

Linear-Time Counting Algorithms

for Independent Sets in Chordal Graphs

<u>Yoshio Okamoto</u>	T
Takeaki Uno	Ν
Ryuhei Uehara	Ja

Toyohashi Univ TechJPNational Inst InformaticsJPJapan Adv Inst Sci TechJP

June 25, 2005 31st International Workshop on Graph-Theoretic Concepts in Computer Science University of Metz, Metz, France

G = (V, E) a graph (undirected, finite, simple)

G = (V, E) a graph (undirected, finite, simple)

G = (V, E) a graph (undirected, finite, simple)

A set $I \subseteq V$ is an **independent set** of G if no two vertices in I are adjacent.

G = (V, E) a graph (undirected, finite, simple)

A set $I \subseteq V$ is an **independent set** of G if no two vertices in I are adjacent.

G = (V, E) a graph (undirected, finite, simple)

A set $I \subseteq V$ is an **independent set** of G if no two vertices in I are adjacent.

Not an independent set

G = (V, E) a graph (undirected, finite, simple)

A set $I \subseteq V$ is an **independent set** of G if no two vertices in I are adjacent.

Not an independent set

G = (V, E) a graph (undirected, finite, simple)

A set $I \subseteq V$ is an **independent set** of G if no two vertices in I are adjacent.

G = (V, E) a graph (undirected, finite, simple)

A set $I \subseteq V$ is an **independent set** of G if no two vertices in I are adjacent.

An independent set

G = (V, E) a graph (undirected, finite, simple)

A set $I \subseteq V$ is an **independent set** of G if no two vertices in I are adjacent.

An independent set

Also called a stable set of G

An enumeration problem

G = (V, E) a graph

All independent sets of \boldsymbol{G}

An enumeration problem

All independent sets of \boldsymbol{G}

74 independent sets in total

A counting problem

G = (V, E) a graph

independent sets of G

A counting problem

G = (V, E) a graph

 $\# \mbox{ independent sets of } G$

74

We study the following **counting problems**:

- $G = (V\!, E) \text{ a graph}$
- (1) # independent sets of G
- (2) # maximum independent sets of G
- (3) # independent sets of G of fixed size
- (4) # maximal independent sets of G
- (5) # minimum maximal independent sets of G

G = (V, E) a graph

An independent set I of G is maximum if it has the largest size among all independent sets of G.

G = (V, E) a graph

An independent set I of G is maximum if it has the largest size among all independent sets of G.

Not maximum

G = (V, E) a graph

An independent set I of G is maximum if it has the largest size among all independent sets of G.

G = (V, E) a graph

An independent set I of G is maximum if it has the largest size among all independent sets of G.

Maximum

Maximum independent sets

74 independent sets

Maximum independent sets

74 independent sets

7 maximum independent sets

An independent set I of G is **maximal** if no proper superset of I is independent.

An independent set I of G is **maximal** if no proper superset of I is independent.

Maximal

An independent set I of G is **maximal** if no proper superset of I is independent.

An independent set I of G is **maximal** if no proper superset of I is independent.

Maximal

An independent set I of G is **maximal** if no proper superset of I is independent.

An independent set I of G is **maximal** if no proper superset of I is independent.

Not maximal

An independent set I of G is **maximal** if no proper superset of I is independent.

Not maximal

An independent set I of G is **maximal** if no proper superset of I is independent.

Not maximal

Also called an independent dominating set of \boldsymbol{G}

Maximal independent sets

74 independent sets

Maximal independent sets

74 independent sets

13 maximal independent sets

An independent set I of G is **minimum maximal** if it is maximal and has the smallest size among all maximal independent sets of G.

maximal

An independent set I of G is **minimum maximal** if it is maximal and has the smallest size among all maximal independent sets of G.

Not minimum maximal

An independent set I of G is **minimum maximal** if it is maximal and has the smallest size among all maximal independent sets of G.

An independent set I of G is **minimum maximal** if it is maximal and has the smallest size among all maximal independent sets of G.

Minimum maximal

An independent set I of G is **minimum maximal** if it is maximal and has the smallest size among all maximal independent sets of G.

Minimum maximal

Also called a minimum independent dominating set of G

Minimum maximal independent sets

74 independent sets

Minimum maximal independent sets

74 independent sets

1 minimum maximal independent set

We study the following **counting problems**:

- $G = (V\!, E) \text{ a graph}$
- (1) # independent sets of G 74
- (2) # maximum independent sets of G 7
- (3) # independent sets of G of fixed size
- (4) # maximal independent sets of G 13
- (5) # minimum maximal independent sets of G 1

74 independent sets

74 independent sets

74 independent sets

74 independent sets

74 independent sets

What's known

These counting problems are #P-complete (analoguous to NP-completeness).

 \implies Cannot hope for a poly-time algorithms.

What's known

These counting problems are #P-complete (analoguous to NP-completeness).

- Cannot hope for a poly-time algorithms even for
 - the line graphs of bipartite graphs
 (Valiant '79)
 - bipartite graphs
 (Provan & Ball '83)
 - planar bipartite graphs of max deg 4

(Vadhan '01).

These counting problems are #P-complete (analoguous to NP-completeness).

- Cannot hope for a poly-time algorithms even for
 - the line graphs of bipartite graphs
 (Valiant '79)
 - bipartite graphs (Provan & Ball '83)
 - planar bipartite graphs of max deg 4 (Vadhan '01).
- \implies Focus on another class of perfect graphs!!

G = (V, E) a graph

G is chordal

if every induced cycle is of length three.

G = (V, E) a graph

G is chordal

if every induced cycle is of length three.

G = (V, E) a graph

G is chordal

if every induced cycle is of length three.

Not chordal

G = (V, E) a graph

G is chordal

if every induced cycle is of length three.

Not chordal

G = (V, E) a graph

G is chordal

if every induced cycle is of length three.

G = (V, E) a graph

G is chordal

if every induced cycle is of length three.

We study the following **counting problems**:

- G = (V, E) a chordal graph
- (1) # independent sets of G
- (2) # maximum independent sets of G
- (3) # independent sets of G of fixed size
- (4) # maximal independent sets of G
- (5) # minimum maximal independent sets of G

We study the following **counting problems**:

G = (V, E) a chordal graph

- (1) # independent sets of G
- (2) # maximum independent sets of G
- (3) # independent sets of G of fixed size
- (4) # maximal independent sets of G

(5) # minimum maximal independent sets of G

<u>Rem</u> "Finding one" is easy.

(Gavril '72, Farber '82)

We obtain the following results for chordal graphs.

- (1) # independent sets of G
- (2) # maximum independent sets of G
- (3) # independent sets of G of fixed size

(4) # maximal independent sets of G
(5) # minimum maximal independent sets of G

We obtain the following results for chordal graphs.

- (1) # independent sets of G
- (2) # maximum independent sets of G
- (3) # independent sets of G of fixed size

O(|V| + |E|) alg. (4) # maximal independent sets of G (5) # minimum maximal independent sets of G #P-complete

We obtain the following results for chordal graphs.

(1) # independent sets of G
(2) # maximum independent sets of G
(3) # independent sets of G of fixed size O(|V| + |E|) alg.
(4) # maximal independent sets of G
(5) # minimum maximal independent sets of G #P-complete

A clique tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G, (2) $\forall \ \nu \in V,$

the nodes of T containing ν induce a tree.

A clique tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G, (2) $\forall v \in V$,

the nodes of T containing v induce a tree.

A clique tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G, (2) $\forall v \in V$,

the nodes of T containing v induce a tree.

A clique tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G, (2) $\forall v \in V$,

the nodes of T containing ν induce a tree.

A clique tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G, (2) $\forall v \in V$,

the nodes of T containing v induce a tree.

A clique tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G, (2) $\forall v \in V$,

the nodes of T containing v induce a tree.

A clique tree can be computed in linear time.

G = (V, E) a (connected) chordal graph,

T a clique tree of G, with root K

G = (V, E) a (connected) chordal graph, T a clique tree of G, with root K

Property

G = (V, E) a (connected) chordal graph, T a clique tree of G, with root K Every independent set of G either contains exactly one vertex in K or not.

Property

G = (V, E) a (connected) chordal graph, T a clique tree of G, with root K Every independent set of G either contains exactly one vertex in K or not.

Leads to a recursive formula...

A part of the recursive formula

- G = (V, E) a (connected) chordal graph,
- T a clique tree of G, with root K

of independent sets of G = # of independent sets of G excluding K + $\sum_{v \in K} (\# \text{ of independent sets of G containing } v)$

Chordal graph from a subtree

G = (V, E) a (connected) chordal graph,

T a clique tree of G with root K K' a node of T

 $\mathsf{T}(\mathsf{K}')$ the subtree of G rooted at K'

Chordal graph from a subtree

- G = (V, E) a (connected) chordal graph,
- T a clique tree of G with root K K' a node of T

 $\mathsf{T}(\mathsf{K}^{\,\prime})$ the subtree of G rooted at $\mathsf{K}^{\,\prime}$

T(K') is a clique tree of some chordal graph.

Chordal graph from a subtree

- G = (V, E) a (connected) chordal graph,
- T a clique tree of G with root K K' a node of T

 $\mathsf{T}(\mathsf{K}')$ the subtree of G rooted at K'

T(K') is a clique tree of some chordal graph.

Chordal graph from a subtree

- G = (V, E) a (connected) chordal graph,
- T a clique tree of G with root K K' a node of T

 $\mathsf{T}(\mathsf{K}')$ the subtree of G rooted at K'

T(K') is a clique tree of some chordal graph.

Another part of the recursive formula

- G = (V, E) a (connected) chordal graph,
 - T a clique tree of G, with root K, K_1, \ldots, K_r the children of K in T

$$\begin{split} &K_1,\ldots,K_r \text{ the children of } K \text{ in } T \\ \# \text{ of independent sets of } G \text{ excluding } K = \\ &\prod_i (\# \text{ of independent sets of } G \text{ excluding } K \cap K_i) \end{split}$$

Recursive formula

Let G be a chordal graph and T be a rooted clique tree of G. For a maximal clique K of G which is not a leaf of the clique tree, let K_1, \ldots, K_ℓ be the children of K in T. Furthermore, let $\nu \in K$. Then, the following identities hold.

$$\begin{split} \mathcal{IS}(G(K)) &= \overline{\mathcal{IS}}(G(K), K) \stackrel{.}{\cup} \bigcup_{\nu \in K} \mathcal{IS}(G(K), \nu); \\ \mathcal{IS}(G(K), \nu) &= \{S \cup \{\nu\} \mid S = \bigcup_{i=1}^{\ell} S_i, S_i \in \left\{ \begin{array}{cc} \mathcal{IS}(G(K_i), \nu) & \text{if } \nu \in K_i \\ \overline{\mathcal{IS}}(G(K_i), K \cap K_i) & \text{otherwise} \end{array} \right\}; \\ \overline{\mathcal{IS}}(G(K), K) &= \{S \mid S = \bigcup_{i=1}^{\ell} S_i, S_i \in \overline{\mathcal{IS}}(G(K_i), K \cap K_i)\}; \\ \overline{\mathcal{IS}}(G(K_i), K \cap K_i) &= \overline{\mathcal{IS}}(G(K_i), K_i) \stackrel{.}{\cup} \bigcup_{u \in K_i \setminus K} \mathcal{IS}(G(K_i), u) & \text{for each } i \in \{1, \dots, \ell\}, \end{split}$$

where $\mathcal{IS}(G)$ denotes the family of independent sets in G, $\mathcal{IS}(G, v)$ denotes for a vertex v the family of independent sets in G including v, $\overline{\mathcal{IS}}(G, U)$ denotes the family of independent sets in G including no vertex of U for a vertex set U.

Recursive formula

Let G be a chordal graph and T be a rooted clique tree of G. For a maximal clique K of G which is not a leaf of the clique tree, let K_1, \ldots, K_ℓ be the children of K in T. Furthermore, let $\nu \in K$. Then, the following identities hold.

$$\begin{split} \mathcal{IS}(G(K)) &= \overline{\mathcal{IS}}(G(K), K) \stackrel{.}{\cup} \bigcup_{\nu \in K} \mathcal{IS}(G(K), \nu); \\ \mathcal{IS}(G(K), \nu) &= \{ S \cup \{\nu\} \mid S = \bigcup_{i=1}^{\ell} S_i, S_i \in \left\{ \begin{array}{cc} \mathcal{IS}(G(K_i), \nu) & \text{if } \nu \in K_i \\ \overline{\mathcal{IS}}(G(K_i), K \cap K_i) & \text{otherwise} \end{array} \right\}; \\ \overline{\mathcal{IS}}(G(K), K) &= \{ S \mid S = \bigcup_{i=1}^{\ell} S_i, S_i \in \overline{\mathcal{IS}}(G(K_i), K \cap K_i) \}; \\ \overline{\mathcal{IS}}(G(K_i), K \cap K_i) &= \overline{\mathcal{IS}}(G(K_i), K_i) \stackrel{.}{\cup} \bigcup_{u \in K_i \setminus K} \mathcal{IS}(G(K_i), u) & \text{for each } i \in \{1, \dots, \ell\}, \end{split}$$

where $\mathcal{IS}(G)$ denotes the family of independent sets in G, $\mathcal{IS}(G, v)$ denotes for a vertex v the family of independent sets in G including v, $\overline{\mathcal{IS}}(G, U)$ denotes the family of independent sets in G including no vertex of U for a vertex set U.

A detailed analysis yields a linear-time algorithm to count the independent sets in a chordal graph!

Recursive formula

Let G be a chordal graph and T be a rooted clique tree of G. For a maximal clique K of G which is not a leaf of the clique tree, let K_1, \ldots, K_ℓ be the children of K in T. Furthermore, let $\nu \in K$. Then, the following identities hold.

$$\begin{split} \mathcal{IS}(G(K)) &= \overline{\mathcal{IS}}(G(K), K) \stackrel{.}{\cup} \bigcup_{\nu \in K} \mathcal{IS}(G(K), \nu); \\ \mathcal{IS}(G(K), \nu) &= \{S \cup \{\nu\} \mid S = \bigcup_{i=1}^{\ell} S_i, S_i \in \left\{ \begin{array}{cc} \mathcal{IS}(G(K_i), \nu) & \text{if } \nu \in K_i \\ \overline{\mathcal{IS}}(G(K_i), K \cap K_i) & \text{otherwise} \end{array} \right\}; \\ \overline{\mathcal{IS}}(G(K), K) &= \{S \mid S = \bigcup_{i=1}^{\ell} S_i, S_i \in \overline{\mathcal{IS}}(G(K_i), K \cap K_i)\}; \\ \overline{\mathcal{IS}}(G(K_i), K \cap K_i) &= \overline{\mathcal{IS}}(G(K_i), K_i) \stackrel{.}{\cup} \bigcup_{u \in K_i \setminus K} \mathcal{IS}(G(K_i), u) & \text{for each } i \in \{1, \dots, \ell\}, \end{split}$$

where $\mathcal{IS}(G)$ denotes the family of independent sets in G, $\mathcal{IS}(G, v)$ denotes for a vertex v the family of independent sets in G including v, $\overline{\mathcal{IS}}(G, U)$ denotes the family of independent sets in G including no vertex of U for a vertex set U.

A detailed analysis yields a linear-time algorithm to count the independent sets in a chordal graph!

The independent sets in a chordal graph G = (V, E) can be counted in O(|V| + |E|) time.

We obtain the following results for chordal graphs.

(1) # independent sets of G
(2) # maximum independent sets of G
(3) # independent sets of G of fixed size O(|V| + |E|) alg.
(4) # maximal independent sets of G
(5) # minimum maximal independent sets of G #P-complete

X a finite set,
$$\mathcal{S} \subseteq 2^X$$
 a family

st
$$\bigcup_{Y \in \mathcal{S}'} Y = X$$
.

X a finite set,
$$\mathcal{S} \subseteq 2^X$$
 a family

st
$$\bigcup_{Y \in \mathcal{S}'} Y = X$$
.

X a finite set,
$$\mathcal{S} \subseteq 2^X$$
 a family

st
$$\bigcup_{Y \in \mathcal{S}'} Y = X$$
.

X a finite set,
$$\mathcal{S} \subseteq 2^X$$
 a family

st
$$\bigcup_{Y \in \mathcal{S}'} Y = X$$
.

X a finite set,
$$\mathcal{S} \subseteq 2^X$$
 a family

st
$$\bigcup_{Y \in \mathcal{S}'} Y = X$$
.

X a finite set,
$$\mathcal{S} \subseteq 2^X$$
 a family

st
$$\bigcup_{Y \in \mathcal{S}'} Y = X$$
.

X a finite set,
$$\mathcal{S} \subseteq 2^X$$
 a family

st
$$\bigcup_{Y \in \mathcal{S}'} Y = X$$
.

Actual reduction

Actual reduction

Actual reduction

We obtain the following results for chordal graphs.

(1) # independent sets of G
(2) # maximum independent sets of G
(3) # independent sets of G of fixed size O(|V| + |E|) alg.
(4) # maximal independent sets of G
(5) # minimum maximal independent sets of G #P-complete

- "Enumeration" can be done in a similar way.
 - Yields algorithms with constant delay.
- Approximating a minimum-weight maximal independent set within a logarithmic factor is hard.

- "Enumeration" can be done in a similar way.
 - Yields algorithms with constant delay.
- Approximating a minimum-weight maximal independent set within a logarithmic factor is hard.

Merci beaucoup.

