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Problem description

We study the following counting problems:

. InputInput G = (V, E) a graph

. OutputOutput (1) # independent sets of G

. OutputOutput (2) # maximum independent sets of G

. OutputOutput (3) # independent sets of G of fixed size

. OutputOutput (4) # maximal independent sets of G

. OutputOutput (5) # minimum maximal independent sets of G
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Problem description

We study the following counting problems:

. InputInput G = (V, E) a graph

. OutputOutput (1) # independent sets of G 74

. OutputOutput (2) # maximum independent sets of G 7

. OutputOutput (3) # independent sets of G of fixed size

. OutputOutput (4) # maximal independent sets of G 13

. OutputOutput (5) # minimum maximal independent sets of G 1



Independent sets of fixed size
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Independent sets of fixed size

74 independent sets 7 independent sets of size 4



What’s known

. FactFact These counting problems are #P-complete

(analoguous to NP-completeness).

=⇒ Cannot hope for a poly-time algorithms.

=⇒ even for

the line graphs of bipartite graphs (Valiant ’79).

bipartite graphs (Provan & Ball ’83).

planar bipartite graphs of max deg 4 (Vadhan ’01).

=⇒ Focus on another class of perfect graphs!!
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. GivenGiven G = (V, E) a (connected) chordal graph

. DefDef A clique tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G,
(2) ∀ v ∈ V ,

the nodes of T containing v induce a tree.

A clique tree can be computed in linear time.
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Another part of the recursive formula

. GivenGiven G = (V, E) a (connected) chordal graph,

T a clique tree of G, with root K,
K1, . . . , Kr the children of K in T

. LemLem # of independent sets of G excluding K =∏

i

(# of independent sets of G excluding K ∩ Ki)



Recursive formula
Let G be a chordal graph and T be a rooted clique tree of G. For a maximal clique K of G which is not a leaf of the clique tree, let K1, . . . , K` be the children of K in T . Furthermore,
let v ∈ K. Then, the following identities hold.

IS(G(K)) = IS(G(K), K) ∪̇
⋃̇

v∈K

IS(G(K), v);

IS(G(K), v) = {S ∪ {v} | S =
⋃̀

i=1

Si, Si ∈
{

IS(G(Ki), v) if v ∈ Ki

IS(G(Ki), K ∩ Ki) otherwise

}
};

IS(G(K), K) = {S | S =
⋃̀

i=1

Si, Si ∈ IS(G(Ki), K ∩ Ki)};

IS(G(Ki), K ∩ Ki) = IS(G(Ki), Ki) ∪̇
⋃̇

u∈Ki\K

IS(G(Ki), u) for each i ∈ {1, . . . , `},

where IS(G) denotes the family of independent sets in G, IS(G, v) denotes for a vertex v the family of independent sets in G including v, IS(G, U) denotes the family of independent
sets in G including no vertex of U for a vertex set U.

A detailed analysis yields a linear-time algorithm to
count the independent sets in a chordal graph!

. ThmThm The independent sets in a chordal graph G = (V, E)

can be counted in O(|V | + |E|) time.
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We obtain the following results for chordal graphs.

(1) # independent sets of G

(2) # maximum independent sets of G

(3) # independent sets of G of fixed size
O(|V | + |E|) alg.

(4) # maximal independent sets of G
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#P-complete
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⋃
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Actual reduction

# set covers +
∑

x∈X

2# sets not containing x
=

# maximal independent sets



Plan

We obtain the following results for chordal graphs.

(1) # independent sets of G

(2) # maximum independent sets of G

(3) # independent sets of G of fixed size
O(|V | + |E|) alg.

(4) # maximal independent sets of G

(5) # minimum maximal independent sets of G

#P-complete
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¨̈ “Enumeration” can be done in a similar way.
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¨̈ Approximating a minimum-weight maximal independent
set within a logarithmic factor is hard.
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Merci beaucoup.


