Counting the Number of Independent Sets in Chordal Graphs

Y OSHIO OKAMOTOZ, TAKEAKI UNO3, RYUHEI UEHARA?

Abstract: We study some counting and enumeration problems for chordal graphs, especially concerning independent
sets. We first provide the following efficient algorithms for a chordal graph: (1) a linear-time algorithm for counting
the number of independent sets; (2) a linear-time algorithm for counting the number of maximum independent sets;
(3) a polynomial-time algorithm for counting the number of independent sets of a fixed size. With similar ideas, we
show that enumeration (namely, listing) of the independent sets, the maximum independent sets, and the independent
sets of a fixed size in a chordal graph can be done in constant time per output. On the other hand, we prove that the
following problems for a chordal graph a#®-complete: (1) counting the number of maximal independent sets; (2)
counting the number of minimum maximal independent sets. With similar ideas, we also show that finding a minimum
weighted maximal independent set in a chordal graptHshard, and even hard to approximate.

Keywords: Chordal graph, counting, enumeration, independeni\s&tzompletenesstP-completeness, polynomial

time algorithm.

1 Introduction

How can we cope with computationally hard graph problems? There are several possible answers, and one of them is
to utilize the special graph structures arising from a particular context. This has been motivating the study of special
graph classes in algorithmic graph theory [3, 14]. This paper deals with counting and enumeration problems from this
perspective. Recently, counting and enumeration of some specified sets in a graph have been widely investigated, e.g.,
in the data mining area. In general, however, from the graph-theoretic point of view, those problems are hard even
if input graphs are quite restricted. For example, counting the number of independent sets in a planar bipartite graph
of maximum degree 4 i8P-complete [22]. Therefore, we wonder what kind of graph structures makes counting and
enumeration problems tractable.

In this paper, we consider chordal graphsci#ordal graphis a graph in which every cycle of length at least four
has a chord. From the practical point of view, chordal graphs have numerous applications in, for example, sparse
matrix computation (e.g., see Blair & Peyton [2]), relational databases [1], and computational biology [4]. Chordal
graphs have been widely investigated, and they are sometimes called triangulated graphs, or rigid circuit graphs (see,
e.g., Golumbic’s book [14, Epilogue 2004]). A chordal graph has various characterizations; for example, a chordal
graph is an intersection graph of subtrees of a tree, and a graph is chordal if and only if it admits a special vertex
ordering, called perfect elimination ordering [3]. Also, the class of chordal graphs forms a wide subclass of perfect
graphs [14].

It is known that many graph optimization problems can be solved in polynomial time for chordal graphs; to list a
few of them, the maximum weighted clique problem, the maximum weighted independent set problem, the minimum
coloring problem [13], the minimum maximal independent set problem [9]. There are also parallel algorithms to solve

1An extended abstract of this paper appeared in the proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2005), pages 433-444, Lecture Notes in Compter Science Vol. 3787, Springer Verlag, 2005.

2Department of Information and Computer Sciences, Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi, Aichi 441-
8580, Japanokamotoy@ics.tut.ac.jp

3National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japa@nii.jp

4Corresponding author. School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa
923-1292, Japanuehara@jaist.ac.jp

Table 1: Summary of the results. We denote the number of vertices and edgemloyn respectively. The running

times for enumeration algorithms refer to time per output.

Chordal graphs

Counting [ref.]

Enumeration [ref.]

independent sets Omn+m) o(1)
[this paper] [this paper]
maximum independent sets O(mn+m) o(1)
[this paper] [this paper]
independent sets of size O(k?(m +m)) o
[this paper] [this paper]
maximal independent sets #P-complete Om+m)
[this paper] [8, 16]

minimum maximal independent sets #P-complete
[this paper]

some of these problems efficiently [15]. However, relatively fewer problems have been studied for enumeration and
counting in chordal graphs; the only algorithms we are aware of are the enumeration algorithms for all maximal cliques
[12], all maximal independent sets [16] (see also conclusions in a paper of Eppstein [8]), all minimum separators and
minimal separators [5], and all perfect elimination orderings [6].

In this paper, we investigate the problems concerning the number of independent sets in a chordal graph. Table
1 lists the results of the paper. We first give the following efficient algorithms for a chordal graph; (1) a linear-time
algorithm to count the number of independent sets, (2) a linear-time algorithm to count the number of maximum
independent sets, and (3) a polynomial-time algorithm to count the number of independent sets of a given size. The
running time of the third algorithm is linear when the size is constant. Note that in general counting the number
of independent sets and the number of maximum independent sets in a gtdphamplete [18], and counting the
number of independent sets of sizin a graph isfW[1]-complete [11] (hamely, intractable in a parameterized sense).

Let us also note that the time complexity here refers to the arithmetic operations, not to the bit operations.

The basic idea of these efficient algorithms is to invoke a clique tree associated with a chordal graph and perform a
bottom-up computation via dynamic programming on the clique tree. A clique tree is based on the characterization of
a chordal graph as an intersection graph of subtrees of a tree. Since a clique tree can be constructed in linear time and
the structure of a clique tree is simple, this approach leads to simple and efficient algorithms for the problems above.
However, a careful analysis is necessary to obtain the linear-time complexity.

Along the same idea, we can also enumerate all independent sets, all maximum independent sets, and all indepen-
dent sets of constant size in a chordal grap®ir) time per output.

On the other hand, we show that the following counting problemsgtBreomplete: (1) counting the number of
maximal independent sets in a chordal graph, and (2) counting the number of minimum maximal independent sets
in a chordal graph. Using a modified reduction, we furthermore show that the problem to find a minimum weighted
maximal independent set MP-hard. We also show that the problem is even hard to approximate. More precisely,
there is no polynomial-time approximation algorithm to find such a set within a factdng¥/|, for some constant,
unlessNP C DTIME(n©(loglogn)) This is in contrast with a linear-time algorithm by Farber that finds a minimum
weighted maximal independent set in a chordal graph when the weights are 0 or 1 [9].

The organization of the paper is as follows. Section 2 introduces the concept of a clique tree. In Section 3, we
devise a linear-time algorithm for counting the number of independent sets, and in Section 4, we discuss how to count
the maximum independent sets in linear time. In Section 5, we provide an efficient algorithm for counting the number
of independent sets of each size simultaneously. In Section 6, we briefly describe how to apply our method for counting
to enumeration, which leads to constant time algorithms. In Section 7, we prove that counting the number of maximal
independent sets and counting the number of minimum maximal independent sets are hard. In Section 8, we modify
the reduction in Section 7 to show that it is hard to find a minimum weighted maximal independent set, and even hard
to approximate.

2 Preliminaries

A graphG = (V,E) consists of a finite sét’ of verticesand a collectiort of 2-element subsets a&f callededges
The vertex set and the edge set®ére often denoted by (G) andE(G) respectively. Thaeighborhoodf a vertex
vin a graphG = (V,E) is the sefNg(v) = {u € V | {u,v} € E}, and thedegreeof a vertexv is [Ng(v)| and is
denoted by deg(v). If no confusion can arise we will omit the subscript We denote the closed neighborhood
Ng(v) U{v} by N[v]. Given a graplG = (V,E) and a subsetl C V, thesubgraph ofG induced byll is the graph
(U, F), whereF = {{u,v} € E | u,v € U}, and denoted by [U]. A vertex setl is anindependent seif G if G[I]
contains no edge, and a vertex §ets acliqueif every pair of vertices irC is joined by an edge it. We regard
an empty set as an independent set of size zero. An independentrsetimumif it has the largest size among all
independent sets. An independent seb&ximalif none of its proper supersets is an independent set. An independent
set isminimum maximaif it is maximal and has the smallest size among all maximal independent sets. A maximum
cligue, a maximal cligue and a minimum maximal clique are defined analogously.

An edge which joins two vertices of a cycle but is not itself an edge of the cyclehism @ of the cycle. A graph
is chordalif each cycle of length at least four has a chord. Given a gtaph (V, E), a vertexv € V is simplicial in
G if Ng(v) is a clique inG. An orderingvy, ..., v, of the vertices oV is aperfect elimination orderingf G if the
vertexv; is simplicial inG[{vi,vi1,...,vajl foralli=1,... n. Itis known that a graph is chordal if and only if it
has a perfect elimination ordering [3, Section 1.2]. Given a chordal graph a perfect elimination ordering of the graph
can be found in linear time [19, 21].

To a chordal graplc = (V,E), we associate a treg, called aclique treeof G, satisfying the following three
properties. (A) The nodes dfare the maximal cliques @. (B) Two nodes ofl are adjacent only if their intersection
is non-empty. (C) For every vertexof G, the subgrapf, of T induced by the maximal cliques containings a
tree. (In the literature, the condition (A) is sometimes weakened as each node is a (not necessarily maximal) clique
of G.) It is well known that a graph is chordal if and only if it has a clique tree, and in such a case a clique tree can
be constructed in linear time. Some details are explained in books [3, 20]. The following property is important in the
running time analysis of our algorithms.

Lemma 2.1. LetG = (V, E) be a chordal graph, and denote lythe family of maximal cliques &. Then, it holds
thatZKE;C Kl = O(IVI + [E].

Proof. Take any perfect elimination ordering,v,,...,v, of G. Let C(vi) := Ng[vil N{vi,viz1,...,vn} It
is known that for every maximal cliqu& of G there exists a vertex; € V such thatKk = C(v;) holds [12].
SinceC(vi) € Ngvil, we have|C(vi)| < [Nglvill = 1 + deg;(vi). Putting together, we obtaip - K| <
Y ey ICON < Xy (1+ degs (v)) = VI + 2[E[= O(V] + [EJ). O

3 Linear-Time Algorithm to Count the Independent Sets

In this section, we describe an algorithm for counting the number of independent sets in a chord@.gfaph we
introduce some notations and state some lemmas. Given a chordal@raplV, E), we construct a clique trek of

G. We now pick up any node in the clique tréeregard the node as the root bfand denote it bK,.. This is what
we call arooted clique treeFor a maximal cliqu& in a chordal grapls and a rooted clique trek of G, a maximal
cliqueK’ in G is adescendantf K (with respect tdl) if K’ is a descendant & in T. For convenience, we considér
itself a descendant d&f as well, and when no confusion arises we omit saying “with respekt tbet PRT(K) be the
parent ofK in T. We also denote the set of childrentin T by cHD(K). For convenience, we defimRT(K,.) := 0
andcHD(K,) =) for each leafK,. We denote byl (K) the subtree ol rooted at the node corresponding to the
maximal cliqueK. Let G(K) denote the subgraph &f induced by the vertices included in at least one nodg(i).
Observe thaG(K) is a chordal graph of which(K) is a clique tree.

The basic idea of our algorithm is to divide the input graph into subgraphs induced by subtrees of the (rooted)
cligue treeT. Let K be any maximal clique with two childreld;, K, on a rooted clique tre€. Let T; andT, be two
node-disjoint subtrees dfwhich are rooted at; andK;, respectively. LeC be the set of vertices i@ shared byl;
andT,. Then,C induces a clique, an@ C K. This property is very useful for counting the number of independent
sets since every independent set can contain at most one vertex of thelifluerefore we can partition the family

of independent sets into two groups; a family of independent sets that contain one vert€x fxachthe other family
of independent sets that contain no vertex framMoreover, sinceC C K, (K7 \ K) and(K; \ K) share no vertex.
Thus, in each case, we can divide the counting problem onto two disjoint subg@ékhsandG(K;). Hence we can
use a recursive approach.

For a graphG, let ZS(G) be the family of independent sets @ For a vertexv, let ZS(G, v) be the family of
independent sets i@ includingv, i.e.,ZS(G,v) :={S | S € ZS(G),v € S}. For a vertex set!, let ZS(G, U) be the
family of independent sets iG including no vertex otl, i.e.,ZS(G,U) :={S|S € ZS(G),SN U = §}.

Lemma 3.1. Let G be a chordal graph and be a rooted clique tree db. Choose a maximal cliquk of G, and
let Kq,...,K, be the children incHD(K). Furthermore letv € K andS C V(G(K)). Then,S € ZS(G(K),v)
if and only ifS is represented b$ = {vi US; U--- U S, such thatS; € ZS(G(K;),v) if v belongs toK;, and
S; € IS(G(K;), K N K;) otherwise. Furthermore, such a representation is unique.

Proof. We first show the only-if part. Assume th&te ZS(G(K),v). LetS; := SN G(K;) for everyi = 1,... L.
Then, S includes the union ofv} andS+,...,S,. Let us show the converse inclusion. Choose an arbitrary vertex
x € S. If x = v, thenx is certainly included in the union ¢} andS, ..., S,. Otherwise, we have € V(G(K)) \ K.
SinceV(G(K)) = KU Uf:1 V(G(Ky)), the vertexx belongs toS; for somei = 1,...,L. ThereforeS is included
in the union of{v} andS+,...,S;. Now, we need to show that for every= 1, ..., { the setS; satisfies the property
required in the lemma. Fik=1,..., L. If v belongs tK;, thenS; belongs taZS(G(K;),v) sincev also belongs to
S. If v € K;, thenS; belongs taZS(G(K;), K; N K) sincev is adjacent to any vertex &f; N K. Thus the required
property is satisfied. This completes the proof of the only-if part.

Next, we prove the if part. Assume th&is the union ofv} andS,, ..., S, satisfying thatS; € ZS(G(Ky),v) if
v € Ki, andS; € ZS(G(K;),K N K;) otherwise. Wherw € Kj, sincev is adjacent to all vertices & \ {v}, every
vertex inS; \ {v} belongs toV(G(K;)) \ K. Whenv ¢ K, by the definition ofZS(G(K;), K N K;), every vertex
in S; \ {v} belongs toV(G(K;)) \ K. Therefore, for each = 1,...,¢ it holds thatS; \ {v} C V(G(K;)) \ K. This
implies thatS \ {v} C V(G(K)) \ K. Now, we show that for every;j € {1,..., ¢} withi #j, (S \ {v}) U (§; \ {v})
is independent. To show that, suppose not. SBicandS; are independent, there must be an efdge} € E such
thatx € S; \ {v} andy € S; \ {v}. Since{x,y} is an edge ofG, it is included in some maximal cliqui,, of G.
SinceT andT, are subtrees df, this implies that ory must belong t&K. Without loss of generality, assume that
belongs tK. (Remember that € S; \ {v}.) If S; € ZS(G(K;),v), thenS; N K D {v, x}. This is a contradiction t&;
being independent. B; € ZS(G(K;), KN K;), thenS; cannot contain any vertex &f, particularlyx. This is also a
contradiction. Thus the claim is verified, and it implies tBat{v} is an independent set &f(K). Together with the
observation that no vertex &(K;) \ K is adjacent to if v ¢ Kj, this further implies tha$ is an independent set of
G(K). Sincev € S, this shows thaf € ZS(G(K),v).

To show the uniqueness, suppose tha the union offv}, Sy,..., S, and also the union dfv}, S7,...,S; such
that there exists with S; # S{. Without loss of generality assume tifat+ (). Choose a verten € S; \ S{, where
u # v. Then, there must exi$t# i with u € Sj’. Hence, there exists a nofles T(K;) such thatu € L and a node
L’ € T(K;) suchthaw € L’. Then, by Property (C) in the definition of a clique tree, the nodes on the path connecting
LandL’in T containu. In particular we haver € K. Thereforeu andv belong to the cliqu& and at the same time
they belong to the independent SeftThis is a contradiction. O

By a close inspection of the proof above, we can observe that for éyerg {1,...,(}, 1 # j, it holds that
V(G(K;)) \ Kis disjoint fromV(G(K;)) \ K. This property gives a nice decomposition of the problem into several
independent parts, and enables us to perform the dynamic programming on a clique tree.

By similar discussion as above, we obtain the following lemma.

Lemma 3.2. Let G be a chordal graph and be a clique tree ofs. Choose a maximal cliqu& of G, and let
K1,..., K¢ be the children ircHD(K).

1. We haveS € ZS(G(K),K) if and only ifS is the union ofS;,...,S, such thatS; € ZS(G(K;),K N K;).
Furthermore, such a representation is unique.

2. Foreachi = 1,...,{, we haveS; € ZS(G(K;i),K N K;) if and only ifS; belongs either t&S(G(K;),v) for
somev € K; \ K orto ZS(G(K;), K;). FurthermoreS; belongs to exactly one of them.

Proof. (1) Similar to Lemma 3.1, we omit.

(2) First, assume th&; € ZS(G(K;),v) for somev € K; \ K. SinceK; is a clique,S; cannot include any vertex
of K; \ {v}, particularly ofK N K;. ThereforeS; € ZS(G(K;), K N K;). Secondly, assume that € ZS(G(K;), Ky).
Then,S; includes no vertex ok; N K, sinceK; N K C K;. HenceS; € ZS(G(K;), K N K;). This proves the if part.

Let us prove the only-if part and the uniqueness. Assumesthiaglongs taZS(G(K;), K; N K). WhenS; includes
a vertexv of K; \ K, we haveS; € ZS(G(K;),v). Note thatv is a unique element if; N (K; \ K) sinceS; is an
independent set anid; \ K is a clique. Therefore§; ¢ ZS(G(K;),u) for u € (K; \ K) \ {v}. WhenS; includes no
vertex ofK; \ K, it follows thatS; € ZS(G(K;), Ky). O

From these lemmas, we have the following recursive equatiori&Sor

Equations 1. Let G be a chordal graph aridbe a rooted clique tree &. For a maximal cliqu& of G which is not a
leaf of the clique tree, Ik, . .., K, be the children oK in T. Furthermore, let € K. Then, the following identities
hold. (We remind that) means “disjoint union.”)

IS(G(K)) = TS(G(K), KO, I8(G(K),v);

4 .
i=1 1)y ™
¢
IS(G(K),K) = {S|S =SS € Z8(G(Ky),Ki NK)}
i=1
TS(G(K),KnK) = TS(G(K), KUl TS(G(Ki),u)foreachi =1,....¢

These equations lead us to the following algorithm to count the number of independent sets in a chordal graph (we
remind that an empty set is an independent set).

Algorithm #IndSets

Input: A chordal graphG = (V, E);

Output: The number of independent setsGn

1: construct a rooted clique tr8eof G with rootK;
2. call#IndSetslter(K,);

3: return |Z8(G, K|+ X, ek, ITS(G(K),v)L.

Procedure#IndSetslter(K)

Input: A maximal cliqueK of the chordal grapi;

Output: The number of independent setsGiK);

4: if Kis aleaf ofT then

5 |ZS(G(K),K)| := 1 and|ZS(K, v)| := 1 for eachv € K;

6: else

7 foreach child K’ of K do call #IndSetslter(K’);

8: foreach child K’ of K do compute|ZS(G(K"), K’ N K)| by [ZS(G(K"),K")| + X, cxnk [ZS(G(K"), w)];
9 compute|ZS(G(K), K)| by [T cchp(k) [ZS(G(K'), K N K)|;

10: foreachv € K do computeZS(G(K),v)| by |ZS(G(K), K)| X HS:.::.;S:,Kf;fﬁgsa((i(:,lil:‘t”'

/I The correctness of the equation is proved in the text.
11: endif.

Theorem 3.3. The algorithm#lindSets outputs the number of independent sets in a chordal gGps (V,E) in
O(|V| + |E]) time.

Proof. From Equations 1, we only need to check that Step 10 computes correctly. This can be seen as follows:

Zs(GK)vI = [|IZS(G(K),K nK)|
K’eCHD(K)
= [1ZSGK), v x [T [ZS(6(Kx), K nK)
K’eCHD(K),veK’ K’€CHD(K),vgK’

HK’GCHD(K),VEKI |IS(G(K/)»V)‘

= |Z8(G(K),K)| x AR .
Z8(G(K'), K’ NK)|

HK’GCHD(K],VGK/

Let us consider the computation timéeK) taken by a call ta#IndSetslter(K). The overall running time of
#IndSetsis t(K;)+O(|K.|). Steps 7 and 8 tak@ (t(K’)) andO(|K’|) time for eachK’ € cHD(K) respectively. Step 9
can be done i®(cHD(K)). Next, we analyze the computation time for Step 10. Sjic¢ G(K), v)| can be computed
in O([{K" € cHD(K) | v € K'}|) time for eachv € K, Step 10 can be done i@(3_, . (K’ € cHD(K) [v € K'}|)
time. Therefore, the accumulated time taken by a cafllimiSetslter(K,) is ZK,ECHD(Kr) (O(t(K")) 4+ O(IK']) +
O(lcHD(K,)[) + O(X_, ek, HK” € cHD(K,) | v € K'}{). By expandingt(K’) inside the sum, we can see that this is
at mostO(} (1Kl + 3>, cx K" € cHD(K) | v € K'}|)), wherekC denotes the set of nodes in the clique tree, i.e.,
the family of maximal cliques o6. By Lemma 2.1, we havg_, . [K| = O([V| + [E[). Furthermore, it follows that
2 xek 2vex K e cHD(K) [ve K} =3 oy [[(K' e K[veK} =) y IKl = O(V]+[E]) again by Lemma
2.1. Hence, the overall running time@|V| + [E|). O

4 Linear-Time Algorithm to Count the Maximum Independent Sets

In this section, we modify Algorithr#indSets to count the number of maximum independent sets in a chordal graph.

For a set familyS, argmaxS) denotes the family of sets ifi of the maximum size. For a graph, let MZS(G) be

the family of maximum independent setsGn For a vertew, let MZS(G, v) be the family of maximum independent

sets inG includingv, i.e., MZS(G,v) :={S € MZS(G) | v € S}. For a vertex setl, let MZS(G, U) be the family

of maximum independent sets @including no vertex otl, i.e.,, MZS(G,U) :={S € MZS(G) | SN U = 0}. We

note thatMZS(G,v) and MZS(G, U) ared) when there is no maximum independent set that satisfies the conditions.
From lemmas stated in Section 3 and Equations 1, we immediately have the following equations.

Equations 2. With the same set-up as Equations 1, the following identities hold.

MIS(G(K) = argmaxMZS(G(K),K)U |] MIS(G(K),v))
vek
MIS(G(K),v) = argmax{S|S= Osi,si € { hE
=
MIS(G(K),K) = argmax{S|S = CJ Si, St € MIS(G(Ky), Ki N K)});
argmaXA/lLS(Gl(;i),Ki)U U MIS(G(K;),u)).

ueKi\K

MIS(G(Ky),v) if vek; cs
MIS(G(Ky),KiNK) otherwise [’

MIS(G(Ky),KiNK)

Since the sets of each family on the left hand side have the same size in each equation, the cardinality of the set
can be computed in the same order as AlgoritHndSets. For example MZS(G(K)) can be computed as follows.

1. SetN := 0 and letM be the size of a maximum independent seMITS(G(K), K) U |, cx MZS(G(K),v);
2. if the size of a member of(ZS(G(K), K) is equal toM, thenN := N + | MZS(G(K), K)|;

3. for eachv € K, if the size of a member ofM1ZS(G(K),v)) is equal toM, thenN := N + |[MZS(G(K),v))|;
4. outputN.

In this way we have the following theorem.

Theorem 4.1. The number of maximum independent sets in a chordal géaph(V, E) can be computed i®(|V| +
|E|) time.

5 Efficient Algorithm to Count the Independent Sets of Sizeék

In this section, we modify Algorithn#indSets to count the number of independent sets of dizeFor a graph
G and a numbek, let ZS(G; k) be the family of independent sets @ of sizek. For a vertexv, let ZS(G, v; k)
be the family of independent sets @ of sizek includingv, i.e.,ZS(G,v;k) := {S € ZS(G;k) | v € S}. For
a vertex setll, let ZS(G, U; k) be the family of independent sets @ of size k including no vertex ofl, i.e.,
IS(G,W;k) ={S € ZS(G;k) | SNU = 0}.

From lemmas stated in Section 3 and Equations 1, we immediately obtain the following equations.

Equations 3.
IS(G(K);k) = ﬁ(G(K),K;k)UUIS(G(K),v;k);
vekK
IS(G(K),vik) = {SISzQSMSIzk,SiE{ggggz;:zﬂm ic]:tﬁeerv]viise}’vesk
I8(G(K),K;k) = {SIS:Osi,ISI:k,SieTS(G(Ki),KmK)};

i=1

ZS(G(K),Kik) U) ZS(G(Ko), wsk).
uekK;\K

ZS(G(Ky), Ky NK;k)

In contrast to Equations 1, the second and third equations of Equations 3 do not give a straightforward way to
computelZS(G(K),v; k)| and |ZS(G(K), K; k) | respectively, since we have to count the number of combinations of
S1,...,S¢ which generate an independent set of &iz&o compute them, we use a little more sophisticated algorithm.

Theorem 5.1. 1. The number of independent sets of dize a chordal graphG = (V,E) can be computed in
O(K2([V| + |E])) time.
2. The numbers of independent sets of all sizes framV| in a chordal graphG = (V, E) can be simultaneously
computed irO(|V|2(\V\ + |E[)) time.

Proof. Here we show an efficient algorithm that compu@(G(K), K; k)[and|ZS(G(K),v;k)|. Fix an arbitrary
vertexv € K.

For eacht’ < (, we define€ZS(G(K),K;k)<¢r :={S | S = U!;Si,IS| =k, Si € ZS(G(K1),Ki N K)}. Then we
can computéZS(G(K), K; k)| = |ZS(G(K), K; k) <¢| based on the following recursive equation:

_ { |ﬁ(G(K]),K1ﬂK;k)‘ if ¢/ =1,

[ZS(G K, Ko Y o (|TS(G(K), Ksh)<er—1| x [TS(G(Ker),Ker NK;k—h)[) otherwise.

Hence for a fixedk and eacH’ = 1,2,...,{, we can comput@(G(K),K;k)ge, in O(k¢) = O(k|cHD(K)|) time.
Simultaneously, we can compq@(G(K), K;k')<¢/| forall 0 < k/ < kin O(k?¢) time, which will be required in

arecursion.
Next we turn to the computation @S(G(K),v;k). Then, according to a fixed, the children ofK are divided
into two sets such thaty, ..., K, includev andK, 1, ..., K, do not. Here we define two sets as follows.
e/
IS(G(K),viK)<er == {SIS=[]JSuISI=kveS,Si€TS(G(Ki),v)}

i=1

for eacht’ with 1 < {’ < p, and

¢
IS(G(K),vik)ser = {SIS= |J SuISI=%,S;i € ZS(G(Ki),Ki nK)}
i=0"+1
for each¢” with p < ¢” < € — 1. We note that eacls in ZS(G(K),v;k)<- containsv, and eachS in
ZS8(G(K),v; k)=~ does not. Then, it holds that

k
11S(G Z (IZS(G(K),v;h)<pl x |TS(G(K),vik —h)=p) .

Using the same technique above, we can com{@#€G(K),v;h)<,| fromh = Oup toh = k in O(hp) time in
total, and|ZS(G(K),v;h')-,| from h’/ = k down toh’ = 0 in O(h/(¢ — p)) time in total. Thus we can obtian
IIS(G(K),v; k)| for a fixedv andk in O(hp + h/({ — p)) = O(kt) time. Simultaneously, for a fixed, we can
computeIS(G(K),v; k)| forall 0 < k/ < kin O(k?¢) = O(k?|cHD(K)|) time.

We further reduce the computation time. At a cliqite with children K;,...,K,, we first compute
|ZS(G(K),K;k")| with 0 < k/ < k in O(k*() time. Next, for allv € K andk’ = 0,...,k, we com-
pute [ZS(G(K),v;k’)|. For a fixedv, we can computéZS(G(K),v;k’)| forall 0 < k/ < kin O(kzk) time.
When we computéZS(G(K),v;k’)| for all v € K, we can omit some computation f@S(G(K),v;k)s¢r =
{S§1]1S = Uf’:z,,+1 Si,ISI = k,Si € ZS(G(K;), Ky N K)} since it is independent from. More precisely,
[{Si € ZS(G(K;),Ki NK) | [Si| =k'}| for eachk’ < k can be precomputed i®(k?) time in total. Hence,
we can computdZS(G(K),K;k/)| and |ZS(G(K),v;k/)| for all v € K andk/ = 0,...,k in O(k*(¢ +
2 _vex K" € cHD(K) | v € K'}{)) time. Therefore, the total computation time over all iterations can be bounded
in the same way as the above section, and we have the theorem. O

6 Enumeration

In this section we give enumeration algorithms using the same technique as our counting algorithms in the previous
sections.

First, we describe a simple algorithm to enumerate all independent sets in a chordal graph. Equations 1 in Section
3 give a recursive structure for the family of independent sets. Thus we can construct the following algorithm in a
straightforward way. We first sé& := (. Then, for each maximal cliquk of a given chordal graph, we iteratively
add a vertex oK \ PRT(K) into S (or no vertex taS) in a depth-first-search manner. Then each vertdk \rPRT(K)
gives us a distinct independent set. Hence we pick up each of them to enumerate all independent sets. A simple
implementation of the algorithm is as follows (for notational convenienc&det () andK,,, 1 = ().

Algorithm EnumindSets

Input: A chordal graphG = (V, E);

Output: All independent sets if;

1: construct a rooted clique tréeof G;

2: letKy,..., K, be the maximal cliques ordered in a depth first manner;on
3: setS := @ andcall EnumindSetslter(Ky, S).

ProcedureEnumindSetsiter(K;, S)

Input: A maximal cliqueK; and an independent sgt

Output: All independent setS’ such thaS’ N (K UK, U---UK;) =S;
4: if i=n+ 1then// output an independent set at the bottom level
5 output S andreturn;

6: else

7 call EnumindSetsiter(Ki+1, S);

8 if KiN'S =@ then// S includes no vertex oK;

9: foreachu € K; \ PRT(K;) do call EnumindSetsliter(K; 1, S U {u});
10: endif
11: endif.

The correctness of the simple algorithm follows from Equations 1 in Section 3. Sing& chordal graph, the
numbern of maximal cliques is bounded BY|. Hence the algorithm outputs each independent séX(ji'|) time.
More precisely, the algorithm consum@$|V|) time between two consecutive independent sets. We modify the simple
algorithm to reduce the time complexity.

Theorem 6.1. After O(|VI|(]V] + |E|)) time andO(|V|(|V| + |E|)) space precomputation, all independent sets in a
chordal graph can be enumerated in a (worst-case) constant time for each.

We remind that the number of independent sets can be exponential, which implies that the cost of a polynomial
time precomputation can be negligible.

Proof. Let 7 be a computation tree of the simple algorithm, in which each H&dé&) corresponds to a recur-
sive call toEnumindSetslter(K, S) generated by the algorithfim A node (K, S) is the parent of a nod&K’, S’) if
EnumindSetsiter(K’,S’) is invoked inEnumindSetslter(K, S) (or EnumindSets if K’ = K; andS’ = ()). When
K = Kn+1, each nodé€K, S) is a leaf and the algorithm outputs an independent set.

A node (K, S) is calledunnecessarif it has exactly one child iry". By lines 7, 8, and 9 in the algorithm, a node
(K, S) is unnecessary if and onlyKN S = (). We also call a nodéK, S) necessarif it is not unnecessary. In general,
7 may contain many unnecessary nodes, anthnnot be traversed by the algorithm efficiently. Hence we here aim
at skipping unnecessary nodes7ofn the computation. Le¥ ' be the reduced computation tree, which only contains
necessary nodes. We say that a vertexV hitsa cliqueK if v € K.

At a necessary nodgy, S), the algorithm picks up each vertexin K; \ PRT(K;). Then, sinceS contains no
vertex inK; andu € Kj, the next necessary node(s) visited by the simple algorithm lftdepends ork; andu as
we describe below.

First, we assume that does not hit some cliques which are descendants; oh the rooted clique treé&. Let
Kj,, Kj,, -+, Kj, be the descendant cliqueslof that are the roots of the subtrees obtained by removing the maximal
cligues hit byu from the rooted clique tre€. We assume thdii <) jo < j1 < --- < j¢. Then those roots are the
necessary nodes with respecktpandu, and it suffices to visit them after the nod€,, S) in the reduced computation
tree7’ as children of the nodeg¥;, S) (with the independent sé&tU {u}). Thus we defin&lexT(K;,u) by the set
{Kso, Kj,, - -+, Kj,) and we implementeXT(K;, u) by a linked list.

Second, we assume thahits all cliques that are descendantXefin T. Then we defin&lexT(K;, u) by) unless
u hits the last cliqu&,,. Whenu hits K,,, we defineNexT(K;, u) = {K;;41}to jump to step 5.

The modified algorithm performs the following step 9’ instead of the step 9:

9': foreach u € K; \ PRT(K;) do
foreachK € NEXT(K;,u) do call EnumindSetsiter(K, S U {u});

By the above arguments, the modified algorithm correctly performs its computation along the computatith tree
We now show its complexity. Sincg U {u} is an independent set and € K;, the setNEXT(K;, u) is uniquely
determined byu andi; it consists of the nodek; of the rooted clique tred such thatu ¢ Kj, j > i, and all
maximal cliqueX’ betweerK; andK; on T containu. Sinceu € K; andn = O(|V/|), the number of pairéK;, u) is
O(|V|+[E]). For each paifK;, u) with u € Ky, the seNEXT(K;, 1) consists 0fD(n) cliques. Henc&lexT(K;,) can

be computed irD(n) time by a simple depth first search @n Therefore, all thevexT(K;,u) can be precomputed

in O(m(|V] + |E])) = O(|VI([VI| + |E|)) time and space. SinaeexT(K;,u) is a linked list for eactK; andu, the
algorithm can obtain eadk € NEXT(K;,u) in O(1) time in step 9'.

Now we finalize the proof. Every inner node ®f has at least two children. Thus the total number of the inner
nodes is bounded by the number of leaves, which is equal to the number of independent sets. Therefore, the total
number of the nodes if ' is O(M), whereM is the number of independent sets. Each traverse of an edge of the
computation tre¢ ' takesO(1) time. Using the odd-even search technique (each output is controlled by the parity

5To distinguish a vertex iiG, we sayZ consists of “nodes.”

of the depth of the node ii’’; see, e.g., [17]) to make the output interval balanced, all independent sets can be
enumerated in a constant time for each. O

Corollary 6.2. (1) AfterO(\V|2(|V| + |E])) time andO(|V|2(\V\ + |E|)) space precomputation, all maximum inde-
pendent sets in a chordal graph can be enumerated in a constant time for each. (2) &ft€t(|V| + |E|)) time and
O(KIVI(IVI + [E])) space precomputation, all independent sets of kirea chordal graph can be enumerated in a
constant time for each.

Proof. Let T be a rooted clique tree of a chordal graptdefined by the maximal cliqudé;, Ky, ..., K. Then the

simple implementations of the algorithms from Equations 2 and 3 are straightforward. In the algorithms, we handle
the sizek’ of an independent set as follows. For given maximal cliques, we can precompute the size of a maximum
independent set in the (chordal) gra@hiK;) induced by the subtree rootedl&t. Using the information, we can

define and precompute a liseXT(K;, u; k') of the next necessary maximal cliquésvith respect t&; andu such

that G(K) can provide an independent set of skZe Then, we have to consider the case that step 7 of Algorithm
EnumindSetslter(Ki,1, S) is skipped sinc& andK;,; do not have enough vertices to make an independent set of
sizek’. More precisely, at nodéK;, S), the algorithm (pre)determine K, 1, ..., K, has enough size to produce

an independent set of siz€. If the algorithm cannot make an independent set of requiredksizéithout adding

one vertex fronKy, it skips step 7 at nodg<;, S). In the case, ifK; \ PRT(K;)| = 1, the nodgK;, S) has one child

in the computation tree, that is, the nodg, S) becomes unnecessary. Thus we have to add nddeS) with the
conditions (one vertex has to be added frim\ PRT(K;), and|K; \ PRT(K;)| = 1) to unnecessary nodes. Moreover,

in the case, the difference between two consecutive outputs (or independent sets) is not constant in general. Hence we
have to design a code for such outputs, which can be done in a standard technique. The modification of the algorithms
using the notiomMEeXxT(K;,u; k') is straightforward and tedious, so omitted here. O

7 Hardness of Counting the Maximal Independent Sets

In this section, we show the hardness results for counting the number of maximal independent sets in a chordal graph.
First we consider the following counting problem.

Problem: # MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH
Instance: A chordal graphG = (V, E);
Output: The number of maximal independent setszof

Although finding a maximal independent set is easy even in a general graph, we show that the counting version of the
problem is actually hard.

Theorem 7.1. The problem # MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH’ is #P-complete.

The proof is based on a reduction from the counting problem of the number of set coveds beet finite set,
andS C 2% be a family of subsets of. A set covernf X is a subfamilyF C S such that J F = X. The following
problem is#P-complete [18].

Problem: # SET COVERS
Instance: A finite setX and a familyS C 2%;
Output: The number of set covers &f

Proof. Proof of Theorem 7.1. The membership#R of “# MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH’
is immediate. To show th&P-hardness, we reducét“SET COVERS' to “# MAXIMAL INDEPENDENTSETS IN A
CHORDAL GRAPH" in polynomial time.

Let X be a finite set and C 2X be a family of subsets of, and consider them as an instancé#@eT COVERS.
Let us putS :={S4, ..., St}. FromX andS, we construct a chordal gragh= (V, E) in the following way.

We setV := XU S US’, whereS’ := {S7,...,S{}. Namely,S’ is a copy ofS. Now, we draw edges. There are
three kinds of edges. (1) We connect every pair of vertice§ lny an edge. (2) For evel§ € S, we conneck € X
andS by an edge if and only ik € S. (3) For everyS € S, we connect andS’ (a copy ofS) by an edge. Formally,

10

SN
R

N C) R GV)

Figure 1: lllustration of the reduction. In this example={1,2,3,4}, S = {$1,S2,S3}, S1 ={1,2}, S, = {1, 3,4},
andS; ={2,3}.

we definek := {{x,y} | x,y € X]U{{x,S} | x € X,;S € §,x € S;U{{S,S’} | S € S}. This completes our construction.
This construction can be done in polynomial time. Figure 1 illustrates the construction.

First, let us check that the constructed grdpls indeed chordal. Le€ be a cycle of length at least four {a.
Since the degree of a vertex & is one, they do not take part in any cycle ® So forget them. Sincé is an
independent set d&, vertices inS cannot appear along in a consecutive manner. Then, since the lengt@ &f at
least four, there have to be at least two verticeX efhich appear irC not consecutively. Then, these two vertices
give a chord sinc& is a clique ofG. Hence G is chordal.

Now, we look at the relation between the set coverXafnd the maximal independent sets@f Let UL be a
maximal independent set &f. We distinguish two cases.

Case 1. Consider the case in whidh contains a vertex € X. SinceX is a clique ofG, U cannot contain any other
vertices ofX. Let G, := G \ Ng[x]. (Remember thalN[x] is the closed neighborhood &f i.e., the set of
vertices adjacent t® in G andx itself.) By the construction, we have thdf{G,) ={S e S| x ¢ S}US’ and
E(G,) ={{S,S’}|S € S,x € S}. Then, averte$’ € S’ such thak € S is an isolated vertex di,. Therefore,
this vertex must belong td by the maximality ofl. For eaclt € S such thak ¢ S, U must contain eithe$ or
S’, but not both. This means that the number of maximal independent sets contaisiegactly2/{S€Sx#S}

Case 2. Consider the case in whidh contains no vertex oX. Then, for eacl$ € S, due to the maximalityll must
contain eitheS or S’. Furthermorell NS has to be a set cover &f (otherwise an element &f not covered by
U N S could be included inl). Hence, the number of maximal independent sets containing no verdeisof
equal to the number of set coversXaf

To summarize, we obtained that the number of maximal independent sétssoéqual to the number of set
covers ofX plus)~ 2/5€5Ix#S)l Since the last sum can be computed in polynomial time, this concludes the
reduction. O

As a variation, let us consider the following problem.

Problem: # MINIMUM MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH
Instance: A chordal graphG = (V, E);
Output: The number of minimum maximal independent set&of

Note that a minimum maximal independent set in a chordal graph can be found in polynomial time [9]. In contrast to
that, it is hard to count the number of minimum maximal independent sets in a chordal graph:

Theorem 7.2. The problem # MINIMUM MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH’ is #P-complete.

11

Proof. We use the same reduction as in the proof of Theorem 7.1. Look at the case distinction in that proof again. The
maximal independent sets arising from Case 1 h&ye- 1 elements, while the maximal independent sets from Case

2 have|S| elements. Therefore, the minimum maximal independent sets of the Graphstructed in that proof are
exactly the maximal independent sets arising from Case 2, which precisely correspond to the set ¢éavers of]

We note that the chordal graghin this section is very close tosplit graphG’ which consists of the cliquk and
an independent sé&tin G. However, for a split graph, it is easy to solve the problems of this section in polynomial
time since a split graph contains only two types of maximal independent sets; one type consists of oneinettex
and all vertices ir§ \ N(v), and the other possible oneSstself.

8 Hardness of Finding a Minimum Weighted Maximal Independent Set

In this section, we consider an optimization problem to find a minimum weighted maximal independent setin a chordal
graph.

Problem: MINIMUM WEIGHTED MAXIMAL INDEPENDENTSET IN A CHORDAL GRAPH
Instance: A chordal graphG = (V, E) and a vertex weightv : V — N;
Output: A minimum weighted maximal independent setGf

Here, the weight of a vertex subset is the sum of the weights of its vertices.
Notice that there is a linear-time algorithm when the weight of each vertex is zero or one [9]. On the contrary, we
show that the problem is actually hard when the weight is arbitrary.

Theorem 8.1. The problem MINIMUM WEIGHTED MAXIMAL INDEPENDENTSETS IN A CHORDAL GRAPH” is
NP-hard.

The proof is similar to what we saw in the previous section. We use the optimization version of the set cover
problem.

Problem: MiNIMUM SET COVER
Instance: A finite setX and a familyS C 2%;
Output: A minimum-size set cover of.

It is known thatMINIMUM SET COVER is NP-hard.

Proof. Proof of Theorem 8.1. For a given instanceMfNIMUM SET COVER, we use the same construction of a
graphG as in the proof of Theorem 7.1. We define a weight functioas follows:w(x) := 2|S| 4 1 for everyx € X;
w(S) := 2 for everyS € S; w(S’) := 1 for everyS’ € S’. This completes the construction.

Now, observe thaf is a maximal independent set of the constructed gapand the weight of is 2|S|. There-
fore, no element oK takes part in any minimum weighted maximal independent sét afhen, from the discussion
in the proof of Theorem 7.1, iM is a maximal independent set 6f satisfyingM N X = (), thenM N S is a set
cover of X. The weight ofM is M. N S| + |S|. Therefore, ifM is a minimum weighted independent set@fthen
M minimizes|M N S|, which is the size of a set cover. Hendd,N S is a minimum set cover. This concludes the
reduction. O

We can further show the hardness to get an approximation algorithm running in polynomial time. The precise
statement is as follows.

Theorem 8.2. There is no polynomial-time algorithm féd INIMUM MAXIMAL WEIGHTED INDEPENDENTSET IN
A CHORDAL GRAPH with approximation ratia: In [V|, for some fixed constant unlessNP C DTIME (n©loglogn)),

Note thatDTIME(t) is the class of languages which have a deterministic algorithm running irttime

It was shown by Feige [10] that there is no polynomial-time algorithrMoxiMuM SET COVER with approxi-
mation ratioc’ In|V|, for any fixed constant’ < 1, unlessNP C DTIME(n©(glogn)) Thijs holds even if the size
of the family S is bounded by a polynomigl(|X|) of |X].

Now we are ready to prove Theorem 8.2.

12

Proof. Proof of Theorem 8.2. Suppose that there exists a polynomial-time algofitiwith approximation ratio
cIn|V|for MINIMUM WEIGHTED MAXIMAL INDEPENDENTSET IN A CHORDAL GRAPH. (The constant will be
determined later.) We use the algoritito get a polynomial-time algorithm with approximation ratioin |X| for
MINIMUM SET COVER. Then, this will imply thatNP C DTIME(n©(leglogn)y

Let X be a finite set and C 2X be a family of subsets 6f. We assume thaX| > 3 and1 < |S| < \de for some
natural numbed. From them, we construct a graghexactly in the same way as in the proof of Theorem 7.1. Setting
a:=c In(ZIXIdJHISI, we define a weighiv as follows: w(x) := 202 + 1 for everyx € X; w(S) := 2« for every
S e S;w(S'):=1foreveryS’ € §'. This is our construction. (Note that this construction can be done in polynomial
time.)

Denote by OPT an arbitrary (fixed) minimum weighted maximal independent $etlmf APX an output of the
algorithmA for G, and byw(OPT) andw(APX) the weights of them. Since the number of vertice§iis |X| + 2/|S],
which is at mostX| + 2|X|¢ < 3|X|4, it follows thatw(APX) < cIn(3X|*)w(OPT).

As in the proof of Theorem 8.1 is a maximal independent set Gfand its weight i2«|S|. Therefore, it holds
thatw(OPT) < 2«S|.

Now, suppose that there exists an elemeatX which is contained in APX. Theny(APX) > w(x) = 202 + 1.
This implies tha«? < w(APX) < cIn(3|X\d)w(OPT) < [cln(3|X|dﬂ x 2alS| = 2&?. This is a contradiction.
Thus, no element € X belongs to APX. This means that ARXS is a set cover oK. LetC := APX NS and we
show thaiC approximates the optimal value fbtiniMuM SET CovER within a factor ofc’ In|X].

Again, by the same argument as in the proof of Theorem 8.1, werg&PX) = (20« — 1)|C| + |S|. LetC* be a
minimum set cover oK. Then, similarly we getv(OPT) = (20c—1)|C*|+|S|. Sincew(APX) < cIn(3\X|d)w(OPT),
it follows that(2ec — 1)|IC| 4+ S| < ¢ In(3\X|d)((Zoc— DIC*+1S]) <c In(3\X|d)(Zoc— 1)|C*| + «. Hence, we obtain

c < cinEXYer+ XIS
200 — 1

o— 1

< cInBX|YlcH| + —2
200 — 1

= c|n(3\><|d)|c*|+1i

< emBXYIC T+ T InGX Y
= (et) InEXCY

< (et 3)In0XETer

= ((d+1)(c+%)|n\X|)IC*\.

Settingc = d°—+'1 — % gives approximation ratio’ In|X|. O

In the proof, we did not aim at optimizing the constaht
Note: After this work, we found that Chang proved thi-completeness of the weighted independent domination
problem on a chordal graph [7] which is essentially equivalent to Theorem 8.1. However, we leave Theorem 8.1 with
its proof since the reduction in the proof is extended to show Theorem 8.2.

Acknowledgements
The authors thank Masashi Kiyomi for enlightening discussions and pointing out the work by Chang [7]. The authors

are grateful to L. Shankar Ram for pointing out a paper [5]. The authors also thank the anonymous referees for their
detailed comments and suggestions that improved the presentation significantly.

13

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desirability of Acyclic Database Schéooesal of
the ACM 30:479-513, 1983.

[2] J. R. S. Blair and B. Peyton. An Introduction to Chordal Graphs and Clique Tre€aph Theory and Sparse
Matrix Computationvolume 56 oflMA, pages 1-29. (Ed. A. George and J.R. Gilbert and J.W.H. Liu), Springer,
1993.

[3] A. Brandshdt, V. B. Le, and J. P. Spinraraph Classes: A SurvepIAM, 1999.
[4] P. Buneman. A Characterization of Rigid Circuit GrapbBsscrete Mathematic9:205-212, 1974.

[5] L. S. Chandran. A Linear Time Algorithm for Enumerating All the Minimum and Minimal Separators of a
Chordal Graph. ICOCOON 2001pages 308-317. Lecture Notes in Computer Science Vol. 2108, Springer-
Verlag, 2001.

[6] L. S. Chandran, L. Ibarra, F. Ruskey, and J. Sawada. Generating and Characterizing the Perfect Elimination
Orderings of a Chordal Grapfheoretical Computer Sciencg07:303—-317, 2003.

[7] G. J. Chang. The Weighted Independent Domination Problem Is NP-Complete for Chordal Gégtrete
Applied Mathematicsl43:351-352, 2004.

[8] D. Eppstein. All Maximal Independent Sets and Dynamic Dominance for Sparse GrapRsoclr6th Ann.
ACM-SIAM Symp. on Discrete Algorithnmages 451-459. ACM, 2005.

[9] M. Farber. Independent Domination in Chordal GrapBbperations Research Letters4):134-138, 1982.
[10] U. Feige. A Threshold of In. for Approximating Set CoverJournal of the ACM45(4):634—652, 1998.

[11] J. Flum and M. Grohe. The Parameterized Complexity of Counting Probl&i#sV Journal on Computing
33(4):892-922, 2004.

[12] D. R. Fulkerson and O. A. Gross. Incidence Matrices and Interval Grégatsfic J. Math, 15:835—-855, 1965.

[13] F. Gauvril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum
Independent Set of a Chordal Gra@8iAM Journal on Computind.(2):180-187, 1972.

[14] M. C. Golumbic.Algorithmic Graph Theory and Perfect Graph&nnals of Discrete Mathematics 57. Elsevier,
2nd edition, 2004.

[15] P. N. Klein. Efficient Parallel Algorithms for Chordal GraphSIAM Journal on Computing25(4):797-827,
1996.

[16] J. Y.-T. Leung. Fast Algorithms for Generating All Maximal Independent Sets of Interval, Circular-Arc and
Chordal GraphsJournal of Algorithms5:22—-35, 1984.

[17] S. Nakano and T. Uno. Constant Time Generation of Trees with Specified Diame@raph-Theoretic Con-
cepts in Computer Science (WG 200dages 33-45. Lecture Notes in Computer Science Vol. 3353, Springer-
Verlag, 2005.

[18] J. S. Provan and M. O. Ball. The Complexity of Counting Cuts and of Computing the Probability that a Graph is
ConnectedSIAM Journal on Computind.2:777-788, 1983.

[19] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic Aspects of Vertex Elimination on Giajg#id. Journal
on Computing5(2):266-283, 1976.

[20] J. P. SpinradEfficient Graph RepresentationAmerican Mathematical Society, 2003.

14

[21] R. E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity
of Hypergraphs, and Selectively Reduce Acyclic HypergraghigAM Journal on Computingl3(3):566-579,
1984,

[22] S. P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar G&pihs.Journal on Computing
31(2):398-427, 2001.

15

