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ZD An independent set

ISetup G = (V,E) a graph (undirected, finite, simple)

| Def. \ A set I C Vis an independent set of G
if no two vertices in I are adjacent.

An independent set

Also called a stable set of G
.
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We study the following counting problems:

‘ Input G = (V,E) a graph

Output (1) # independent sets of G

(2) # maximum independent sets of G
(3) # independent sets of G of fixed size

(4) # maximal independent sets of G

(5) # minimum maximal independent sets of G
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A minimum maximal independent set

AP
G = (V,E) a graph

Def. An independent set I of G is minimum maximal

if it is maximal and has the smallest size among
all maximal independent sets of G.
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A minimum maximal independent set

AP
G = (V,E) a graph

Def. An independent set I of G is minimum maximal

if it is maximal and has the smallest size among
all maximal independent sets of G.

Minimum maximal

Also called a minimum independent dominating set of G
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We study the following counting problems:
‘ Input G = (V,E) a graph
(1) # independent sets of G 74

(2) # maximum independent sets of G 7

(3) # independent sets of G of fixed size
(4) # maximal independent sets of G 13

(5) # minimum maximal independent sets of G 1




P Independent sets of fixed size

74 independent sets 1 independent set of size 0
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ﬁ What's known

! Factl hese counting problems are #P-complete
(analoguous to NP-completeness).

—> (Cannot hope for a poly-time algorithms

even for
¢ the line graphs of bipartite graphs (Valiant)
¢ bipartite graphs (Provan & Ball)
& planar bipartite graphs of max deg 4 (Vadhan).

—> Focus on another class of perfect graphs!!
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ISetup G = (V,E) a graph

| Def. \ G i1s chordal

If every induced cycle is of length three.

Chordal
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We study the following counting problems:

‘ Input G = (V,E) a chordal graph

Output (1) # independent sets of G

(2) # maximum independent sets of G
(3) # independent sets of G of fixed size

(4) # maximal independent sets of G

(5) # minimum maximal independent sets of G
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| Given | G = (V,E) a (connected) chordal graph
A cligue tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G,
(2)VvevV,
the nodes of T containing v induce a tree.
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7 Clique tree

| Given | G = (V,E) a (connected) chordal graph
A cligue tree of G is a tree T st

(1) the nodes of T = the maximal cliques of G,
(2)VvevV,
the nodes of T containing v induce a tree.

AN

A clique tree can be computed in linear time.
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ZD A basic property

I Given | G = (V,E) a (connected) chordal graph,
T a clique tree of G, with root K

| Propertyl Every independent set of G either

contains exactly one vertex in K or not.

AR

| eads to a recursive formula...




ZD Recursive formula

Let G be a chordal graph and T be a rooted clique tree of G. For a maximal clique K of G which is not a leaf of the clique tree, let Kq,...,K; be the children of K in T. Furthermore,
let v € K. Then, the following identities hold.

I8(G(K)) = T8(G(K), K) U | Z8(G(K), v)

vekK
. .
IS(G(K),v) ={SU{}|S = U Si,8: € { %Eggij,gm Ki) :tzefwliiie }};

i=1
¢
IS(G(K),K) ={S | S = [ J $i,Si € I8(G(Ki), KN Ky}
i=1
ZS(G(Ki), KNKy) =ZS(G(Ky),Ki) U U ZS(G(Ki),u) foreachie{1,..., 4},
uekKi\K

where ZS(G) denotes the family of independent sets in G, ZS(G,v) denotes for a vertex v the family of independent sets in G including v, ZS(G, U) denotes the family of independent
sets in G including no vertex of U for a vertex set U.
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ZD Recursive formula

Let G be a chordal graph and T be a rooted clique tree of G. For a maximal clique K of G which is not a leaf of the clique tree, let K¢, ..., K¢ be the children of K in T. Furthermore,
let v € K. Then, the following identities hold.

I8(G(K)) = T8(G(K), K) U | Z8(G(K), v)

veK

14 .
=1 ) 1
4
IS(G(K),K) ={S | S = [ J $i,Si € I8(G(Ki), KN Ky}

i=1

ZS(G(Ki), KNKy) =ZS(G(Ky),Ki) U U ZS(G(Ki),u) foreachie{l,..., 0,
uekKi\K

where ZS(G) denotes the family of independent sets in G, ZS(G,v) denotes for a vertex v the family of independent sets in G including v, ZS(G, U) denotes the family of independent
sets in G including no vertex of U for a vertex set U.

A detailed analysis yields a linear-time algorithm to
count the independent sets in a chordal graph!

IThm | The independent sets in a chordal graph G = (V, E)
can be counted in O(|V|+ |E|) time.
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We obtain the following results for chordal graphs.

(1) # independent sets of G
(2) # maximum independent sets of G
(3) # independent sets of G of fixed size
O(IV] + IE]) alg.
(4) # maximal independent sets of G
(5) # minimum maximal independent sets of G
#P-complete




s ey e
P Reduction of Set Cover

We use the following counting problem
(a counting version of the set cover problem).

Given X a finite set, S C 2% a family

| Output | The number of subfamilies S’ C S

st Uyes' Y =X




s ey e
P Reduction of Set Cover

We use the following counting problem
(a counting version of the set cover problem).

Given X a finite set, S C 2% a family

| Output | The number of subfamilies S’ C S

st Uyes' Y =X
o o
(||e® O ol )
N
O O O
N—A
(||e O ol )




s ey e
P Reduction of Set Cover

We use the following counting problem
(a counting version of the set cover problem).

Given X a finite set, S C 2% a family

| Output | The number of subfamilies S’ C S

st Uyes' Y =X
a a
(||e O ol )
N
O O O
N—A
(||e O ol )




s ey e
P Reduction of Set Cover

We use the following counting problem
(a counting version of the set cover problem).

Given X a finite set, S C 2% a family

| Output | The number of subfamilies S’ C S

st Uyes' Y =X
o o
(||e® O ol )
N
O O O
N—A
(||e® O ol| )




s ey e
P Reduction of Set Cover

We use the following counting problem
(a counting version of the set cover problem).

Given X a finite set, S C 2% a family

| Output | The number of subfamilies S’ C S

st Uyes' Y =X
a o
(||e O ol| )
N
O O O
N—A
(||e O ol| )




s ey e
P Reduction of Set Cover

We use the following counting problem
(a counting version of the set cover problem).

Given X a finite set, S C 2% a family

| Output | The number of subfamilies S’ C S

st Uyes' Y =X

) )

Clle] |lo|] |e]] )

N
A

"l
N




s ey e
P Reduction of Set Cover

We use the following counting problem
(a counting version of the set cover problem).

Given X a finite set, S C 2% a family

| Output | The number of subfamilies S’ C S
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ﬁ Actual reduction
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[End of my talk]
.



Koszonom szépen!
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