Core Stability of Minimum Coloring Games

Thomas Bietenhader & Yoshio Okamoto (ETH Zurich)

June 23, 2004 30th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2004) Physikzentrum Bad Honnef, Bad Honnef, Germany

Framework: Several people are willing to work together...
They want to have a largest possible benefit.
Optimization problem
They want to allocate the benefit in a fair way.
game-theoretic problem

Framework: Several people are willing to work together...
They want to have a largest possible benefit.
Optimization problem
They want to allocate the benefit in a fair way.
game-theoretic problem

Game Theory?

Noncooperative Game Theory
 Cooperative Game Theory

G = (V, E) an undirected graph ♦ A proper k-coloring of G is a map $c : V \to \{1, ..., k\}$ s.t. if $\{u, v\} \in E$, then $c(u) \neq c(v)$. ♦ The chromatic number $\chi(G)$ of G

 $= \min\{k : a \text{ proper } k \text{-coloring of } G \text{ exists }\}.$

G = (V, E) an undirected graph A proper k-coloring of G is a map $c: V \rightarrow \{1, \ldots, k\}$ s.t. if $\{u, v\} \in E$, then $c(u) \neq c(v)$. \blacklozenge The chromatic number $\chi(G)$ of G $= \min\{k : a \text{ proper } k \text{-coloring of } G \text{ exists }\}.$ The minimum coloring game on G is a cooperative game (V, χ_G) .

> $\chi_G : 2^V \to \mathbb{I}N$ is defined as $\chi_G(S) = \chi(G[S])$, where G[S] is the subgraph induced by $S \subseteq V$.

> > (Deng, Nagamochi & Ibaraki '99)

Example: minimum coloring game

$\chi_{G}(S) = \chi(G[S])$ for $S \subseteq V$.

	S	χg	S	χg	S	χg	S	χg
1	Ø	0	14	1	123	2	245	2
\mathbf{R}	1	1	15	2	124	2	345	2
$2 \sim 5$	2	1	23	2	125	3	1234	2
	3	1	24	1	134	2	1235	3
	4	1	25	2	135	2	1245	3
	5	1	34	2	145	2	1345	2
4 3	12	2	35	1	234	2	2345	2
	13	1	45	2	235	2	12345	3

Goal:

To allocate $\chi(G)$ to each vertex in a fair way.

Background: model of conflicts

Conflict graph: a model of conflict

- \blacklozenge the vertices = the agents, the principals...
- \blacklozenge the edges = between two in conflict.

min. coloring game:

a simplest model of the fair cost allocation problem in conflict situations

♦ Stable set

(von Neumann & Morgenstern '44)

- Quite useful
- Difficult to study (especially not unique)

Stable set (von Neumann & Morgenstern '44)

- Quite useful
- Difficult to study (especially not unique)

Core

(Gillies '53)

Also useful

• Easier to study (especially a bounded polyhedron)

Stable set (von Neumann & Morgenstern '44)

- Quite useful
- Difficult to study (especially not unique)

Core

(Gillies '53)

- Also useful
- Easier to study (especially a bounded polyhedron)

When is the core stable??

Characterize games with stable cores.

Stable set (von Neumann & Morgenstern '44)

- Quite useful
- Difficult to study (especially not unique)

Core

(Gillies '53)

- Also useful
- Easier to study (especially a bounded polyhedron)

When is the core stable??

Characterize games with stable cores.

"Core Stability Problem" Far from being solved

Shapley '71

Shapley '71 Sharkey '82

Shapley '71 Sharkey '82 Kikuta & Shapley '86

Shapley '71 Sharkey '82 Kikuta & Shapley '86 van Gellekom, Potters & Reijnierse '99

Previous result

(Okamoto '03)

The following are equivalent.

The minimum coloring game on G is submodular.

• G is complete multipartite.

Result (1)

Thm For a perfect graph G,

(1) The following are equivalent.

The minimum coloring game on G has a stable core.
 Every vertex of G belongs to a maximum clique.

Thm For a perfect graph G,

(1) The following are equivalent.

The minimum coloring game on G has a stable core.
Every vertex of G belongs to a maximum clique.
This condition can be checked in polynomial time.

Result (2)

Thm For a perfect graph G,

- (2) The following are equivalent.
 - The minimum coloring game on G has a large core.
 The minimum coloring game on G is exact.
 The minimum coloring game on G is extendable.
 Every clique of G is contained in a maximum clique.

Result (2)

(2) The following are equivalent.

The minimum coloring game on G has a large core.
The minimum coloring game on G is exact.
The minimum coloring game on G is extendable.
Every clique of G is contained in a maximum clique.

Checking this condition is coNP-complete.

Rest of the talk

We concentrate on Result (1).

- Cost allocation, Core
- Perfect graph
- Stable Core

A cost allocation for a game (N, γ) is

a vector $oldsymbol{z} \in {\rm I\!R}^{\sf N}$ such that

$$\sum \{z[i]: i \in N\} = \gamma(N).$$

(Often called a pre-imputation in cooperative game theory)

A cost allocation for a game (N, γ) is

a vector $oldsymbol{z} \in {\rm I\!R}^{\sf N}$ such that

$$\sum \{z[i]: i \in \mathbb{N}\} = \gamma(\mathbb{N}).$$

(Often called a pre-imputation in cooperative game theory)

Interpretation:

z[i] = the amount of cost the player i must pay when all players in N work together

Imputation

Def.: A cost allocation $\boldsymbol{z} \in {\rm I\!R}^{\sf N}$ for $({\sf N},\gamma)$ is an imputation if

 $z[i] \leq \gamma(\{i\})$ for all $i \in N$.

Imputation

Def.: A cost allocation $z \in \mathbb{R}^N$ for (N, γ) is an imputation if

 $z[i] \leq \gamma(\{i\})$ for all $i \in N$.

Interpretation: Each player $i \in N$ is satisfied with z

~[;].		CO	
$\mathcal{L}[l]$.		wł	
a ([i])		CO	
γ({ ι })	-	۰. <i>ا</i>	

ost owed by i hen people in N work together ost owed by i when i works alone

Example: Imputation

 $\mathsf{Imp} = \begin{cases} z \in \mathrm{IR}^3 : & z[1] \le 1, z[2] \le 1, z[3] \le 1, \\ & z[1] + z[2] + z[3] = 2 \end{cases}$

Core (Gillies '53)

Def.: A cost allocation $z \in \mathbb{R}^{N}$ for (N, γ) is a core allocation if

 $\sum \{ z[i] : i \in S \} \le \gamma(S) \quad \text{ for all } S \subseteq N.$

The core of (N, γ) is the set of all core allocations.

Core (Gillies '53)

Def.: A cost allocation $z \in \mathbb{R}^{N}$ for (N, γ) is a core allocation if

 $\{z[i]: i \in S\} \le \gamma(S) \quad \text{ for all } S \subseteq N.$

The core of (N, γ) is the set of all core allocations.

Interpretation: Each subset $S \subseteq N$ is satisfied with z

$$\sum_{\mathfrak{i}\in \mathsf{S}}oldsymbol{z}[\mathfrak{i}]$$
 : $\gamma(\mathsf{S})$:

cost owed by S when people in N work together cost owed by S when people in S work together.

Example: Core

Perfect graph (Berge '60)

Def.: A graph G is perfect if \forall induced subgraph H of G

the size of maximum clique = the chromatic number. $(\omega(H))$ $(\chi(H))$

- Bipartite graphs
- Complete multipartite graphs
- Interval graphs
- The complements of perfect graphs

(Lovász '72)

The chromatic number can be computed in poly time. (Grötschel, Lovász & Schrijver '81) (Values of the char fn can be computed efficiently.)

 The chromatic number can be computed in poly time. (Grötschel, Lovász & Schrijver '81)
 (Values of the char fn can be computed efficiently.)
 The min coloring game always has a nonempty core.

(Deng, Nagamochi & Ibaraki '99)

- The chromatic number can be computed in poly time. (Grötschel, Lovász & Schrijver '81)
 - (Values of the char fn can be computed efficiently.)
- The min coloring game always has a nonempty core. (Deng, Nagamochi & Ibaraki '99)
- Characterizes totally balanced min coloring games. total balancedness = every subgame has a nonempty core (Deng, Ibaraki, Nagamochi & Zeng '00)

- The chromatic number can be computed in poly time. (Grötschel, Lovász & Schrijver '81)
 - (Values of the char fn can be computed efficiently.)
- The min coloring game always has a nonempty core. (Deng, Nagamochi & Ibaraki '99)
- Characterizes totally balanced min coloring games. total balancedness = every subgame has a nonempty core (Deng, Ibaraki, Nagamochi & Zeng '00)
- Core = conv(the char vectors of maximum cliques of G). (Okamoto '03)

Example: Core

Core = conv{(1, 0, 1), (0, 1, 1)}

 $\forall y \in Imp \setminus Core$ $\exists x \in Core and S \subset N \text{ such that}$ $\bullet \sum \{x[i] : i \in S\} = \gamma(S),$ $\bullet x[i] < y[i] \forall i \in S.$

Def.: The core of
$$(N, \gamma)$$
 is stable if

$$\forall y \in \mathsf{Imp} \setminus \mathsf{Core} \\ \exists x \in \mathsf{Core} \text{ and } S \subset \mathsf{N} \text{ such that} \\ \bigstar \sum \{x[i] : i \in S\} = \gamma(S), \\ \bigstar x[i] < y[i] \forall i \in S.$$

Interpretation:

No matter which $y \in Imp \setminus Core$ you give me, I can always find $x \in Core$ which makes S happier.

Def.: The core of
$$(N, \gamma)$$
 is stable if

$$\forall y \in \mathsf{Imp} \setminus \mathsf{Core}$$

$$\exists x \in \mathsf{Core} \text{ and } S \subset \mathsf{N} \text{ such that}$$

$$\bigstar \sum \{x[i] : i \in S\} = \gamma(S),$$

$$\bigstar x[i] < y[i] \forall i \in S.$$

Interpretation:

No matter which $y \in Imp \setminus Core$ you give me, I can always find $x \in Core$ which makes S happier.

Remark:

More generally, a **stable set** can be defined.

Example: stable core

Example: stable core

 $\mathbf{y} = (2/3, 2/3, 2/3) \rightsquigarrow \mathbf{x} = (1/2, 1/2, 0) \text{ and } \mathbf{S} = \{1, 2\}$

Example: stable core

 $y = (2/3, 2/3, 2/3) \rightsquigarrow x = (1/2, 1/2, 0) \text{ and } S = \{1, 2\}$ $x[1] + [2] = 1 = \chi_G(\{1, 2\}),$ x[1] < y[1] and x[2] < y[2].

Example: unstable core

Example: unstable core

Example: unstable core

 $\mathbf{y} = (1,0,1) \rightsquigarrow \mathbf{x} = (0,1,1). \text{ Need to find S s.t.}$ $\bigstar \sum \{x[i] : i \in S\} = \chi_G(S),$ $\bigstar x[i] < y[i] \forall i \in S.$

Example: unstable core

 $\mathbf{y} = (1,0,1) \rightsquigarrow \mathbf{x} = (0,1,1). \text{ Need to find S s.t.}$ $\bigstar \sum \{x[i] : i \in S\} = \chi_G(S),$ $\bigstar x[i] < y[i] \forall i \in S. \rightsquigarrow S = \{1\}$

Example: unstable core

y = (1,0,1) → x = (0,1,1). Need to find S s.t. $\sum {x[i] : i \in S} = \chi_G(S), \rightsquigarrow x[1] = 0 \neq 1 = \chi_G({1}).$ $x[i] < y[i] \forall i \in S. \rightsquigarrow S = {1}$

Result (1), again

Thm For a perfect graph G,

(1) The following are equivalent.

The minimum coloring game on G has a stable core.
Every vertex of G belongs to a maximum clique.
This condition can be checked in polynomial time.

Vielen Dank!

Here are some extra slides which could be used for answering questions from the audience.

Polynomial-time algorithm for Result (1)

(Grötschel, Lovász & Schrijver '81)

A maximum weight clique of a perfect graph can be found in polynomial time.

(Grötschel, Lovász & Schrijver '81)

A maximum weight clique of a perfect graph can be found in polynomial time.

Our Algorithm using the thm above

(1) For each vertex $v \in V$

 \blacklozenge define a weight vector $\boldsymbol{w}^{(\nu)}$ as

$$w^{(
u)}[\mathfrak{u}] = egin{cases} ``large'' & \mathfrak{u} =
u \ ``small'' & \mathfrak{u}
eq
u; \end{cases}$$

Compute a maximum weight clique w.r.t. w^(ν);
 (2) If all of them are maximum-size cliques, return "YES;" otherwise return "NO."

For a game (N, γ) and $T \subseteq N$, define another game $(T, \gamma^{(T)})$ as

$$\gamma^{(\mathsf{T})}(\mathsf{S}) = \gamma(\mathsf{S})$$
 for all $\mathsf{S} \subseteq \mathsf{T}$.

 $(\mathsf{T}, \boldsymbol{\gamma}^{(\mathsf{T})})$ is called a subgame.

Def.: A game
$$(N, \gamma)$$
 is extendable if
 $\forall T \subseteq N \quad (T \neq \emptyset)$
 $\forall y \in Core(T, \gamma^{(T)})$
 $\exists x \in Core(N, \gamma)$ such that
 $x_i = y_i$ for all $i \in T$.

Interpretation:

Every core allocation of any subgame can be "extended" to a core allocation of the original game.

Def.: The core of (N, γ) is large if

 $\begin{array}{l} \forall \ y \in {\rm I\!R}^{\sf N} \ {\rm such \ that} \\ \sum \{ y_i : i \in S \} \leq \gamma(S) \ {\rm for \ all} \ S \subseteq {\sf N} \\ \exists \ x \in {\rm Core \ such \ that} \\ y \leq x. \end{array}$

EIGENÖSSISCHE TECHNISCHE HOCHSCHUle Zürich Swiss Federal Institute of Technology Zurich

Def.: A game
$$(N, \gamma)$$
 is exact if
 $\forall S \subseteq N$
 $\exists x \in \text{Core such that}$
 $\sum \{x_i : i \in S\} = \gamma(S).$

(Zverovich '03)

Use the satisfiability problem

Example: $\phi = (x \lor y \lor \overline{z}) \land (\overline{x} \lor y \lor w) \land (\overline{y} \lor z \lor w).$

 $\omega(\overline{G}) = n + 1.$ (n := # of var's in ϕ .) $\exists a maximal clique of size n in \overline{G} \Leftrightarrow \phi satisfiable.$