
Improved Bounds for Wireless Localization

Tobias Christ1, Michael Hoffmann1, Yoshio Okamoto2, and Takeaki Uno3

1 Institute for Theoretical Computer Science, ETH Zürich, Switzerland
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Abstract. We consider a novel class of art gallery problems inspired by
wireless localization. Given a simple polygon P , place and orient guards
each of which broadcasts a unique key within a fixed angular range.
Broadcasts are not blocked by the edges of P . The interior of the poly-
gon must be described by a monotone Boolean formula composed from
the keys. We improve both upper and lower bounds for the general setting
by showing that the maximum number of guards to describe any simple
polygon on n vertices is between roughly 3

5
n and 4

5
n. For the natural

setting where guards may be placed aligned to one edge or two consec-
utive edges of P only, we prove that n − 2 guards are always sufficient
and sometimes necessary.

1 Introduction

Art gallery problems are a classic topic in discrete and computational geometry,
dating back to the question posed by Victor Klee in 1973: “How many guards
are necessary, and how many are sufficient to patrol the paintings and works of
art in an art gallery with n walls?” Chvátal [2] was the first to show that bn/3c
guards are always sufficient and sometimes necessary, while the beautiful proof
of Fisk [6] made it into “the book” [1]. Nowadays there is a vast literature [12,
14, 16] about variations of this problem, ranging from optimization questions
(minimizing the number of guards [10] or maximizing the guarded boundary [7])
over special types of guards (mobile guards [11] or vertex pi-guards [15]) to
special types of galleries (orthogonal polygons [8] or curvilinear polygons [9]).

A completely different direction has recently been introduced by Eppstein,
Goodrich, and Sitchinava [5]. They propose to modify the concept of visibility by
not considering the edges of the polygon/gallery as blocking. The motivation for
this model stems from communication in wireless networks where the signals are
not blocked by walls, either. For illustration, suppose you run a café (modeled,
say, as a simple polygon P ) and you want to provide wireless Internet access
to your customers. But you do not want the whole neighborhood to use your
infrastructure. Instead, Internet access should be limited to those people who
are located within the café. To achieve this, you can install a certain number
of devices, let us call them guards, each of which broadcasts a unique (secret)
key in an arbitrary but fixed angular range. The goal is to place guards and
adjust their angles in such a way that everybody who is inside the café can
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prove this fact just by naming the keys received and nobody who is outside the
café can provide such a proof. Formally this means that P can be described by
a monotone Boolean formula over the keys, that is, a formula using the oper-
ators And and Or only, negation is not allowed. It is convenient to model a
guard as a subset of the plane, namely the area where the broadcast from this
guard can be received. This area can be described as an intersection or union of
at most two halfplanes. Using this notation, the polygon P is to be described
by a combination of the operations union and intersection over the guards.

a b

cd

p

q

For example, the first polygon to the right can be de-
scribed by (a ∪ b) ∩ c ∩ d.

Natural guards. Natural locations for guards are
the vertices and edges of the polygon. A guard which is
placed at a vertex of P is called a vertex guard. A vertex
guard is natural if it covers exactly the interior angle of
its vertex. But natural vertex guards alone do not always
suffice [5], as the second polygon P shown to the right
illustrates: No natural vertex guard can distinguish the
point p inside P from the point q outside of P . A guard
placed anywhere on the line given by an edge of P and broadcasting within an
angle of π to the inner side of the edge is called a natural edge guard. Dobkin,
Guibas, Hershberger, and Snoeyink [4] showed that n natural edge guards are
sufficient for any simple polygon with n edges.

Vertex guards. Eppstein et al. [5] proved that any simple polygon with
n edges can be guarded using at most n − 2 (general, that is, not necessarily
natural) vertex guards. More generally, they show that n+2(h−1) vertex guards
are sufficient for any simple polygon with n edges and h holes. This bound is not
known to be tight. Damian, Flatland, O’Rourke, and Ramaswami [3] describe
simple polygons with n edges which require at least b2n/3c − 1 vertex guards.

General guards. In the most general setting, we do not have any restriction
on the placement and the angles of guards. So far the best upper bound known
has been the same as for vertex guards, that is, n − 2. On the other hand, if
the polygon does not have collinear edges then at least dn/2e guards are always
necessary [5]. The lower bound construction of Damian et al. [3] for vertex guards
does not provide an improvement in the general case, where these polygons can
be guarded using at most dn/2e + 1 guards. As O’Rourke wrote [13]: “The
considerable gap between the dn/2e and n− 2 bounds remains to be closed.”

Results. We provide a significant step in bringing the two bounds for general
guards closer together by improving both on the upper and on the lower side. On
one hand we show that for any simple polygon with n edges b(4n−2)/5c guards
are sufficient. The result generalizes to polygons combined in some way by the
operations intersection and/or union. Any simple polygon with h holes can be
guarded using at most b(4n− 2h− 2)/5c guards. On the other hand we describe
a family of polygons which require at least d(3n − 4)/5e guards. Furthermore,
we extend the result of Dobkin et al. [4] to show that n − 2 natural (vertex or
edge) guards are always sufficient. It turns out that this bound is tight.
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Table 1. Number of guards needed for a simple polygon on n vertices.
The mark ∗ indicates the results of this paper.

natural general
vertex guards guards vertex guards guards

upper bound does not exist [5] n − 2 [∗] n − 2 [5] b(4n − 2)/5c [∗]
lower bound does not exist [5] n − 2 [∗] b2n/3c − 1 [3] d(3n − 4)/5e [∗]

2 Notation and Basic Properties

We are given a simple polygon P ⊂ IR2. A guard g is a closed subset of the
plane, whose boundary ∂g is described by a vertex v and two rays emanating
from v. The ray that has the interior of the guard to its right is called the left
ray, the other one is called the right ray. The angle of a guard is the interior
angle formed by its rays. For a guard with angle π, the vertex is not unique.

A guard g covers an edge e of P completely if e ⊆ ∂g and their orientations
match, that is, the inner side of e is on the inner side of g. We say e is covered
partly by g if their orientations match and e ∩ ∂g is a proper sub-segment of e
that is not just a single point. We call a guard a k-guard if it covers exactly k
edges completely. As P is simple, a guard can cover at most one edge partly.
If a guard covers an edge partly and k edges completely, we call it a k′-guard.
Assuming there are no collinear edges, a guard can cover at most two edges; then
a natural vertex guard is a 2-guard and a natural edge guard is a 1-guard. A
guarding G(P ) for P is a formula composed of a set of guards and the operators
union and intersection that defines P . The wireless localization problem is to
find a guarding with as few guards as possible. The same problem is sometimes
referred to as guard placement for point-in-polygon proofs or the sculpture garden
problem [5]. The following basic properties are restated without proof.

Observation 1. For any guarding G(P ) and for any two points p ∈ P and
q /∈ P there is a g ∈ G(P ) which distinguishes p and q, that is, p ∈ g and q /∈ g.

Lemma 1. [4] Every edge of P must be covered by at least one guard or it must
be covered partly by at least two guards.
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Fig. 1. (a) a 2-guard, (b) a 1-guard (and a natural edge guard), (c) a 2-guard (and a
natural vertex guard), (d) a 2-guard, (e) a 0-guard, (f) a 0-guard, (g) a 1-guard (not a
1′-guard), (h) a 1-guard (a non-natural vertex guard), (i) a 1′-guard.
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3 Upper Bounds

Following Dobkin et al. [4] we use the notion of a polygonal halfplane which is a
topological halfplane bounded by a simple bi-infinite polygonal chain with edges
(e1, . . . , en), for n ∈ IN. For n = 1, the only edge e1 is a line and the polygonal
halfplane is a halfplane. For n = 2, e1 and e2 are rays which share a common
source but are not collinear. For n ≥ 3, e1 and en are rays, ei is a line segment,
for 1 < i < n, and ei and ej , for 1 ≤ i < j ≤ n, do not intersect unless j = i + 1
in which case they share an endpoint. For brevity we use the term chain in place
of simple bi-infinite polygonal chain in the following. For a polygonal halfplane
H define γ(H) to be the minimum integer k such that there exists a guarding
G(H) for H using k guards. Similarly, for a natural number n, denote by γ(n)
the maximum number γ(H) over all polygonal halfplanes H that are bounded
by a chain with n edges. Obviously γ(1) = γ(2) = 1. Dobkin et al. [4] show that
γ(n) ≤ n.

Lemma 2. Any simple polygon P on n ≥ 4 vertices is an intersection of two
polygonal halfplanes each of which consists of at least two edges.

Proof. Let p− and p+ be the vertices of P with minimal and maximal x-coordinate,
respectively. If they are not adjacent along P , split the circular sequence of edges
of P at both p− and p+ to obtain two sequences of at least two segments each.
Transform each sequence into a chain by linearly extending the first and the
last segment beyond p− or p+ to obtain a ray. As p− and p+ are opposite ex-
tremal vertices of P , the two chains intersect exactly at these two points. Thus,
the polygon P can be expressed as an intersection of two polygonal halfplanes
bounded by these chains. Now consider the case that p− and p+ are adjacent
along P . Without loss of generality assume that P lies above the edge from p−
to p+. Rotate clockwise until another point q has x-coordinate larger than p+.
If q and p− are not adjacent along P , then split P at these points. Otherwise
the convex hull of P is the triangle qp−p+. In particular, q and p+ are opposite
non-adjacent extremal vertices and we can split as described above. ut

Theorem 3. Any simple polygon P with n ≥ 4 edges can be guarded using at
most n− 2 natural (vertex or edge) guards.

Proof. Dobkin et al. [4] showed that for any chain there is a Peterson-style
formula, that is, a guarding using natural edge guards only in which each guard
appears exactly once and guards appear in the same order as the corresponding
edges appear along the chain. Looking at the expression tree of this formula
there is at least one vertex both of whose children are leaves. In other words,
there is an operation (either union or intersection) that involves only two guards.
As these two guards belong to two consecutive edges of P , we can replace this
operation in the formula by the natural vertex guard of the common vertex,
thereby saving one guard. Doing this for both chains as provided by Lemma 2
yields a guarding for P using n− 4 natural edge guards and two natural vertex
guards. ut
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The (closure of) the complement of a polygonal halfplane H, call it H, is a
polygonal halfplane as well.

Observation 2. Any guarding for H can be transformed into a guarding for H
using the same number of guards.

Proof. Use de Morgan’s rules and invert all guards (keep their location but flip
the angle to the complement with respect to 2π). Note that the resulting formula
is monotone. Only guards complementary to the original ones appear (in SAT
terminology: only negated literals); a formula is not monotone only if both a
guard and its complementary guard appear in it.

Corollary 4. Let P1, . . . , Pm be a collection of m ≥ 1 simple polygons t of
which are triangles, for 0 ≤ t ≤ m. Let R be a region that can be described as
a formula composed of the operations intersection, union, and complement over
the variables {P1, . . . , Pm} in which each Pi appears exactly once. Then R can
be guarded using at most n− 2m + t natural (vertex or edge) guards, where n is
the total number of edges of the polygons Pi, for 1 ≤ i ≤ m. ut

Corollary 5. Any simple polygon with n ≥ 4 edges and h non-triangular holes
can be guarded using at most n− 2(h + 1) natural (vertex or edge) guards. ut

Our guarding scheme for chains is based on a recursive decomposition in
which at each step the current chain is split into two or more subchains. At each
split some segments are extended to rays and we have to carefully control the
way these rays interact with the remaining chain(s). This is particularly easy if
the split vertex lies on the convex hull because then the ray resulting from the
segment extension cannot intersect the remainder of the chain at all. However,
we have to be careful what we mean by convex hull. Instead of looking at the
convex hull of a polygonal halfplane H we work with the convex hull of its
bounding chain C. The convex hull h(C) of a chain C = (e1, . . . , en), for n ≥ 2,
is either the convex hull of H or the convex hull of H, whichever of these two
is not the whole plane which solely depends on the direction of the two rays of
C. The boundary of h(C) is denoted by ∂h(C). There is one degenerate case,
when the two rays defining C are parallel and all vertices are contained in the
strip between them; in this case, h(C) is a strip bounded by the two parallel
lines through the rays and thus ∂h(C) is disconnected.

Theorem 6. Any polygonal halfplane bounded by a simple bi-infinite polygonal
chain with n ≥ 2 edges can be guarded using at most b(4n− 1)/5c guards.

Proof. The statement is easily checked for 2 ≤ n ≤ 3. We proceed by induction
on n. Let C be any chain with n ≥ 4 edges. Denote the sequence of edges along
C by (e1, . . . , en) and let vi, for 1 ≤ i < n, denote the vertex of C incident to ei

and ei+1. The underlying (oriented) line of ei, for 1 ≤ i ≤ n, is denoted by `i.
For 2 ≤ i ≤ n− 1, let e+

i be the ray obtained from ei by extending the segment
linearly beyond vi. Similarly e−i refers to the ray obtained from ei by extending
the segment linearly beyond vi−1. For convenience, let e+

1 = `1 and e−n = `n.
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(a) Case 1.

∆
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∆
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(c) Case 3.

Fig. 2. The chain C can interact with the shaded region ∆ in three possible ways. The
label ∅ marks an area which does not contain any vertex from C.

Without loss of generality (cf. Observation 2) suppose that v1 is reflex, that is,
the interior of the region bounded by C lies in the angle of C incident to v1 which
is larger than π. If there is any vertex vi on ∂h(C), for some 1 < i < n− 1, then
split C into two chains C1 = (e1, . . . , e

+
i ) and C2 = (e−i+1, . . . , en). We obtain

a guarding for C as G(C1) ∪ G(C2) and thus γ(C) ≤ γ(i) + γ(n − i), for some
2 ≤ i ≤ n − 2. As both i ≥ 2 and n − i ≥ 2, we can bound by the inductive
hypothesis γ(C) ≤ b(4i−1)/5c+b(4n−4i−1)/5c ≤ b(4i−1)/5+(4n−4i−1)/5c ≤
b(4n− 1)/5c. Else, if both e1 and en are part of ∂h(C) and `1 intersects `n then
we place a guard g that covers both rays at the intersection of `1 and `n to obtain
a guarding g∪G(e−2 , . . . , e+

n−1) for C. Therefore, in this case γ(C) ≤ 1+γ(n−2).
Observe that this is subsumed by the inequality from the first case with i = 2.
Otherwise, either `1 does not intersect `n and thus v1 and vn−1 are the only
vertices of ∂h(C) (the degenerate case where ∂h(C) is disconnected) or without
loss of generality (reflect C if necessary) v1 is the only vertex of ∂h(C). Let ∆
denote the open wedge bounded by e1 and e+

2 . We distinguish three cases.
Case 1. There is a vertex of C in ∆ and among these, a vertex furthest from

`2 is vi, for some 3 ≤ i ≤ n− 2 (Fig. 2(a)). Split C into three chains, C1 = (`1),
C2 = (e−2 , . . . , e+

i ), and C3 = (e−i+1, . . . , en). By the choice of vi there is no inter-
section between C2 and C3 other than at vi. A guarding for C can be obtained as
G(C1)∪(G(C2)∩G(C3)). In this case γ(C) ≤ 1+γ(j)+γ(n−j−1), for some 2 ≤
j ≤ n−3. Since j ≥ 2 and n−j−1 ≥ n−(n−3)−1 = 2, we can apply the inductive
hypothesis to bound γ(C) ≤ 1+ b(4j−1)/5c+ b(4n−4j−5)/5c ≤ b(4n−1)/5c.

v1

v2e1

e2

vn−1 en

vi

e−i+1e+
i

g . . .

. . . C1

C2

Case 2. There is a vertex of C in ∆ and among
these, the unique one furthest from `2 is vn−1

(Fig. 2(b)). We may suppose that `1 intersects `n;
otherwise (in the degenerate case where ∂h(C) is
disconnected), exchange the roles of v1 and vn−1.
We cannot end up in Case 2 both ways. Let ∆′

denote the open (convex) wedge bounded by en

and e−n−1. If there is any vertex of C in ∆′, let
vi be such a vertex which is furthest from `n−1.
Let C1 = (e1, . . . , e

+
i ) and C2 = (e−i+1, . . . , e

+
n−1).
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Both C1 and C2 are simple, except that their first and their last ray may intersect
(in that case split the resulting polygon into two chains). Put a guard g at the
intersection of `n with e1 such that g covers en completely and e1 partially (see
figure, the small stripes indicate the side to be guarded). A guarding for C can
be obtained as g∩(G(C1)∪G(C2)). Again this yields γ(C) ≤ 1+γ(i)+γ(n−i−1),
for some 2 ≤ i ≤ n− 3, and thus γ(C) ≤ b(4n− 1)/5c as above in Case 1.

v1

v2e1

en

g1

...

en−1

g2

∅
∅

∅

e+
n−2

∅

e−2

C′

Otherwise there is no vertex of C in ∆′. We
distinguish two sub-cases. If e+

n−1 intersects e1

then put two guards (see figure): a first guard
g1 at the intersection of `n with e1 such that
g1 covers en completely and e1 partially, and a
second guard g2 at the intersection of `n−1 with
e1 such that g2 covers en−1 completely and e1

partially. Together g1 and g2 cover e1 and g1 ∩
(g2∪G(C ′)) provides a guarding for C, with C ′ =
(e−2 , . . . , e+

n−2). In this case we obtain γ(C) ≤
2+γ(n−3) and thus by the inductive hypothesis
γ(C) ≤ 2 + b(4n− 13)/5c ≤ b(4n− 1)/5c.

v1

v2
e1

en

g
∅

∅
∅

e2

C ′

...

e+
n−1

∅

Finally, suppose that e+
n−1 does not intersect

e1. Then for the chain C ′ = (e1, . . . , e
+
n−1) there

is some vertex other than v1 on the convex hull
boundary h(C ′). Thus we can obtain a guarding
for C ′ as described above for the case that there
is more than one vertex on the convex hull. Put
a guard g at the intersection of `n with e1 such
that g covers en completely and e1 partially (see
figure). This yields a guarding g ∩ G(C ′) for C
with γ(C) ≤ 1 + γ(C ′) ≤ 1 + γ(i) + γ(n− i− 1),
for some 2 ≤ i ≤ n−3. As in Case 1 we conclude
that γ(C) ≤ b(4n− 1)/5c.

Case 3. There is no vertex of C in ∆ (Fig. 2(c)). Let ∆′′ denote the open
(convex) wedge bounded by e−2 and e+

3 . If e−3 does not intersect e1 then put
a natural vertex guard g at v1 to obtain a guarding g ∩ G(C ′) for C, where
C ′ = (e−3 , . . . , en). This yields γ(C) ≤ 1 + γ(n − 2) and thus by the inductive
hypothesis γ(C) ≤ 1 + b(4n− 9)/5c ≤ b(4n− 1)/5c.

v1

v2

v3

e1

e2

∅

e−3

∅

∅

g1

g2

Now suppose that e−3 intersects e1. We distinguish
two sub-cases. If there is no vertex of C in ∆′′, then
place two guards: a natural vertex guard g1 at v1 and a
guard g2 at the intersection of e−3 with e1 such that g1

covers e3 completely and e1 partially. A guarding for C
is provided by g1∩(g2∪G(C ′)), with C ′ = (e−4 , . . . , en).
In this case we obtain γ(C) ≤ 2 + γ(n − 3) and thus
in the same way as shown above γ(C) ≤ b(4n− 1)/5c.

Otherwise there is a vertex of C in ∆′′. Let vi, for some 4 ≤ i ≤ n − 1,
be a vertex of C in ∆′′ which is furthest from `3. First suppose e−i+1 does not
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intersect e2. Then neither does e+
i and hence we can split at vi in the same way

as if vi would be on ∂h(C). If i = n − 1, e−n must intersect e2 (otherwise, en

would be on ∂h(C)). Thus we have i < n− 1 and both chains consist of at least
two segments/rays.

v1

v2

vi

e∗1 ∅

∅

g ∅e+
i

e∗i+1
...

. . .

e−3

C1

C2
v′

Now suppose that e−i+1 intersects e2 and thus e1,
and denote the point of intersection between e−i+1 and
e1 by v′. Let e∗1 be the ray originating from v′ in di-
rection e1, and let e∗i+1 denote the segment or ray (for
i = n− 1) originating from v′ in direction e−i+1. Place
a natural vertex guard g at v1. Regardless of whether
or not e+

i intersects e2 and e1, a guarding for C is pro-
vided by g ∩ (G(C1) ∪ G(C2)), with C1 = (e−3 , . . . , e+

i )
and C2 = (e∗1, e

∗
i+1 . . . , en) (if i = n − 1 then C2 =

(e∗1, e
∗
n)). Observe that by the choice of vi both C1 and C2 are simple and

γ(C) ≤ 1 + γ(j) + γ(n − j − 1), for some 2 ≤ j ≤ n − 3. As above, this yields
γ(C) ≤ b(4n− 1)/5c.

We have shown that in every case γ(C) ≤ b(4n−1)/5c and as C was arbitrary
it follows that γ(n) ≤ b(4n− 1)/5c. ut

Corollary 7. Any simple polygon P with n edges can be guarded using at most
b(4n− 2)/5c guards.

Corollary 8. Let P1, . . . , Pm be a collection of m ≥ 1 simple polygons with n
edges in total, and let R be a region that can be described as a formula com-
posed of the operations intersection, union, and complement over the variables
{P1, . . . , Pm} in which each Pi appears exactly once. Then R can be guarded
using at most b(4n− 2m)/5c guards.

Corollary 9. Let P be any simple polygon P with h holes such that P is bounded
by n edges in total. Then P can be guarded using at most b(4n−2h−2)/5c guards.

4 Lower Bounds

For any natural number m we construct a polygon Pm with 2m edges which
requires “many” guards. The polygon consists of spikes S1, S2, ..., Sm arranged
in such a way that the lines through both edges of a spike cut into every spike to
the left (see Fig. 3). Denote the apex of Si by wi and its left vertex by vi. The edge
from vi to wi is denoted by ei, the edge from wi to vi+1 by fi. We can construct
Pm as follows: Consider the two hyperbolas

{
(x, y) ∈ IR2 | x ≥ 1, y = 1

x

}
and{

(x, y) ∈ IR2 | x ≥ 1, y = − 1
x

}
. Let v1 := (1, 1) and w1 := (1,−1). Then choose

f1 tangential to the lower hyperbola. Let v2 be the point where the tangent of the
lower hyperbola intersects the upper hyperbola, that is, v2 = (1 +

√
2, 1

1+
√

2
).

Choose w2 to be the point where the tangent of the upper hyperbola in v2

intersects the lower hyperbola, and proceed in this way. When reaching wm,
draw the last edge fm from wm to v1 to close the polygon. Due to the convexity
of the hyperbolas, Pm has the claimed property.
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S4

v1

v2

v3

v4

w1

w2
w3 w4

e1 f1

e2 f2
e3

f3
e4

f4

Fig. 3. Example consisting of four spikes.

No two edges of Pm are collinear. Consider the line arrangement defined by
the edges of Pm. No two lines intersect outside Pm, unless one of them is the
line through fm. This leads to the following observation.

Observation 3. In any guarding for Pm every 2-guard that does not cover fm

is a natural vertex guard.

Theorem 10. For any even natural number n there exists a simple polygon with
n edges which requires at least n− 2 natural guards.

fi−1

ei

fi

ei+1
fi+1

Si+1

Si−1

wi

vi+1

wi+1

Si

viWe say a guard belongs to a spike Si if it
is a natural edge guard on ei or fi or if it is a
natural vertex guard on vi or wi. As only nat-
ural guards are allowed, every guard belongs
to exactly one spike. The basic idea is that
most spikes must have at least two guards.
Obviously every spike Si has at least one
guard, since ei must be covered (Lemma 1).

Lemma 11. Consider a guarding G(Pm) us-
ing natural guards only, and let i ∈ {1, ...,m−
1}. If only one guard belongs to Si, then this
guard must be on vi or on ei. If neither the guard at wi nor the guard of fi appear
in G(Pm), then both the guard at vi+1 and the guard of ei+1 are in G(Pm).

Proof. Assume only one guard from G(Pm) belongs to Si. It cannot be the natural
edge guard of fi, because this would leave ei uncovered (Lemma 1). If we had a
guard on wi only, there would be no guard to distinguish a point near vi outside
Pm from a point near vi+1 located inside Pm and below the line through fi (see
the two circles in the figure). Now assume there are no guards at wi nor on fi.
Then to cover the edge fi there must be a vertex guard on vi+1. Furthermore,
the edge guard on ei+1 is the only remaining natural guard to distinguish a point
at the apex of Si near wi from a point located to the right of the apex of Si+1

near wi+1 and above the line through ei+1 (depicted by two crosses). ut
This lemma immediately implies Theorem 10. Proceed through the spikes

from left to right. As long as a spike has at least two guards which belong to it,
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we are fine. Whenever there appears a spike Si with only one guard, we know
that there must be at least two guards in Si+1 namely at vi+1 and on ei+1.
Either there is a third guard that belongs to Si+1, and thus both spikes together
have at least four guards; or again we know already two guards in Si+2. In this
way, we can go on until we either find a spike which at least three guards belong
to or we have gone through the whole polygon. So whenever there is a spike with
only one guard either there is a spike with at least three guards that makes up
for it, or every spike till the end has two guards. Hence there can be at most one
spike guarded by one guard only that is not made up for later. For the last spike
Sm the lemma does not hold and we only know that it has at least one guard.
So all in all there are at least 2(m− 2) + 1 + 1 = n− 2 guards.

If we allow general (vertex) guards, it is possible to find guardings for Pm

using roughly 2n/3 guards, which is in accord with the lower bound in [3].

Theorem 12. For any even natural number n there exists a simple polygon with
n edges which requires at least d(3n− 4)/5e guards.

Proof. Consider a polygon Pm as defined above, and let G(Pm) be a guarding for
Pm. Define a to be the number of 2-guards in G(Pm), and let b be the number
of other guards. All the n edges of P have to be covered somehow. An edge
can be covered completely by a 2-guard, a 1-guard, or a 1′-guard. If no guard
covers it completely, then the edge must be covered by at least two guards partly
(Lemma 1). Moreover, at least one of these guards, namely the one covering the
section towards the right end of the edge, is a 0′-guard, because the orientation
can not be correct to cover a second edge. So if an edge e is not covered by a
2-guard, then there is at least one guard that does not cover any edge other than
e. Therefore 2a + b ≥ n.

For any i ∈ {1, ...,m−2} let hi be the directed line segment from the intersec-
tion of the lines through ei+1 and ei+2 to vi+2 (see Fig. 4). Similarly, let h′i be the
line segment from wi+1 to the intersection of the lines through fi and fi+1. As in
Lemma 11, consider pairs (p1, q1), ..., (pm−2, qm−2) and (p′1, q

′
1), ..., (p

′
m−2, q

′
m−2)

of points infinitesimally close to the starting point or the endpoint of the corre-
sponding line segment, located as follows: pi, p

′
i ∈ Pm for all i, qi, q

′
i /∈ Pm for all

i, pi is outside the natural vertex guard at wi+1, whereas qi is inside the natural
vertex guard at wi+2, and similarly, p′i is outside the natural vertex guard at
vi+2, whereas q′i is inside the natural vertex guard at vi+1. There are n− 4 such
pairs, and they need to be distinguished somehow (Observation 1). Any natural
vertex guard can distinguish at most one pair, and the same is true for any
(non-natural) 2-guard located along the line through fm. Thus any 2-guard in
G(Pm) distinguishes at most one of the pairs (Observation 3).

We claim that every guard g in G(Pm) can distinguish at most three of these
pairs. Denote the vertex of g by vg, and let `g and rg denote the left and right
ray of g, respectively. Assume g distinguishes pi from qi. If vg is to the left
of hi, then—in order to distinguish pi from qi—the ray rg must intersect hi.
Symmetrically, if vg is to the right of hi, then `g must intersect hi. Finally, if
vg is on the line through hi then it must be on the line segment hi itself. To
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Fig. 4. The pairs (pi, qi) and (p′
i, q

′
i) must be distinguished.

distinguish pi from qi, the endpoint of hi (i.e. vi+2) must be inside g (possibly
on the boundary of g), hence `g must point to the left side of hi or in the same
direction as hi, and rg must point to the right side of hi or in the same direction.
Now assume g distinguishes p′i and q′i. If vg is to the right of h′i, then `g must
intersect it, if it is to the left rg must intersect it. If vg lies on h′i, `g leaves to
the left and rg to the right, or either or both rays lie on h′i. In any case either `g

intersects hi (h′i, respectively) coming from the right side of hi (h′i) and leaving
to the left side, or rg intersects hi (h′i) coming from the left side and leaving
to the right, or `g starts on hi (h′i) itself leaving to the left or rg starts on the
line segment itself leaving to the right (see Fig. 5). If rg leaves an oriented line
segment to the right side of the segment or if `g leaves an oriented line segment
to the left side, we say the ray crosses the line segment with correct orientation.
So whenever a pair (pi, qi) or (p′i, q

′
i) is distinguished by g, then at least one of

the rays `g or rg has a correctly oriented crossing with hi (h′i, respectively). The
line segments h1, ..., hm−2 lie on a oriented convex curve C, which we obtain
by prolonging every line segment until reaching the starting point of the next
one. Extend the first and last line segment to infinity vertically and horizontally,
respectively. In the same way define a curve C ′ for h′1, ..., h

′
m−2 (see Fig. 4).

Any ray can cross a convex curve at most twice. Because of the way C and C ′

are situated with respect to each other (a line that crosses C twice must have
negative slope, to cross C ′ twice positive slope) a ray can intersect C∪C ′ at most
three times. But we are only interested in crossings with correct orientation. If a
ray crosses a curve twice, exactly one of the crossings has the correct orientation.
If a ray crosses both C and C ′ once, exactly one of the crossings has the correct
orientation. Therefore any ray can have at most two correctly oriented crossings.
If one of the rays has two correctly oriented crossings, the other ray has at most
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Fig. 5. Different ways g can distinguish p and q. In every case `g intersects h leaving
to the left side or rg intersects h leaving to the right.

one. Thus both rays together can have at most three correctly oriented crossings,
and therefore g can distinguish at most three pairs. This leads to the second
inequality a + 3b ≥ n− 4. Both inequalities together imply a + b ≥ 3n−4

5 . ut
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2. Chvátal, V.: A Combinatorial Theorem in Plane Geometry. J. Combin. Theory Ser.
B 18, 39–41 (1975)

3. Damian, M., Flatland, R., O’Rourke, J., Ramaswami, S.: A New Lower Bound on
Guard Placement for Wireless Localization. 17th Annual Fall Workshop on Com-
putational Geometry (2007)

4. Dobkin, D.P., Guibas, L., Hershberger, J., Snoeyink, J.: An Efficient Algorithm for
Finding the CSG Representation of a Simple Polygon. Algorithmica 10,1–23 (1993)

5. Eppstein, D., Goodrich, M.T., Sitchinava, N.: Guard Placement for Efficient Point-
in-Polygon Proofs. In: Proc. 23rd Annu. Sympos. Comput. Geom., pp. 27–36 (2007)
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