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What is all about?

. Framework:Framework: Several people are willing to work together...

�� They want to have a largest possible benefit.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . optimization problem

�� They want to allocate the benefit in a fair way.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . game-theoretic problem

. Game Theory?Game Theory?

�� Noncooperative Game Theory

�� Cooperative Game Theory
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Cooperative games

. Def.:Def.: A cooperative game (or a game) is a pair (N,γ) of

�� a finite set N (set of players)

�� a function γ : 2N → IR with γ(∅) = 0
(characteristic function).

. Interpretation:Interpretation: For S ⊆ N,

γ(S) represents

{
the max. benefit gained by S
the min. cost owed by S

}

when the players in S work in cooperation.

. Goal:Goal: To allocate γ(N) to each player in a “fair” way.

. This work:This work: study on “minimum coloring games.”
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Definition: minimum coloring game

G = (V, E) an undirected graph

�� A proper k-coloring of G
is a map c : V → {1, . . . , k} s.t.
if {u, v} ∈ E, then c(u) 6= c(v).

�� The chromatic number χ(G) of G

= min{ k : a proper k-coloring of G exists }.

�� The minimum coloring game on G
is a cooperative game (V, χG).

χG : 2V → IN is defined as χG(S) = χ(G[S]),
where G[S] is the subgraph induced by S ⊆ V .

(Deng, Nagamochi & Ibaraki ’99)
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Example: minimum coloring game

χG(S) = χ(G[S]) for S ⊆ V .

1

2

4

5

3

S χG S χG S χG S χG
∅ 0 14 1 123 2 245 2
1 1 15 2 124 2 345 2
2 1 23 2 125 3 1234 2
3 1 24 1 134 2 1235 3
4 1 25 2 135 2 1245 3
5 1 34 2 145 2 1345 2

12 2 35 1 234 2 2345 2
13 1 45 2 235 2 12345 3

. Goal:Goal: To allocate χ(G) to each vertex in a fair way.



Background: model of conflicts

Conflict graph: a model of conflict

�� the vertices = the agents, the principals...

�� the edges = between two in conflict.

min. coloring game:

a simplest model of the
fair cost allocation problem
in conflict situations



A bit of history

Interested in certain sets of fair allocations.

�� Stable set (von Neumann & Morgenstern ’44)

•• Quite useful
•• Difficult to study (especially not unique)

�� Core (Gillies ’53)

•• Also useful
•• Easier to study (especially a bounded polyhedron)

. QQ When is the core stable??

Characterize games with stable cores.

“Core Stability Problem” ...... Far from being solved
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submodular

core largeness

extendability

core stability

Shapley ’71

Sharkey ’82
Kikuta & Shapley ’86

van Gellekom, Potters & Reijnierse ’99
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Previous result

. ThmThm (Okamoto ’03)

The following are equivalent.

�� The minimum coloring game on G is submodular.

�� G is complete multipartite.



Result (1)

. ThmThm For a perfect graph G,

(1) The following are equivalent.

�� The minimum coloring game on G has a stable core.
�� Every vertex of G belongs to a maximum clique.

This condition can be checked in polynomial time.
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Result (2)

. ThmThm For a perfect graph G,

(2) The following are equivalent.

�� The minimum coloring game on G has a large core.
�� The minimum coloring game on G is exact.
�� The minimum coloring game on G is extendable.
�� Every clique of G is contained in a maximum clique.

Checking this condition is coNP-complete.
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Rest of the talk

We concentrate on Result (1).

�� Cost allocation, Core
�� Perfect graph

�� Stable Core



Cost allocation

. Def.:Def.: A cost allocation for a game (N,γ) is

a vector z ∈ IRN such that
∑

{z[ i ] : i ∈ N} = γ(N).

(Often called a pre-imputation in cooperative game theory)

. Interpretation:Interpretation:

z[ i ] = the amount of cost the player i must pay
when all players in N work together
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Imputation

. Def.:Def.: A cost allocation z ∈ IRN for (N,γ) is

an imputation if

z[ i ] ≤ γ({i}) for all i ∈ N.

. Interpretation:Interpretation: Each player i ∈ N is satisfied with z

z[ i ] :
cost owed by i
when people in N work together

γ({i}) :
cost owed by i
when i works alone
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Example: Imputation

z[ 1 ]

1 2

3
z[ 3 ]

z[ 2 ]

V = {1, 2, 3}

χG(∅) 0
χG({1}) 1
χG({2}) 1
χG({3}) 1
χG({1, 2}) 1
χG({1, 3}) 2
χG({2, 3}) 2
χG({1, 2, 3}) 2

Imp =

{
z ∈ IR3 :

z[ 1 ] ≤ 1, z[ 2 ] ≤ 1, z[ 3 ] ≤ 1,
z[ 1 ] + z[ 2 ] + z[ 3 ] = 2

}



Core (Gillies ’53)

. Def.:Def.: A cost allocation z ∈ IRN for (N,γ) is

a core allocation if
∑

{z[ i ] : i ∈ S} ≤ γ(S) for all S ⊆ N.

The core of (N,γ) is the set of all core allocations.

. Interpretation:Interpretation: Each subset S ⊆ N is satisfied with z

∑

i∈S
z[ i ] :

cost owed by S
when people in N work together

γ(S) :
cost owed by S
when people in S work together.
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Perfect graph (Berge ’60)

. Def.:Def.: A graph G is perfect if ∀ induced subgraph H of G

the size of maximum clique = the chromatic number.
(ω(H)) (χ(H))

Examples of perfect graphs

�� Bipartite graphs
�� Complete multipartite graphs
�� Interval graphs
�� The complements of perfect graphs (Lovász ’72)
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Why perfect graphs??

When G is perfect,

�� The chromatic number can be computed in poly time.
(Grötschel, Lovász & Schrijver ’81)

(Values of the char fn can be computed efficiently.)

�� The min coloring game always has a nonempty core.
(Deng, Nagamochi & Ibaraki ’99)

�� Characterizes totally balanced min coloring games.
total balancedness = every subgame has a nonempty core

(Deng, Ibaraki, Nagamochi & Zeng ’00)

�� Core = conv(the char vectors of maximum cliques of G).
(Okamoto ’03)



Why perfect graphs??

When G is perfect,

�� The chromatic number can be computed in poly time.
(Grötschel, Lovász & Schrijver ’81)

(Values of the char fn can be computed efficiently.)

�� The min coloring game always has a nonempty core.
(Deng, Nagamochi & Ibaraki ’99)

�� Characterizes totally balanced min coloring games.
total balancedness = every subgame has a nonempty core

(Deng, Ibaraki, Nagamochi & Zeng ’00)

�� Core = conv(the char vectors of maximum cliques of G).
(Okamoto ’03)



Why perfect graphs??

When G is perfect,

�� The chromatic number can be computed in poly time.
(Grötschel, Lovász & Schrijver ’81)

(Values of the char fn can be computed efficiently.)

�� The min coloring game always has a nonempty core.
(Deng, Nagamochi & Ibaraki ’99)

�� Characterizes totally balanced min coloring games.
total balancedness = every subgame has a nonempty core

(Deng, Ibaraki, Nagamochi & Zeng ’00)

�� Core = conv(the char vectors of maximum cliques of G).
(Okamoto ’03)



Why perfect graphs??

When G is perfect,

�� The chromatic number can be computed in poly time.
(Grötschel, Lovász & Schrijver ’81)

(Values of the char fn can be computed efficiently.)

�� The min coloring game always has a nonempty core.
(Deng, Nagamochi & Ibaraki ’99)

�� Characterizes totally balanced min coloring games.
total balancedness = every subgame has a nonempty core

(Deng, Ibaraki, Nagamochi & Zeng ’00)

�� Core = conv(the char vectors of maximum cliques of G).
(Okamoto ’03)



Example: Core

z[ 3 ]

z[ 2 ]

z[ 1 ]

1 2

3
V = {1, 2, 3}

χG(∅) 0
χG({1}) 1
χG({2}) 1
χG({3}) 1
χG({1, 2}) 1
χG({1, 3}) 2
χG({2, 3}) 2
χG({1, 2, 3}) 2

Core = conv {(1, 0, 1), (0, 1, 1)}



Stable core (von Neumann & Morgenstern ’44)

. Def.:Def.: The core of (N,γ) is stable if

∀ y ∈ Imp \ Core
∃ x ∈ Core and S ⊂ N such that
��
∑

{x[ i ] : i ∈ S} = γ(S),

�� x[ i ] < y[ i ] ∀ i ∈ S.

. Interpretation:Interpretation:

No matter which y ∈ Imp \ Core you give me,
I can always find x ∈ Core which makes S happier.

. Remark:Remark:

More generally, a stable set can be defined.
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Example: stable core

21

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

y

V = {1, 2, 3}

χG(∅) 0
χG({1}) 1
χG({2}) 1
χG({3}) 1
χG({1, 2}) 1
χG({1, 3}) 2
χG({2, 3}) 2
χG({1, 2, 3}) 2

y = (2/3, 2/3, 2/3)

x[ 1 ] + [ 2 ] = 1 = χG({1, 2}),

x[ 1 ] < y[ 1 ] and x[ 2 ] < y[ 2 ].
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Example: unstable core

z[ 2 ]

z[ 3 ]

1

z[ 1 ]

3

2y

V = {1, 2, 3}

χG(∅) 0
χG({1}) 1
χG({2}) 1
χG({3}) 1
χG({1, 2}) 1
χG({1, 3}) 1
χG({2, 3}) 2
χG({1, 2, 3}) 2

y = (1, 0, 1)

 x = (0, 1, 1). Need to find S s.t.

��
∑

{x[ i ] : i ∈ S} = χG(S),  x[ 1 ] = 0 6= 1 = χG({1}).

�� x[ i ] < y[ i ] ∀ i ∈ S.  S = {1}
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Result (1), again

. ThmThm For a perfect graph G,

(1) The following are equivalent.

�� The minimum coloring game on G has a stable core.
�� Every vertex of G belongs to a maximum clique.

This condition can be checked in polynomial time.



End of the talk

Vielen Dank!



Thank you very much

Here are some extra slides which could be used for
answering questions from the audience.



Polynomial-time algorithm for Result (1)

. ThmThm (Grötschel, Lovász & Schrijver ’81)

A maximum weight clique of a perfect graph
can be found in polynomial time.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our Algorithm using the thm above

(1) For each vertex v ∈ V
�� define a weight vector w(v) as

w(v)[u ] =

{
“large” u = v
“small” u 6= v;

�� Compute a maximum weight clique w.r.t. w(v);

(2) If all of them are maximum-size cliques, return “YES;”
otherwise return “NO.”
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Subgame

. Def.:Def.: For a game (N,γ) and T ⊆ N,

define another game (T, γ(T)) as

γ(T)(S) = γ(S) for all S ⊆ T .

(T, γ(T)) is called a subgame.



Extendability (Kikuta & Shapley ’86)

. Def.:Def.: A game (N,γ) is extendable if

∀ T ⊆ N (T 6= ∅)
∀ y ∈ Core(T, γ(T))

∃ x ∈ Core(N,γ) such that

xi = yi for all i ∈ T .

. Interpretation:Interpretation:

Every core allocation of any subgame can be
“extended” to a core allocation of the original game.



Large core (Sharkey ’82)

. Def.:Def.: The core of (N,γ) is large if

∀ y ∈ IRN such that∑
{yi : i ∈ S} ≤ γ(S) for all S ⊆ N

∃ x ∈ Core such that
y ≤ x.



Exactness (Schmeidler ’72)

. Def.:Def.: A game (N,γ) is exact if

∀ S ⊆ N
∃ x ∈ Core such that∑

{xi : i ∈ S} = γ(S).



coNP-completeness proof

Use the satisfiability problem (Zverovich ’03)

Example: φ = (x∨ y∨ z) ∧ (x∨ y∨w) ∧ (y∨ z∨w).

C1 C3C2

xx yy wz wz

�� ω(G) = n+ 1. (n := # of var’s in φ.)

�� ∃ a maximal clique of size n in G ⇔ φ satisfiable.


