG,

where anisthmusof a graph is an edge whose removal increases the number of connected components. Note that
T(G; 2, 1) is equal to the number of forests inG.

In this section, we discuss how the method of this paper can easily be generalized to the Tutte polynomial
computation.

4.1 Regular graphs and bounded-degree graphs

Let G = (V, E) be a3-regular graph. The basic idea is the same as the algorithm from Section 3.1. However, we
need a little change. To this end we introduce a notation. For an edgee ∈ E, we may rewrite the contraction-
deletion formula above as follows:

T(G; x, y) =

{
1 if G has no edge,

αe(x, y)T(G/e; x, y) + βe(x, y)T(G\e; x, y) otherwise,

whereαe(x, y) andβe(x, y) depend on the edgee. If e is an isthmus ofG, we setαe(x, y) = x andβe(x, y) = 0;
if e is a loop ofG, we setαe(x, y) = 0 andβe(x, y) = y; otherwise we setαe(x, y) = βe(x, y) = 1.
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Consider an arbitrary vertexv ∈ V and the edgese1, e2, e3 ∈ E incident tov. By applying the rule above, we
may writeT(G; x, y) as

T(G; x, y) =f123(x, y)T(G/e1/e2/e3; x, y) + f12(x, y)T(G/e1/e2\e3; x, y)

+ f13(x, y)T(G/e1\e2/e3; x, y) + f1(x, y)T(G/e1\e2\e3; x, y)

+ f23(x, y)T(G\e1/e2/e3; x, y) + f2(x, y)T(G\e1/e2\e3; x, y)

+ f3(x, y)T(G\e1\e2/e3; x, y) + f∅(x, y)T(G\e1\e2\e3; x, y),

with some coefficientfS(x, y) for eachS ⊆ {e1, e2, e3} (here we use the abbreviationf12(x, y) instead of writing
f{e1,e2}(x, y) for example). Note that the value offS(x, y) only depends onx, y and a local structure ofG around
v. Hence, for eachS we can determinefS(x, y) in polynomial time. Therefore the values offS(x, y) for all can
be obtained in polynomial time.

The following is our algorithm to evaluate the Tutte polynomial ofG at an arbitrarily given point(x, y).

1. Choose an arbitrary maximal independent setI of G.

2. Output the value returned by the call toA(G, I).

Below is a description ofA(G, I).

1. If I is non-empty,

(a) choose an arbitrary vertexv ∈ I. Let e1, e2, e3 be the edges incident tov.

(b) calculate A(G/e1/e2/e3, I \ {v}), A(G/e1/e2\e3, I \ {v}), A(G/e1\e2/e3, I \ {v}),
A(G\e1/e2/e3, I \ {v}) andA(G\e1\e2\e3, I \ {v}).

(c) Let Ev = {e1, e2, e3} (for notational convenience). For each subsetS ⊆ Ev determine the coefficient
fS(x, y) in the formulaT(G; x, y) =

∑
S⊆Ev

fS(x, y)T(G/S\(Ev \ S)); x, y).

(d) Output
∑

S⊆Ev
fS(x, y)A(G/S\(Ev \ S); x, y) using the identityA(G\e1\e2\e3, I \ {v}) =

A(G/e1\e2\e3, I \ {v}) = A(G\e1/e2\e3, I \ {v}) = A(G\e1\e2/e3, I \ {v}).

2. Otherwise, computeT(G; x, y) by the contraction-deletion formula and output it.

The correctness argument goes along the same line as Section 3.1. As for the running time analysis, we only
need to observe that the number of subinstances we get in the end is at most5|I|. Thus, the analysis is verbatim.

Since the generalization to graphs of maximum degreek is also verbatim, we obtain the following theorem.

Theorem 4.1. For any fixedk ≥ 2, we can compute the Tutte polynomial of a graph of maximum degreek

in O∗((2(1 − k
2k )

2
k(k+1) )m) time. In particular, the Tutte polynomial of a3-regular graph can be computed in

O∗(1.8494m) time.

4.2 Unit interval graphs

It is easy to see that the Tutte polynomial of a graphG is the product of the Tutte polynomials of the2-connected
components ofG. Hence, we may assume that our unit interval graphG = (V, E) is 2-connected. LetI be a unit
interval representation ofG with the corresponding bijectionψ. Similarly to the algorithm given in Section 3.2, we
compute the Tutte polynomial, evaluated at an arbitrarily given point(x, y) in the following way. However, here
we have to deal with isthmuses carefully. Let{C1, . . . , Ck} be a clique partition ofG, andF1, . . . , Fk be forests
of G[C1], . . . , G[Ck] respectively. The algorithm given in Section 3.2 constructed a graphG ′ by contracting the
edges inFi and deleting the edges inE(G[Ci]) \ Fi for all i and then computed the number of forests inG ′ in a
naive way. Since the Tutte polynomial is independent from the order of contraction/deletion operations performed
on the edges, we may first delete the edges inE(G[Ci]) \ Fi and then contract the edges inFi according to some
order. Some of the edges inFi can be isthmuses in the course of successive contractions, and we need to multiply
x to the Tutte polynomial per encountered isthmus. Namely, we compute the Tutte polynomial of the obtained
graphG ′ and output the polynomial multiplied byxh whereh is the total number of isthmuses we encountered.

Below is a more formal description of our algorithm.

1. Compute a clique partition{C1, . . . , Ck} of G.
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2. Enumerate all forests of the subgraphG[Ci] = (Ci, Ei) of G induced byCi for all i ∈ {1, . . . , k}.

3. For each choice of the forestsF1, . . . , Fk from G[C1], . . . , G[Ck]

(a) construct the graphG ′ from G by first deleting the edges inE1 \ F1, . . . , Ek \ Fk and then contracting
the edges inF1, . . . , Fk.

(b) Let h be the number of contracted isthmuses in the step above.

(c) ComputeT(G ′; x, y) by the contraction-deletion formula and storexhT(G ′; x, y).

4. Output the sum of thexhT(G ′; x, y)’s computed in the previous step.

The correctness and the running time analysis go along the same line as Section 3.2. As a consequence, we obtain
the following theorem.

Theorem 4.2. We can compute the Tutte polynomial of a unit interval graph in O∗(1.9706m) time.

5 Conclusion and open problems

We have seen #P-completeness results and fast (exponential-time) algorithms for the forest counting problem in
some classes of graphs. We have further observed that the method can be generalized to the Tutte polynomial
computation.

One of the major open questions is the complexity status of the forest counting (or the Tutte polynomial
computation) for unit interval graphs. We do not even know that the problem is #P-complete or not for (not
necessarily unit) interval graphs. For chordal graphs, we do not know any algorithm faster than the trivial O∗(2m)-
time algorithm. Finding such an algorithm seems a challenge.
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