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Abstract

We prove #P-completeness for counting the num-
ber of forests in regular graphs and chordal graphs.
We also present algorithms for this problem, run-
ning in O∗(1.8494m) time for 3-regular graphs, and
O∗(1.9706m) time for unit interval graphs, where m
is the number of edges in the graph and O∗-notation
ignores a polynomial factor. The algorithms can be
generalized to the Tutte polynomial computation.

Keywords: chordal graph, exponential-time algo-
rithm, forest, regular graph, unit interval graph

1 Introduction

Counting is a fundamental task in combinatorics, and
algorithmic aspects of counting problems have also
been studied. One of the most interesting phenom-
ena around algorithmic counting is that we can count
the number of spanning trees in a graph in polyno-
mial time (Kirchhoff 1847) while it is #P-complete to
count the number of forests in a graph, even in a bi-
partite planar graph (Vertigan & Welsh 1992). These
two counting problems fit into a general concept of
the Tutte polynomial of a graph (or of a matroid),
and this connection yields a fruitful development in
algorithmic counting.

The #P-complete counting problems have been
tackled mainly via two different approaches. One is
the approximate approach, and the other is the ex-
act approach. In the approximate method, we try to
quickly approximate the desired value within a cer-
tain guarantee by, for example, a Markov chain Monte
Carlo method. See Jerrum’s book (Jerrum 2003).
In the exact approach, we stick to the exact correct
value, and try to reduce the running time as much as
possible. When a given problem is #P-complete, we
cannot expect for the algorithm to run in polynomial
time. Hence, we try to obtain a subexponential-time
algorithm, or try to make the base of the exponential
running time closer to 1.

This paper takes the latter exact approach. First
we prove that the forest counting problem is #P-
complete for regular graphs and chordal graphs.
Then, we design exact algorithms for the problem
when the input graphs are restricted to the regu-
lar graphs or to the unit interval graphs. The run-
ning time of our algorithm is O∗(1.8494m) time for
3-regular graphs, and O∗(1.9706m) for unit interval
graphs, where m is the number of edges in the graph
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and O∗-notation ignores a polynomial factor. It has
to be noted here that the algorithms can be general-
ized to the Tutte polynomial computation.

Related Work There are several papers studying
the forest counting problem (or the Tutte polynomial
computation, more generally) via the exact approach.
The basis is the hardness result due to Jaeger, Verti-
gan & Welsh (Jaeger, Vertigan & Welsh 1990) show-
ing that counting the number of forests in a graph is
#P-complete. Vertigan (Vertigan 2006) proved that
the problem is #P-complete for planar graphs, and
Vertigan & Welsh (Vertigan & Welsh 1992) proved
that it is #P-complete even for bipartite planar
graphs.

On the algorithmic side, not much is known for the
forest counting problem. Andrzejak (Andrzejak 1998)
and Noble (Noble 1998) independently obtained a
polynomial-time algorithm for the forest counting
problem in graphs of bounded tree-width. To the
authors’ knowledge, this is the only non-trivial case
where a polynomial-time solution is known. Giménez,
Hliněný & Noy (Giménez, Hliněný & Noy 2005)
gave a subexponential-time algorithm in graphs of
bounded clique-width, and Sekine, Imai & Tani
(Sekine, Imai & Tani 1995) gave a subexponential-
time algorithm in planar graphs.

For some counting problems in regular graphs,
Vadhan (Vadhan 2001) gave #P-completeness results
by utilizing the so-called interpolation technique and
Fibonacci technique. These techniques are also used
in this paper.

Preliminaries In this article, all graphs are finite
and undirected. Let G = (V, E) be a graph. The
degree of a vertex v ∈ V in G is the number of edges
incident to v, and denoted by degG(v). A graph is
k-regular if every vertex of it has degree k. A graph
is planar if it can be drawn on the plane without any
edge crossing. A graph is bipartite if the vertex set
can be partitioned into two parts such that every edge
has the endpoints in both parts.

A forest of a graph G = (V, E) is a subset F ⊆ E
which embraces no cycle. Our goal is to count the
number of forests in a given graph. The following
is our problem template, where a class of graphs is
denoted by Γ.

Problem: Γ-#FORESTS

Input: a graph G ∈ Γ;
Question: the number of forests in G.

We write f(n) = O∗(g(n)) if f(n) = O(g(n)p(n))
for some constant-degree polynomial p(n). Namely,
in the O∗-notation we ignore the polynomial factor.



Pvv

Figure 1: Replacing a vertex with a path (a local
picture).

2 Intractability

In this section, we concentrate on the intractability
results. We prove #P-completeness of Γ-#FORESTS
for various Γ.

2.1 Bounded-degree graphs

Denote by 3Δ the class of all graphs of maximum
degree at most three, by BP the class of all bipartite
planar graphs, and by 3ΔBP the class of all bipartite
planar graphs of maximum degree at most three. We
prove the following.

Theorem 2.1. The problem 3ΔBP-#FORESTS is
#P-complete. In particular, 3Δ-#FORESTS is #P-
complete.

To prove the theorem, we use BP-#FORESTS,
which is shown to be #P-complete by Vertigan &
Welsh (Vertigan & Welsh 1992). We first prove that
the following variant of 3ΔBP-#FORESTS is #P-
complete.

Problem: Γ-#FORESTS with inclusive
edges

Input: a graph G = (V, E) ∈ Γ, and an
edge set S ⊆ E;
Question: the number of forests in G which
contain S.

Lemma 2.2. The problem 3ΔBP-#FORESTS with
inclusive edges is #P-complete.

Proof. We reduce BP-#FORESTS to 3ΔBP-
#FORESTS with inclusive edges. Let G = (V, E)
be a bipartite planar graph given as an input for
BP-#FORESTS. Without loss of generality, we may
assume that G has no vertex of degree zero. We fix
a plane embedding of G (which can be obtained in
linear time). From G, we construct another graph
G′ which is also bipartite planar and furthermore
whose maximum degree is at most three. First we
replace each vertex v ∈ V with a path Pv of length
2 degG(v) − 2, and the path is embedded as if it
surrounded the vertex v. The neighbors of v are
joined to every two vertices of Pv in the same circular
order. See Figure 1. We perform this operation for
all vertices of G, and G′ is the resulting graph. Note
that G′ is bipartite planar since G is so, and that the
maximum degree of G′ is at most three.

Set S to be the set of edges in Pv for all v ∈ V .
Then we can find a natural bijection from the family
of forests in G to the family of forests in G′ which
include S. Thus the lemma is proved.

Proof of Theorem 2.1. We reduce 3ΔBP-#FORESTS
with inclusive edges to 3ΔBP-#FORESTS. Let G =
(V, E) be a bipartite planar graph with maximum de-
gree at most three and S ⊆ E. Let s = |S|, and

G G2

Figure 2: Replacing edges with paths. The blue thick
edges belong to S, and each of them is replaced by a
path of length three in G2.

for each � ∈ {1, . . . , s + 1} we construct a graph
G� = (V�, E�) from G by replacing each edge e ∈ S
with a path Pe of length 2�−1. An example for � = 2
is displayed in Figure 2. Note that G1 is isomorphic
to G.

Fix � ∈ {1, . . . , s + 1}. We define a map from the
family of forests in G� to the family of forests in G as
follows: We map a forest F� ⊆ E� of G� to a forest
F ⊆ E of G if and only if
• when e ∈ S ∩ F , all edges of Pe belong to F�,

• when e ∈ S \ F , at least one edge of Pe belongs
to F�, and

• when e �∈ S, e belongs to F� if and only if e
belongs to F .

We can observe that every forest F in G is the image
of (22�−1−1)|S\F | forests in G�. Therefore the number
of forests in G� is equal to

∑
F

(22�−1 − 1)|S\F | =
s∑

i=0

∑
F :|S\F |=i

(22�−1 − 1)i

=
s∑

i=0

aix
i
�,

where x� = 22�−1 − 1 and ai is the number of forests
F in G such that |S \ F | = i. Since x� �= x�′ for
all �, �′ ∈ {1, . . . , s + 1}, by knowing the number of
forests in G� for all � ∈ {1, . . . , s+1} we can compute
a0, . . . , as in polynomial time. Since a0 is the number
of forests in G which contain S, this completes the
reduction.

2.2 Regular graphs

Denote by kREG the class of k-regular graphs, and by
kREGP the class of k-regular planar graphs.
Theorem 2.3. The problem 3REGP-#FORESTS is
#P-complete.

Proof. We reduce 3ΔBP-#FORESTS to 3REGP-
#FORESTS. Let G = (V, E) be a bipartite planar
graph with maximum degree at most three. Without
loss of generality, we may assume that G has no ver-
tex of degree zero. We construct a 3-regular planar
graph G′ from G as follows. We attach the graph
shown in Figure 3 (top) to each vertex of degree one,
and attach the graph shown in Figure 3 (bottom) to
each vertex of degree two. We can see that the re-
sulting graph G′ is 3-regular and still planar. Denote
by n1 and n2 the number of degree-one vertices and
degree-two vertices in G, respectively. Then the num-
ber of forests in G′ is equal to the number of forests
in G times cn1

1 cn2
2 where c1 and c2 are the numbers

of forests in the appended graphs (in Figure 3), thus
constants. This completes our reduction.
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Figure 3: Attaching a graph to a degree-one vertex
and a degree-two vertex.
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Figure 4: Attaching a graph to a degree-three ver-
tex. Here K−

k+1 represents a complete graph on k+1
vertices with one edge removed, and two edges leaves
each K−

k+1 from the vertices of degree k − 1, i.e., the
vertices incident to the removed edge.

For general k ≥ 3, we similarly have the following
theorem.

Theorem 2.4. For every k ≥ 3, the problem kREG-
#FORESTS is #P-complete.

The proof is a bit more involved, and we have to
distinguish the cases according to the parity of k.

Proof of Theorem 2.4 for odd k. We reduce 3REG-
#FORESTS to kREG-#FORESTS. Let G = (V, E)
be a 3-regular graph. We construct a k-regular graph
G′ from G by attaching the graph shown in Figure
4 to each vertex of G. Namely, it is a graph having
(k − 3)/2 copies of K−

k+1 (a complete graph on k+1
vertices with one edge removed) and another vertex
with edges to the k − 3 vertices on the copies which
were incident to the removed edges. Then, we can see
that the resulting graph G′ is k-regular, and the num-
ber of forests in G′ is equal to the number of forests
in G times cn, where c is the number of forests in
the appended graph which only depends on k. This
completes our reduction.

When k is even, we produce a sequence of reduc-
tions. First we consider the following problem.

Problem: Γ-#FORESTS with exclusive
edges

Input: a graph G = (V, E) ∈ Γ, and an
edge set S ⊆ E;
Question: the number of forests in G which
do not contain any edges in S.

Lemma 2.5. For even k ≥ 4, the problem kREG-
#FORESTS with exclusive edges is #P-complete.

Proof. We reduce (k−1)REG-#FORESTS to kREG-
#FORESTS with exclusive edges. Note that since k
is even and at least four, k−1 is odd and at least
three. Hence, (k−1)REG-#FORESTS is #P-complete
by Theorem 2.4.

Let G = (V, E) be a (k−1)-regular graph. Since
k−1 is odd, G has even number of vertices. Take
an arbitrary partition of V into |V |/2 parts of size
two, and for each part {ui, vi}, i ∈ {1, . . . , |V |/2},
we attach an edge ei = {ui, vi} to G. The resulting
graph G′ = (V, E ∪ {ei | i ∈ {1, . . . , |V |/2}}) is k-
regular. We set S = {ei | i ∈ {1, . . . , |V |/2}, the
set of attached edges. Then we may observe that the
forests of G is the forests of G′ which contain no edge
of S. This completes the reduction.

Next we consider the following auxiliary problem.
Denote by (2, k)REG the class of graphs in which ev-
ery vertex has degree 2 or k.

Lemma 2.6. For even k ≥ 4, the problem (2, k)REG-
#FORESTS is #P-complete.

Proof. We reduce kREG-#FORESTS with exclusive
edges to (2, k)REG-#FORESTS. Let G = (V, E) be a
k-regular graph, where k ≥ 4 is even, and S ⊆ E. Let
s = |S|, and for each � ∈ {1, . . . , s + 1} we construct
a graph G� = (V�, E�) from G by replacing each edge
e ∈ S with a path Pe of length �. We can see that
every vertex of G� has degree 2 or k.

Fix � ∈ {1, . . . , s + 1} and we define a map from
the family of forests in G� to the family of forests in
G as follows: We map a forest F� ⊆ E� of G� to a
forest F ⊆ E of G if and only if

• when e ∈ S ∩ F , all edges of Pe belong to F�,

• when e ∈ S \ F , at least one edge of Pe belongs
to F�,

• when e �∈ S, e belongs to F� if and only if e
belongs to F .

As in the proof of Lemma 2.2, we can observe that
every forest F in G is the image of (2�−1)|S\F | forests
in G�. Therefore, the number of forests in G� is equal
to

∑
F

(2� − 1)|S\F | =
s∑

i=0

∑
F :|S\F |=i

(2� − 1)i

=
s∑

i=0

aix
i
�,

where x� = 2� − 1 and ai is the number of forests
F in G such that |S \ F | = i. Since x� �= x�′ for
all �, �′ ∈ {1, . . . , s + 1}, by knowing the numbers of
forests in G� for all � ∈ {1, . . . , s+1} we can compute
a0, . . . , as in polynomial time. Since as is the number
of forests in G which exclude S, this completes the
reduction.

We are now ready to prove Theorem 2.4 for even
k ≥ 4.

Proof of Theorem 2.4 for even k ≥ 4. We reduce
(2, k)REG-#FORESTS to kREG-#FORESTS when
k ≥ 4 is even. Let G = (V, E) be a graph whose
vertices are of degree two or k. We construct a
k-regular graph G′ from G by attaching the graph
shown in Figure 5 to each degree-two vertex of G.
Namely, it is a graph having (k−2)/2 copies of K−

k+1

(a complete graph on k+1 vertices with one edge
removed) and another vertex with edges to the k − 2
vertices on the copies which were incident to the
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Figure 5: Attaching a graph to a degree-two vertex.
Here K−

k+1 represents a complete graph on k+1 ver-
tices with one edge removed, and two edges leaves
each K−

k+1 from the vertices of degree k − 1, i.e., the
vertices incident to the removed edge.

removed edges. Then we can see that the resulting
graph G′ is k-regular and the number of forests in
G′ is equal to the number of forests in G times cn2 ,
where c is the number of forests in the appended
graph and n2 is the number of degree-two vertices.
Note that c depends on k only.

Note that the resulting graph G′ in the proof of
Theorem 2.4 is not planar unless k = 3.

2.3 Chordal graphs

A graph G is chordal if every induced cycle is of length
three. Denote by CHORDAL the class of chordal
graphs.

Theorem 2.7. The problem CHORDAL-#FORESTS
is #P-complete.

To prove Theorem 2.7, we use the following lemma
about exclusive edges.

Lemma 2.8. The problem CHORDAL-#FORESTS
with exclusive edges is #P-complete.

Proof. We use any graph class Γ such that Γ-
#FORESTS is #P-complete. For example, set Γ =
BP. From a given graph G = (V, E) ∈ Γ, we con-
struct a chordal graph G′ = (V ′, E′) by V ′ = V and
E′ =

(
V
2

)
. Namely, G′ is a complete graph on V . Set

S =
(
V
2

) \ E. Then, we can see that the forests of G
have a one-to-one correspondence to the forests of G′
which exclude S.

Now comes the main part of the proof.

Proof of Theorem 2.7. We reduce CHORDAL-
#FORESTS with exclusive edges to CHORDAL-
#FORESTS. Let G = (V, E) be a chordal graph and
S ⊆ E. Let s = |S|, and for each � ∈ {0, . . . , s} we
construct a graph G� = (V�, E�) from G by joining �
paths of length two, in parallel, to the endpoints of
every edge e ∈ S. An example for � = 2 is displayed
in Figure 6. Note that G0 is isomorphic to G.

Fix � ∈ {0, . . . , s}, and denote by P 1
e , P 2

e , . . . , P �
e

the newly added paths in G� between the endpoints
of e. We define a map from the family of forests in
G� to the family of forests in G as follows: We map
a forest F� ⊆ E� of G� to a forest F ⊆ E of G if and
only if

• when e ∈ S ∩ F , F� contains one of the paths
among P 1

e , . . . , P �
e ,

G G2

Figure 6: Joining paths of length two.

• when e ∈ S \ F , F� contains none of the paths
among P 1

e , . . . , P �
e , and

• when e �∈ S, e belongs to F� if and only if e
belongs to F .

We can observe that every forest F in G is the image
of (3� + �3�−1)|S∩F |3�|S\F | forests in G�. Therefore
the number of forests in G� is equal to∑

F

(3� + �3�−1)|S∩F |3�|S\F |

=
s∑

i=0

∑
F :|S∩F |=i

(3� + �3�−1)i3�(s−i)

= 3�s
s∑

i=0

∑
F :|S∩F |=i

(1 + �/3)i

= 3�s
s∑

i=0

aix
i
�,

where x� = 1 + �/3 and ai is the number of forests
F in G such that |S ∩ F | = i. Since x� �= x�′ for all
�, �′ ∈ {0, . . . , s}, by knowing the number of forests in
G� for all � ∈ {0, . . . , s} we can compute a0, . . . , as in
polynomial time. Since a0 is the number of forests in
G which exclude S, this completes the reduction.

Note that the proof actually shows that counting
the number of forests in a split graph is #P-complete,
where a graph is split if the vertex set can be parti-
tioned into a clique and an independent set.

3 Algorithms

In this section, we concentrate on faster (exponential-
time) algorithms for the forest counting problem. The
trivial algorithm runs in O∗(2m) time, and the goal
is to beat this bound. Throughout the section, m
denotes the number of edges in a given graph.

3.1 Regular graphs

We start with an algorithm for 3REG-#FORESTS
(i.e., counting the number of forests in 3-regular
graphs). The running time is O∗(1.8494m).

For the analysis of our algorithm, we use the fol-
lowing simple lemma.

Lemma 3.1. Every maximal independent set of a k-
regular graph with n vertices contains at least n/(k+
1) vertices.

Proof. Let G = (V, E) be a k-regular graph and I ⊆
V be an arbitrary maximal independent set of G. We
count the number of edges between I and V \I in two
ways. On one hand, since each vertex of I is incident
to k edges and since I is independent, these edges
lie between I and V \ I. Therefore, the number of
edges between I and V \ I is k|I|. On the other hand,
every vertex of V \ I has at least one of its neighbors



in I since I is maximal. Therefore, the number of
edges between I and V \ I is at least |V \ I|. Thus,
we obtain k|I| ≥ |V \ I| = n − |I|. This results in
|I| ≥ n/(k + 1).

Let G be a given 3-regular graph with n vertices.
We first take an arbitrary maximal independent set I
of G. Each vertex v of I is incident to exactly three
edges, say, e1, e2, e3. When we fix a forest F in G,
exactly one of the following four is true.

1. No edge incident to v is contained in F .

2. Exactly one out of e1, e2, e3 is contained in F .

3. Exactly two out of e1, e2, e3 are contained in F .

4. All edges incident to v are contained in F .

This subdivision scheme gives an algorithm based on
a search tree. When looking through all vertices in I,
we will touch at least 3n/4 = m/2 edges of G since
|I| ≥ n/4 by Lemma 3.1. So, at most m/2 edges are
left untouched in G. By the exhaustive search, each
of the left instances can be solved in O∗(2m/2) time.

Let us describe the subdivision scheme more pre-
cisely. For the edges e1, e2, e3 incident to v in I, let
S = {e1, e2, e3}. For each subset S′ ⊆ S, the algo-
rithm tries to count the number of forests in G which
contain S′ and exclude S \ S′. The number of such
forests is equal to the number of forests in G with S′
contracted and S \ S′ deleted. An important obser-
vation is that the resulting graphs when |S′| ≤ 1 are
all identical (up to the existence of isolated vertices).
Therefore, the subinstances we obtain from each ver-
tex in I is at most five, and for each the number of
edges decreases by three.

This gives the following recursion. Let T (m) be
the maximum number of nodes in the search tree cre-
ated by the algorithm above when the input graph
G has m edges. Then, we have T (m) ≤ O∗(5n/4 ×
2m/2) = O∗(5m/6×2m/2) = O∗(1.8494m). Since each
creation of subproblems can be done in polynomial
time, we have proved the following theorem

Theorem 3.2. The problem 3REG-#FORESTS can
be solved in O∗(1.8494m) time.

For k-regular graphs G we obtain a similar algo-
rithm. To this end, we again take an arbitrary max-
imal independent set I of a given k-regular graph G.
Each vertex v of I is incident to exactly k edges, say,
e1, e2, . . . , ek. When we fix a forest F in G, exactly
one of the following k+1 conditions is true.

1. No edge incident to v is contained in F .

2. Exactly one out of e1, . . . , ek is contained in F .

3. Exactly two out of e1, . . . , ek are contained in F .

...

k. Exactly k−1 of e1, . . . , ek are contained in F .

k+1. All edges incident to v are contained in F .

Note that the subinstances arising from Cases 1
and 2 are all identical. So the number of subinstances
from each vertex in I is at most 2k−k, and the number
of edges decreases by k. By Lemma 3.1, we can see
that when we look through all vertices in I we will
touch at least kn/(k+1) = 2m/(k+1) edges of G. So
at most m− 2m/(k+1) edges are left untouched. By
the exhaustive search, each of the left instances can
be solved in O(2m−2m/(k+1)) time. Thus, by the same
argument as Theorem 3.2, we obtain the following
theorem.

Theorem 3.3. For any k ≥ 2, we can count the
number of forests in a k-regular graph in O∗((2k −
k)

2m
k(k+1) 2m− 2m

k+1 ) time.

Note that 2REG-#FORESTS can be solved in poly-
nomial time (not by the algorithm above) since every
connected component of a 2-regular graph is a cycle.

For graphs of maximum degree at most k, the same
algorithm works and the worst-case running time is
also the same.

3.2 Unit interval graphs

Theorem 2.7 states that counting the number of
forests in a chordal graph is #P-complete. The
main goal of this section should be to give a faster
(exponential-time) algorithm for chordal graphs, but
so far attempts are not that successful. Therefore, we
focus on a subclass of the chordal graphs, namely, the
class of unit interval graphs.

A graph G = (V, E) is a unit interval graph if there
exist a set I = {I1, . . . , In} of unit closed intervals on
a line and a bijection ψ : V → I such that {u, v} ∈ E
if and only if ψ(u) ∩ ψ(v) �= ∅. For a unit interval
graph G, the set I of unit intervals as in the defi-
nition is called the unit interval representation of G.
We can determine whether a given graph is a unit in-
terval graph or not, and if so generate a unit interval
representation of the graph in linear time (Herrera
de Figueiredo, Meidanis & Picinin de Mello 1995).
Therefore, for our purpose, we may assume that a
unit interval graph is given through a unit interval
representation I of it.

Let G = (V, E) be a unit interval graph and fix
a unit interval representation I of it with the corre-
sponding bijection ψ. First of all, we may assume
that G is 2-connected since the number of forests in a
graph is the product of the numbers of forests for all
2-connected components. Then, we make the follow-
ing preprocessing. We look at the leftmost interval
I1 in I, and collect the intervals in I which intersect
I1. Denote by C1 the vertices in G corresponding to
the collected intervals. Now, we dispose the collected
intervals from I and look for the leftmost interval
I2 in the remaining I, collecting the intervals in I
which intersect I2. Denote by C2 the vertices in G
corresponding to the collected intervals. We dispose
the collected intervals from I, and proceed along the
same way. Thus, we obtain a partition {C1, . . . , Ck}
of the vertex set V , which we call the clique parti-
tion of G (with respect to I), satisfying the following
properties.

1. For each i ∈ {1, . . . , k}, the set Ci is a clique of
G.

2. For each i, j ∈ {1, . . . , k}, i < j, there exists an
edge between Ci and Cj if and only if i = j + 1.

Note that the clique partition of G can be obtained
in linear time (Herrera de Figueiredo et al. 1995).

An edge e ∈ E is called non-bridging if it connects
two vertices of some Ci. Otherwise, the edge is bridg-
ing. From the construction and the assumption that
G is 2-connected, we may observe that |Ci| ≥ 3 for
each i ∈ {1, . . . , k − 1}, and |Ck| ≥ 2. The following
is an important lemma for our algorithm.

Lemma 3.4. Under the assumption above, the num-
ber of bridging edges in G is at most 2m/3, where m
is the number of edges in G.

Proof. Let ni be the size of Ci. When k = 1, we have
no bridging edge; Thus the lemma holds.

To illustrate the general case, let us first consider
when k = 2. Then, we have to show that the number



of bridging edges is at most two thirds times
(
n1
2

)
+(

n2
2

)
plus the number of bridging edges. Since the

number of bridging edges is at most (n1 − 1)n2 by
construction, it suffices to show that (n1 − 1)n2 ≤
n1(n1−1)+n2(n2−1). This inequality always holds,
and we are done for this case.

For general k, the number of bridging edges is
at most

∑k−1
i=1 (ni − 1)ni+1 and the number of non-

bridging edges is exactly
∑k

i=1

(
ni

2

)
. By the same ar-

gument as the case k = 2, it suffices to show that∑k−1
i=1 (ni − 1)ni+1 ≤ ∑k

i=1 ni(ni − 1). This can be
shown as follows with noting that x2 + y2 ≥ 2xy for
all x, y ∈ IR and x2/2 − x ≥ 0 for all x ≥ 2:

k∑
i=1

ni(ni − 1)

=
k∑

i=1

n2
i −

k∑
i=1

ni

=
k−1∑
i=1

(n2
i /2 + n2

i+1/2) + n2
1/2 + n2

k/2 −
k∑

i=1

ni

≥
k−1∑
i=1

nini+1 + n2
1/2 + n2

k/2 − n1 −
k∑

i=2

ni

≥
k−1∑
i=1

nini+1 −
k∑

i=2

ni

≥
k−1∑
i=1

nini+1 −
k−1∑
i=1

ni+1

=
k−1∑
i=1

ni+1(ni − 1).

Thus the lemma is verified.

Having the clique partition {C1, . . . , Ck} of G, we
enumerate all forests of the subgraph G[Ci] of G in-
duced by Ci for all i ∈ {1, . . . , k}. For each forest Fi of
each Ci, we obtain the graph G′ obtained from G by
contracting each connected component of F1, . . . , Fk.
On G′ we make the exhaustive search. This is our al-
gorithm. The correctness follows from the well-known
contraction-deletion formula for the number of forests
(or, the Tutte polynomial).

The number of forests in G[Ci] is at most∑ni−1
j=0

((ni
2 )
j

)
. So the number of exhaustive search ex-

ecutions is at most
∏k

i=1

∑ni−1
j=0

((ni
2 )
j

)
. The following

lemma gives an estimate.

Lemma 3.5. For n ≥ 3, it holds that

⎛
⎝n−1∑

j=0

((n
2

)
j

)⎞⎠
1/(n

2)

≤ 71/3.

Proof. Set f(n) = (
∑n−1

j=0

((n
2)
j

)
)1/(n

2). A direct calcu-

lation shows f(3) = 71/3 ≥ 1.9130, f(4) = 421/6 ≤
1.8644, f(5) = 3861/10 ≤ 1.8141, f(6) = 132121/15 ≤
1.8825, f(7) = 821601/21 ≤ 1.7141. So, it suffices to
show f(n) ≤ 1.9 for n ≥ 8.

For simplicity, let z =
(
n
2

)
. Since n ≥ 8, we have

z ≥ 28. Let g(z) = (
∑√

2z
j=0

(
z
j

)
)1/z, then we have

f(n) = g(z) where z =
(
n
2

)
. By using the bound∑b

i=0

(
a
i

) ≤ (ea/b)b, we obtain

g(z) =

⎛
⎝

√
2z∑

j=0

(
z

j

)⎞⎠
1/z

≤
((

ez√
2z

)√
2z
)1/z

=
(

e√
2

√
z

)√2/z

.

Let h(z) = ( e√
2

√
z)
√

2/z. We have the monotonicity:
h(z′) ≥ h(z) for z ≥ z′ ≥ 28. Therefore, g(z) ≤
h(z) ≤ h(28) < 1.9. This completes the proof.

Armed with Lemma 3.5, we may bound the run-
ning time from above as follows. Let m′ be the num-
ber of edges in G′, which is by construction the same
as the number of bridging edges. Since m′ ≤ 2m/3,
the running time is at most

k∏
i=1

ni−1∑
j=0

((ni

2

)
j

)
× O∗(2m′

)

=
k∏

i=1

⎛
⎜⎝
⎛
⎝ni−1∑

j=0

((ni

2

)
j

)⎞⎠
1/(ni

2 )⎞⎟⎠
(ni

2 )

× O∗(2m′
)

≤ (71/3)
Pk

i=1 (ni
2 )O∗(2m′

)

= (71/3)m−m′
O∗(2m′

)

≤ O∗(7m/922m/3) = O∗(1.9706m).

Thus, we conclude the following theorem.

Theorem 3.6. We can count the number of forests
in a unit interval graph in O∗(1.9706m) time.

4 Conclusion and open problems

We have seen #P-completeness results and fast
(exponential-time) algorithms for the forest counting
problem in some classes of graphs. The method can
be generalized to the Tutte polynomial computation.

One of the major open questions is the complexity
status of the forest counting (or the Tutte polynomial
computation) for unit interval graphs. We do not
even know that the problem is #P-complete or not
for (not necessarily unit) interval graphs. For chordal
graphs, we do not know any faster algorithm than
the trivial O∗(2m)-time algorithm. Finding such an
algorithm seems a challenge.
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